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Abstract 
Measures of incidence are essential for investigating etiology. For congenital diseases 
and disorders of early childhood, birth year cohort prevalence serves the purpose of 
incidence. There is uncertainty and controversy regarding the birth prevalence trend of 
childhood disorders such as autism and intellectual disability because changing 
diagnostic factors can affect the rate and timing of diagnosis and confound the true 
prevalence trend. The etiology of many developmental disorders is unknown, and it is 
important to investigate. This paper presents a novel method, Time-to-Event Prevalence 
Estimation (TTEPE), to accurately estimate the time trend in birth prevalence of 
childhood disorders correctly adjusted for changing diagnostic factors. There is no 
known existing method that meets this need. TTEPE is based on established time-to-
event (survival) analysis techniques. Input data are rates of initial diagnosis for each 
birth year cohort by age or, equivalently, diagnostic year. Diagnostic factors form 
diagnostic pressure, i.e., the probability of diagnosing cases, which is a function of 
diagnostic year. Changes in diagnostic criteria may also change the effective 
prevalence at known times. A discrete survival model predicts the rate of initial 
diagnoses as a function of birth year, diagnostic year, and age. Diagnosable symptoms 
may develop with age, affecting the age of diagnosis, so TTEPE incorporates eligibility 
for diagnosis. Parameter estimation forms a non-linear regression using general-
purpose optimization software. A simulation study validates the method and shows that 
it produces accurate estimates of the parameters describing birth prevalence trends and 
diagnostic pressure trends. The paper states the assumptions underlying the analysis 
and explores optional additional analyses and potential deviations from assumptions. 
TTEPE is a robust method for estimating trends in true case birth prevalence controlled 
for diagnostic factors and changes in diagnostic criteria under certain specified 
assumptions. 
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Introduction 
In epidemiology, incidence—the rate of new cases—is a fundamentally important metric 
for estimating causal associations of time-varying risk factors with rates of a disorder 
[1,2]. Incidence has multiple forms; the most relevant for the present purpose is 
incidence proportion, which is the proportion of people who develop the disorder 
(become new cases) during a specified time interval [2]. Incidence is different from 
prevalence, which is the proportion of a defined population with the disorder at a defined 
time, typically a calendar year. Prevalence is rarely of direct interest in studying etiology 
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[2]. For some disorders, including congenital diseases and developmental disorders 
such as autism and intellectual disability, birth year cohort prevalence is used instead of 
incidence [2,3]. A birth year cohort is the set of all individuals born in a given year. For 
disorders that are present or predetermined from birth, the time of onset of the disorder 
is not well defined—it is often before birth—and diagnosis may occur later if at all. 
Synonyms for birth year cohort prevalence include birth year prevalence, birth cohort 
prevalence, or birth prevalence. Frequently, articles use “incidence” to mean the 
occurrence of new diagnoses (incident diagnoses) rather than the occurrence of new 
cases of the disorder, which are typically unobservable apart from diagnoses. While this 
usage is understandable because observations inherently represent diagnosis and 
identification, the difference can be critically important when there is uncertainty about 
the rate and timing of diagnosing or identifying cases. A case is an individual who has 
the disorder, regardless of whether they currently exhibit diagnosable symptoms. 
Serious developmental disorders such as autism and intellectual disability are important 
topics of study because they cause a significant reduction in quality of life across the 
lifespan [4] for affected individuals and their families, and they affect large numbers of 
people. 
 
Studies of time trends in birth year prevalence or incidence are subject to biases 
resulting from changes in diagnostic factors and diagnostic criteria [2]. Investigators can 
estimate incidence and birth prevalence directly from data on diagnoses. But concerns 
that diagnostic factors and diagnostic criteria may have affected the data can lead to a 
lack of confidence in the validity of direct estimates. Diagnostic factors are those that 
influence the probability of diagnosing or identifying cases with the specified disorder. 
Examples include awareness, outreach efforts, screening, diagnostic practice, 
diagnostic substitution or accretion, waiting times for evaluation, diagnostic criteria, 
social factors, policies, and financial incentives for diagnosis. Changes in diagnostic 
criteria can also have the additional effect of changing the effective birth prevalence by 
including or excluding as cases some portion of the population compared to prior 
criteria, with the changes occurring when the new criteria take effect. 
 
Consider, for example, this question. If reported birth prevalence increased over time, 
was this caused by changes in birth prevalence (of cases), the probability of diagnosing 
cases, diagnostic criteria affecting prevalence, or some combination of these factors? It 
is challenging to disentangle these effects, and there is no known existing method 
capable of doing so correctly. 

Literature Review 
There are many studies on the prevalence of developmental disorders. Yet, very few of 
them directly address birth year prevalence trends and very few address methods of 
adjustment for diagnostic factors. The series of reports from the US Centers for Disease 
Control and Prevention’s (CDC) Autism and Developmental Disabilities Monitoring 
Network (ADDM) [5-13] estimate the prevalence of autism among children who were 
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eight years old at each even-numbered year 2000 through 2016. Each report describes 
the prevalence of a single-year birth cohort born eight years before the respective study 
year. The ADDM prevalence estimates comprise all individuals whom the researchers 
determined met case criteria, regardless of whether they had been diagnosed. The 
series of reports represents the trend in birth year prevalence, but the reports describe 
the findings as simply “prevalence” and do not discuss birth year prevalence or similar 
names. The ADDM reports suggest that the observed increases in (birth year) 
prevalence may result from various factors, including changing composition of study 
sites and geographic coverage, improved awareness, and changes in diagnostic 
practice and availability of services. However, they do not suggest methods to quantify 
such effects or to adjust for them. Croen [14] examined birth year prevalence trends in 
autism and mental retardation in California for birth years 1987 to 1994. They concluded 
that the data and methods available were insufficient to determine how much of the 
observed increase reflected an increase in true birth prevalence. Hansen [15] 
recommends using the cumulative incidence of diagnoses of childhood psychiatric 
disorders for each 1-year birth cohort as a measure of risk. Cumulative incidence is the 
sum of new diagnoses, as proportions of the cohort, up to a specified age. It is a 
measure of diagnoses. Therefore it is expected to be less than the birth year prevalence 
of cases since, at any given age, there are typically some cases that have not yet been 
diagnosed. They do not suggest an analytical method to estimate or adjust for the 
effects of diagnostic factors. Nevison [16] presents California Department of 
Developmental Services data showing a sharp rise in birth year prevalence of autism 
over several decades but does not discuss methods to adjust for the effects of 
diagnostic factors.  
 
Elsabbagh [17] states that investigating time trends in prevalence or incidence requires 
holding diagnostic factors such as case definition and case ascertainment “under strict 
control over time” but does not suggest a method for doing so. Campbell [18] reviews 
prevalence estimates and describes an ongoing controversy about them. They 
emphasize the distinction between prevalence and incidence but do not mention birth 
year prevalence. They summarized the CDC ADDM estimates and stated that one 
cannot infer incidence from the ADDM prevalence estimates. However, they did not 
mention that the ADDM estimates are birth year prevalence, which serves the purpose 
of incidence for disorders of early childhood. Campbell indicates that analyses should 
control for certain diagnostic factors, but they do not suggest a method for doing so. 
Baxter [4] examined prevalence and incidence but did not mention birth year prevalence 
and did not indicate whether their use of “incidence” refers to incident diagnoses or 
incidence of the disorder. Later sections of this paper show why the distinction is crucial. 
Baxter adjusted for covariates that they assumed introduced bias, including 
dichotomous variables representing the most recent diagnostic criteria. Such variables 
inherently represent the time each set of criteria took effect. However, Schisterman [19] 
shows that controlling for variables on a causal path from the input (time, in this case) to 
the outcome (prevalence or incident diagnoses) constitutes inappropriate adjustment 
and biases the estimate of the primary effect (i.e., of time on prevalence or incident 
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diagnoses) towards zero. Similarly, Rothman [2] states that controlling for intermediate 
variables typically causes a bias towards finding no effect.  
 
For an example of the problem with adjusting for time-varying covariates, consider 
analyzing a dataset providing observed (diagnosed) prevalence information over a 
range of years where diagnostic criteria changed at a specific year within that range. An 
analysis such as one described in Baxter [4] or implied in Elsabbagh [17] might 
compare prevalence estimates before and after the change in criteria with the goal of 
correctly adjusting for the effect of the change. Individuals born after or shortly before 
the change are naturally diagnosed after the change using the revised criteria. In 
contrast, those born earlier are more likely to be diagnosed using the prior criteria. If 
there had been no increase in actual birth year prevalence, an increase in diagnosed 
prevalence would implicate the change in criteria. On the other hand, if there had been 
an increase in case prevalence with increasing birth year, that would produce an 
increase in the diagnosed prevalence measured after vs. before the change even if the 
change in criteria had no effect. The true value of the trend in birth year case 
prevalence is unknown. This type of analysis is inherently incapable of distinguishing 
between birth year prevalence trends and changes in criteria or other diagnostic factors. 
The results could appear to confirm any a priori assumption regarding those trends. 
 
Keyes [20] used age-period-cohort analysis to attempt to disentangle the effects of birth 
year (cohort) from diagnostic year (period) and concluded that cohort effects best 
explain observed California data. They also argued that cohort effects represent 
diagnostic factors, without noting that birth year prevalence is inherently a cohort effect. 
Spiers [21], in a letter regarding Keyes, pointed out that the method used is extremely 
sensitive to the constraints specified and could as easily have concluded that period, 
i.e., diagnostic year, effects best explain the data. Spiers also disputed Keyes’ 
interpretation of cohort effects. King [22] implicitly used an age-period-cohort analysis, 
assuming that period effects are dominant and controlling for birth year, thereby 
minimizing any potential finding of a cohort effect. There is extensive literature on the 
problems using age-period-cohort analysis to separate the birth year (cohort) effects 
from diagnostic year (period) effects. The root of the problem is the collinearity, i.e., 
cohort + age = period, which violates a basic assumption of regression and causes the 
model to be unidentified. That is, there is a range of possible parameter set values such 
that estimation could produce any arbitrary one of them. One can constrain the analysis 
to make it identified; however, the constraint imposes an assumption on the solution. 
Rodgers [23] states that a constraint of the type used in Keyes “in fact [it] is exquisitely 
precise and has effects that are multiplied so that even a slight inconsistency between 
the constraint and reality, or small measurement errors, can have very large effects on 
estimates.” O’Brien [24], in a book devoted to this topic, states, regarding the 
relationships of age, period and cohort to the dependent variable, “There is no way to 
decide except by making an assumption about the relationship between these three 
variables.” MacInnis [25] showed that the effect of the set of diagnostic factors is 
represented by the years of first diagnoses, formulates the problem as one of 
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separating birth year from diagnostic year, and shows that age-period-cohort 
approaches are not suitable for such analyses. In particular, implicit assumptions to 
make the model estimable cause the resulting estimates to conform to the assumptions, 
forming circular logic. For example, one can constrain the age term in a regression 
based on estimates of the age term, as in Keyes [20], but estimating the age term 
involves making unverifiable assumptions that then appear in the results.  
 
Campbell [18] and McKenzie [26] both point out that various factors could potentially 
affect the rate of diagnoses without affecting the true case rate. 
  
Schisterman [19] recommends “clearly stating a causal question to be addressed, 
depicting the possible data generating mechanisms using causal diagrams, and 
measuring indicated confounders.” This paper directly addresses these issues. 

Overview 
This work aims to develop and specify a method to estimate birth year trends in case 
prevalence, correctly adjusted for trends in the set of diagnostic factors and changes in 
diagnostic criteria. Armed with such a tool, researchers can quantify the effects of the 
set of variable causal factors separately from the effects of diagnostic factors. Where 
covariates are available, investigators can estimate associations of birth prevalence with 
various population characteristics or exposures that may be causal or explanatory. 
 
This paper presents a novel statistical method called time-to-event prevalence 
estimation (TTEPE). TTEPE solves the problems of prior methods of analysis by 
utilizing the survival principle. Within each cohort, as cases are diagnosed, fewer cases 
remain subject to initial diagnosis, which naturally causes a reduction in rates of 
diagnosis with increasing age. Modeling the age distribution directly rather than using it 
as a regression term avoids the collinearity problem of age-period-cohort analysis and 
avoids assuming an age distribution. TTEPE also utilizes the principle that the effect of 
diagnostic factors presents as diagnoses, such that the year of each initial diagnosis 
provides important information. TTEPE uses a time-to-event survival method to model 
the rates of initial diagnoses for all ages and birth cohorts under study. Finding the 
parameter set that results in the best fit to the observed data estimates the trend in birth 
year case prevalence adjusted for changes in the set of diagnostic factors and 
diagnostic criteria. This paper presents the derivation of the analytical method from first 
principles and states all the underlying assumptions. A simulation study shows that the 
method effectively separates and quantifies the birth year prevalence trend from the 
trend in the effects of diagnostic factors, producing accurate estimates. 
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Method of time-to-event prevalence estimation 
(TTEPE) 

Background 
Comparison of prevalence estimates across multiple studies is generally not suitable for 
informing trends in either birth prevalence or incidence [2]. Different prevalence 
estimates may use different mixes of birth years and ages, and there are numerous 
other possible differences between prevalence studies [27]. Many combinations of 
trends in birth prevalence and diagnostic factors could potentially explain observed 
prevalence trends. The Literature Review section briefly describes the problems with 
existing methods, including age-period-cohort analyses and adjusting directly for 
diagnostic factors and criteria. 
 
Analysis of the cumulative incidence to a consistent age of diagnoses in each birth 
cohort comes closer to estimating the trend in true birth prevalence, but results are still 
ambiguous. Some cases may not have been diagnosed by any specified age, and the 
proportion of cases who were not diagnosed by a specified age may be different for 
different birth years. Many combinations of trends in birth prevalence and diagnostic 
factors can produce similar trends in cumulative incidence.  

Ambiguity in estimation 
To motivate the development of TTEPE, first consider the ambiguity inherent in 
analyzing birth prevalence trends using cumulative incidence. How should one interpret 
a dataset that produces any one of the cumulative incidence curves illustrated in Fig 1? 
The figure represents synthetic data; some real-world data may be similar. Observed 
data might produce a curve resembling any one of the curves in the figure. An 
exponential curve with a coefficient of 0.1 fits all three plotted lines reasonably well. 
Does this represent a true increase in birth prevalence with a coefficient of 0.1? Does it 
result from an exponential increase in the effects of diagnostic factors, called diagnostic 
pressure, with no increase in birth prevalence? Perhaps a combination of both? The 
three similar cumulative incidence curves represent quite different possible 
explanations. The information shown in Fig 1 is not sufficient to decide which 
explanation most closely represents reality. 
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Fig 1. Example of cumulative incidence under three models. 𝛽P	is the coefficient for birth 
prevalence; 𝛽H is the coefficient for diagnostic pressure.	Red line with circles represents 𝛽P	=	
0.1,	𝛽H	=	0;	green line with squares represents	𝛽P	=	0.08,	𝛽H	=	0.05;	blue line with crosses 
represents	𝛽P	=	0,	𝛽H	=	0.134.		

 
Fig 1 illustrates a hypothetical example of cumulative incidence of diagnoses to age ten 
over 20 consecutive cohorts using synthetic data. The legend lists the parameter sets 
for the three cases. 𝛽! is the exponential coefficient of birth year prevalence, and 𝛽" is 
the exponential coefficient of diagnostic pressure by diagnostic year. In the case where 
𝛽P	=	0.1	and	𝛽H	=	0, birth prevalence increases at 𝑒#.% − 1 = 10.5% per year while the 
diagnostic pressure is constant over time. Where	𝛽P	=	0	and	𝛽H	=	0.134, birth prevalence 
is constant while diagnostic pressure increases 𝑒#.%&' − 1 = 14.3% per year. Where 𝛽P	
=	0.08	and	𝛽H	=	0.05,	birth prevalence increases at 8.3% per year and diagnostic 
pressure increases at 5.1% per year. The data generating process producing these data 
uses a survival process as detailed below. An Excel spreadsheet to generate all plots in 
this paper is available at OSF [28]. The variable ℎ represents diagnostic pressure, the 
effect of diagnostic factors. The values and trends of cumulative incidence do not 
provide enough information to discern the relative contributions of the trends in birth 
prevalence and diagnostic pressure. While the three cumulative incidence curves 
appear similar, the age distributions of diagnoses are strikingly different for different 
parameter sets, as Fig 2 illustrates.  
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Fig 2. Distribution of diagnoses in the first and last cohorts under three models. 𝛽P	is the 
coefficient for birth prevalence; 𝛽H is the coefficient for diagnostic pressure.	Red lines with 
circles represent 𝛽P	=	0.1,	𝛽H	=	0;	green lines with squares represent 𝛽P	=	0.08,	𝛽H	=	0.5;	blue 
lines with crosses represent	𝛽P	=	0,	𝛽H	=	0.134.		

 
Fig 2 shows the age distributions of diagnoses in the first and last cohorts of Fig 1, with 
separate plot lines for each of the three parameter sets. In the first cohort (top), the 
cumulative incidence to age ten is very similar across all three parameter sets, and the 
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same is true for the last cohort (bottom). The growth in cumulative incidence across all 
cohorts is also very similar for each of the three parameter sets, as shown in Fig 1. 
 
The distinct age distributions associated with different parameter sets are sufficient to 
ascertain the parameter values specifying the trends in Fig 2. This paper’s remainder 
explains how modeling the age distribution of first diagnoses enables accurate and 
unambiguous estimation of the coefficients for birth prevalence and diagnostic pressure. 

Significance of birth year and diagnostic year 
Diagnostic factors only affect the diagnosis of cases when those cases exhibit 
diagnosable symptoms, called being eligible for diagnosis. Diagnostic pressure is the 
probability of diagnosing eligible undiagnosed cases, and it is an effect of the 
combination of all diagnostic factors. The Introduction lists examples. Diagnostic 
pressure is equivalent to the hazard ℎ in time-to-event or survival analysis.  
 
For each case of the disorder, the information resulting from diagnostic pressure 
consists of the time (diagnostic year) of initial diagnosis. Diagnostic pressure has no 
observable effect before diagnosing each case, and none after the initial diagnosis 
since TTEPE considers only initial diagnoses. Hence, the effect of diagnostic pressure 
on the input data is a function of diagnostic year. 
 
The directed acyclic graph (DAG) in Fig 3 illustrates the causal paths from birth year, 
diagnostic year, and age at diagnosis. Birth year drives etiologic (causal) factors, which 
produce the disorder and its symptoms. Symptoms may vary with age. Diagnostic 
criteria determine whether each individual’s symptoms qualifies them as a case, and 
criteria may change at specific diagnostic years. Diagnostic year drives diagnostic 
factors, which form diagnostic pressure. Diagnosable symptoms and diagnostic 
pressure interact to produce each initial diagnosis. 
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Fig 3. Directed Acyclic Graph Representing Year of Birth, Diagnostic Year and Age 
 
Changes in diagnostic criteria can affect the threshold of symptoms that qualify case 
status. Criteria changes may change the proportion of the cohort classified as cases, 
i.e., the effective prevalence. 

Development of the TTEPE method 
The TTEPE method is based on the DAG of Fig 3 and models the age distribution of 
initial diagnoses based on the survival principle. The method avoids the identification 
problem associated with age-period-cohort analysis, and it avoids the problem of 
inappropriate adjustment for diagnostic factors. 
 
TTEPE is particularly applicable to disorders where case status is established by birth 
or by a known age, and diagnosable symptoms are present by some consistent age. It 
is also useful where cases develop diagnosable symptoms gradually over a range of 
ages.  
 
Data sources suitable for TTEPE analysis provide rates of initial diagnoses by age or, 
equivalently, diagnostic year for each birth year cohort. The rate is the count of initial 
diagnoses divided by the cohort’s population at the respective age. 
 
TTEPE is based on these principles: for each birth cohort, the number of cases at risk of 
initial diagnosis decreases as cases are diagnosed (the survival principle), and 
diagnostic year is the time when diagnostic factors affect the probability of diagnosing 
cases exhibiting diagnosable symptoms. TTEPE is an extension of established time-to-
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event methods. TTEPE simultaneously estimates the birth prevalence and diagnostic 
pressure functions by fitting a model to the rate of initial diagnoses at each data point. It 
models the age distribution of initial diagnosis rates via a survival process as a function 
of birth year, diagnostic year (birth year plus age), and eligibility. 
 
TTEPE introduces the concept of eligibility. A case is eligible for diagnosis if the 
individual has diagnosable symptoms and not eligible if the individual has not yet 
developed diagnosable symptoms. For each birth cohort, undiagnosed eligible 
individuals form the risk set of cases at risk of initial diagnosis. The size of the risk set is 
denoted R. At each age, there is some probability of diagnosis of each case in the risk 
set. This probability is the diagnostic pressure (hazard) h. TTEPE uses discrete-time 
distributions, typically years, so the value of h at each age for each cohort is the number 
of newly diagnosed cases divided by the size of the risk set; see Kalbfleisch [29]. At 
each age, newly diagnosed cases are removed from the risk set, and newly eligible 
cases are added to the risk set. For any given value of h, as R decreases or increases, 
the rate of initial diagnoses D changes accordingly. This process generates the age 
distribution. The survival function	S		refers to cases that “survive” diagnosis at each age. 
If all cases were eligible from birth, S  would equal R. More generally, however, some 
cases may initially be ineligible and become eligible as they age, so 𝑅 ≤ 𝑆. The 
prevalence P  is the proportion of the cohort that is or will become cases; they may not 
initially exhibit diagnosable symptoms. The eligibility factor E  is the eligible proportion of 
P; 0 ≤ 𝐸 ≤ 1. 
 
Unlike TTEPE, in typical survival or time-to-event analysis, including Cox proportional 
hazards analysis [30], the initial size of the risk set is assumed to have a known value, 
for instance, an entire population or an entire sample. If the risk set R consisted of the 
entire population without subtracting diagnosed cases, the estimated hazard function of 
time ℎ(9 = 𝐷(/𝑅( would be equivalent to the population-based rate of diagnoses D at time 
t. For such methods, if the disorder is rare, it makes little difference whether the risk set 
is the entire population or the undiagnosed portion. 
 
Population-based rates of initial diagnoses D are observable while the other variables 
are not. Values over time of prevalence P  and diagnostic pressure ℎ produce values of 
D	 as shown in the Illustrative example section. TTEPE extracts the values of P and h 
from D. 

Time-to-event analysis model 
The analysis model enables estimation of the temporal trend of birth prevalence 𝑃 over 
a range of cohorts, appropriately adjusted for diagnostic pressure h. Both P  and h can 
vary with time. P  is a function of birth year, and h is a function of diagnostic year. 
Estimation of P  adjusted for h involves finding the values of the time-based parameters 
of both P  and	h		that minimize the difference between the TTEPE time-to-event model 
of D and the observed data while either specifying or estimating the eligibility function E.	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2020.08.05.20169151doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.05.20169151
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Time-to-Event Prevalence Estimation 

 
 

13 

 
Let 𝐷)*,, be the population-based rate of incident (first) diagnoses, where BY	 is birth 
year and A is age. The model generates predicted values 𝐷)*,,A . Modeling proportions 
rather than counts accommodates changes in each cohort’s population size over time, 
e.g., due to in- and out-migration and deaths. Alternatively, the analysis could model 
counts directly. Count values are useful for calculating p-values from chi-square 
goodness-of-fit measurements.  
 
Let ℎ-* be the diagnostic pressure at diagnostic year DY. 𝐷𝑌 = 𝐵𝑌 + 𝐴, subject to 
rounding, so ℎ-*	is equivalent to ℎ)*,,. Let 𝑃)* be the case prevalence of birth year 
cohort BY, i.e., the proportion of the cohort that are cases regardless of how many have 
been diagnosed. Cases may not initially exhibit diagnosable symptoms, and case 
prevalence does not depend on eligibility. Let 𝑅)*,, be the discrete risk set function of 
the cohort proportion of eligible cases at risk of initial diagnosis at age A		for birth year 
BY.  TTEPE uses R		rather than a discrete survival function S  to accommodate eligibility 
changing with age. Let 𝐸, be the discrete eligibility function, the proportion of cases that 
are eligible at age A, bounded by 0 ≤ 𝐸 ≤ 1. At each age 𝐴 ≥ 1, 𝑃 × (𝐸, − 𝐸,.%) is the 
incremental portion of prevalent cases added to R due to increases in eligibility. For 
simplicity, assume 𝐸, increases monotonically, i.e., non-decreasing, meaning that cases 
do not lose eligibility before diagnosis. 
 
Kalbfleisch [29] gives background on general time-to-event theory and equations.  
 
At each age A for each cohort BY, the rate of incident diagnoses 𝐷)*,, = 𝑅)*,, ∗ ℎ-*, 
from the definition of h, above. We write ℎ-* as ℎ)*,, to clarify the effect of 𝐴 in 𝐷𝑌 =
𝐵𝑌 + 𝐴. 
 
First, we consider the case where the diagnostic criteria do not change the effective 
prevalence over the interval of interest. A later section examines the alternative case. 
Consider three scenarios, differing by the characteristics of 𝐸,. 
 
Scenario: constant 𝐸, = 1. In this scenario, all cases are eligible from birth, so 𝐸, = 1 
for all values of	𝐴. This scenario is equivalent to standard time-to-event models that do 
not consider eligibility. 
 
For 𝐴 ≥ 1, 𝐸, − 𝐸,.% = 0. For the first year of age, 𝐴 = 0, 𝑅)*,# = 𝑃)*𝐸# = 𝑃)* and 
𝐷)*,# = 𝑅)*,#ℎ)*,# = 𝑃)*ℎ)*,#. In other words, at age 0, all cases are eligible and in the 
risk set, and the proportion of the cohort that is diagnosed is the proportion that are 
cases times the probability of being diagnosed. 
For 𝐴 = 1, 𝑅)*,% = 𝑃)* − 𝐷)*,# = 𝑃)* − 𝑃)*ℎ)*,# = 𝑃)*(1 − ℎ)*,#) and 
𝐷)*,% = 𝑅)*,%ℎ)*,% = 𝑃)*(1 − ℎ)*,#)ℎ)*,%.  
In other words, the size of the risk set decreases from age 0 to age 1 by the proportion 
of the cohort diagnosed at age 0. The proportion of the population diagnosed at age 1 is 
the size of the risk set at age 1 times the probability of being diagnosed at age 1. 
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For 𝐴 = 2, 𝑅)*,/ = 𝑅)*,% − 𝐷)*,% = 𝑃)*L1 − ℎ)*,#M − 𝑃)*L1 − ℎ)*,#Mℎ)*,% = 
𝑃)*L1 − ℎ)*,#M(1 − ℎ)*,%) and 𝐷)*,/ = 𝑅)*,/ℎ)*,/ = 𝑃)*(1 − ℎ)*,#)(1 − 𝐻)*,%)ℎ)*,/. 
Similarly, for 𝐴 = 3,  
𝑅)*,& = 𝑃)*(1 − ℎ)*,#)(1 − ℎ)*,%)(1 − ℎ)*,/) and 
𝐷)*,& = 𝑃)*(1 − ℎ)*,#)(1 − ℎ)*,%)(1 − ℎ)*,/)ℎ)*,&. 
 
We can combine these expressions and generalize to, for 𝐴 ≥ 1, 
 

𝑅)*,, = 𝑃)*O(1− ℎ)*,0)
,.%

01#

 

and 

𝐷#$,& = 𝑃#$/01− ℎ#$,'3
&()

'*+

ℎ#$,& (1) 

 
In all three scenarios in this paper, the survival function is:  

𝑆𝐵𝑌,𝐴 = 𝑃𝐵𝑌 −P𝐷𝐵𝑌,𝑎

𝐴−1

𝑎=0

(2) 

The variable 𝑆)*,, is the proportion of the cohort BY that are cases that have not been 
diagnosed by age A. The summation term is the cumulative incidence of initial 
diagnoses through age 𝐴 − 1. 
 
Scenario: Increasing 𝐸,. 𝐸# < 1 and 𝐸, increases monotonically with A. For 𝐴 = 0, 
𝑅)*,# = 𝐸#𝑃)* and 𝐷)*,# = 𝐸#𝑃)*ℎ)*,#. For each 𝐴 ≥ 1, 𝑅)*,, = 𝑅)*,,.% − 𝐷)*,,.% +
(𝐸, − 𝐸,.%)𝑃)*. The incremental increase of 𝐸, causes an incremental increase in 𝑅)*,,. 
Then,  

𝐷#$,& = 𝑅#$,&ℎ#$,& = 0𝑅#$,&() − 𝐷#$,&()3ℎ#$,& + (𝐸& − 𝐸&())𝑃#$ℎ#$,& (3) 

Equation (3) can be used as a procedural definition for software modeling. We can write 
equivalent expressions for 𝑅)*,, and 𝐷)*,, as sums of expressions similar to equation 
(1), where each summed expression describes the portion of 𝑃)* that becomes eligible 
at each age according to	𝐸,. For 𝐴 ≥ 1, 
 

𝑅)*,, =	P(𝐸0 − 𝐸0.%)𝑃)*O(1− ℎ)*,2)
,.%

210

,.%

01#

 

 

𝐷#$,& =	:(𝐸' − 𝐸'())𝑃#$/01− ℎ#$,43
&()

4*'

&()

'*+

ℎ#$,& (4) 
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where 𝐸.% is defined to be 0. 𝐸, can be defined parametrically or non-parametrically. 
 
Scenario: Plateau 𝐸,. 𝐸, increases from 𝐸# < 1 and plateaus at 𝐸, = 1 for 𝐴 ≥ 𝐴𝐸, 
where 𝐴𝐸 is the age of complete eligibility, 𝐴𝐸 < 𝑀, and 𝑀 is the maximum age 
included in the analysis. Equation (3) applies, noting that for 𝐴 > 𝐴𝐸, (𝐸, − 𝐸,.%) = 0. 
Equivalently, combine equation (2) with the fact that 𝐸,3 = 1 to obtain 𝑅,3 = 𝑆,3 = 𝑃)* −
∑ 𝐷)*,0,3.%
01# , so 

𝐷#$,&5 = 𝑅#$,&5ℎ#$,&5 = 𝑆#$,&5ℎ#$,&5 = (𝑃#$ − : 𝐷#$,')
&5()

'*+

ℎ#$,&5 (5) 

and for 𝐴 > 𝐴𝐸, 

𝑅)*,, = 𝑆)*,, = (𝑃)* − P 𝐷)*,0)
,3.%

01#

O(1− ℎ)*,2)
,.%

21,3

 

 

𝐷#$,& = (𝑃#$ − : 𝐷#$,')
&5()

'*+

/01− ℎ#$,43
&()

4*&5

ℎ#$,& (6) 

 
The scenario of increasing 𝐸, is a general formulation and may not be needed in typical 
practice. The plateau 𝐸,	scenario may be appropriate when external information, such 
as the disorder’s definition, indicates the value of AE, or when investigators specify AE  
based on estimates of 𝐸, found using equation (4) or equation (3). For example, for 
disorders where by definition, diagnosable symptoms are present by age 3, the plateau 
𝐸,	scenario applies, and the age of eligibility AE	=	3. Equations (5) and (6) do not model 
𝐸, or 𝐷)*,, for 𝐴 < 𝐴𝐸. Rather, they use the empirical values of 𝐷)*,, for 𝐴 < 𝐴𝐸. In 
other words, we can estimate the model parameters by modeling the survival function 
for 𝐴	 ≥ 𝐴𝐸 and utilizing the observed values 𝐷)*,, for 𝐴 < 𝐴𝐸 directly in the model. 

Prevalence, cumulative incidence and censoring 
The values of P  give the case prevalence in each cohort. The cohort prevalence is 
equivalent to the cumulative incidence of initial diagnoses through the last age of follow-
up plus the right-censored portion. This formulation assumes that any difference in 
competing risks between cases and non-cases in the age range analyzed is small 
enough to be ignored. This assumption is consistent with Hansen [15]. If the rate of 
deaths of cases before initial diagnosis exceeds that the cohort’s overall population at 
the same ages, that excess would constitute a competing risk and reduce the estimated 
prevalence accordingly. 
 
In all three scenarios of 𝐸,, we can express P as a function of S and the cumulative 
incidence 𝐶𝐼,.% =	∑ 𝐷)*,0,.%

01#  for 𝐴 > 0, by rearranging equation (2) as 𝑃 = 𝑆, + 𝐶𝐼,.%. 
Assuming that eligibility at the last age of follow-up 𝐸4 = 1, 𝑆4 = 𝑅4. Then, 𝑃 = 𝑅4 +
𝐶𝐼4.% and 𝐷4 = 𝑅4ℎ4. The censored proportion is 𝑆45% = 𝑆4 − 𝐷4, which is equivalent 
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to 𝑆45% = 𝑅4 − 𝑅4ℎ4 =	𝑅4(1 − ℎ4). After estimating the model parameters, the 
estimated censored proportion—the proportion of the cohort that are cases that have 
not been diagnosed by the last age of follow-up—is 𝑆45%A =𝑅4W(1 − ℎ4W). Diagnoses are 
counted from the first year of life, so there is no left censoring. 

Illustrative example 
Fig 4 illustrates an example of a single cohort according to the plateau 𝐸, scenario 
showing the relationships between prevalence, diagnosis rates, the survival function, 
and cumulative incidence CI  with two different values of diagnostic pressure h = 0.1 and 
h = 0.25 and prevalence 𝑃 = 0.01. In this example, 𝐸 = 1 for 𝐴 ≥ 𝐴𝐸 =	3 and h		takes on 
one of two constant values. The value of h		determines the shapes of these functions vs. 
age. This example shows constant values of h	purely for clarity, not as an assumption 
nor a limitation of TTEPE. 
 

 
Fig 4. Example of a survival process for two values of diagnostic pressure h.  
The green lines S  denote survival, the blue lines D  denote the rate of diagnoses, and the red 
lines CI  denote cumulative incidence. The solid lines represent h=0.1,	and the dashed lines 
represent h=0.25. 

 
As cases are diagnosed, S	 decreases and CI	 increases. R	 is not shown; 𝑅 = 𝑆 for 𝐴 ≥
𝐴𝐸 = 3. Only D	 is observable. 
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Assumptions 
Several baseline assumptions underlie TTEPE analysis. In general, the analytical 
model’s validity and resulting estimates depend on the validity of the assumptions 
stated here. If some assumptions are not met, there could be bias in estimation results. 
Investigators can accommodate deviations from assumptions in many cases. A later 
section gives approaches to address potential violations of assumptions. The TTEPE 
method does not assume any particular relationship between parameter values, nor 
does it require assuming the values of any explicit or implicit variables. 
 

1. The eligibility function 𝐸, under consistent diagnostic criteria is consistent across 
cohorts. 

2. The diagnostic pressure applies equally to all eligible undiagnosed cases at any 
given diagnostic year. 

3. The case prevalence under consistent diagnostic criteria within each cohort is 
constant over the range of ages included in the analysis. 

4. Case status is binary according to the applicable diagnostic criteria. 
5. The discrete-time interval (e.g., one year) is small enough that the error 

introduced by treating the variable values as constant within each interval is 
negligible. 

6. No false positives. 
7. Data represent truly initial diagnoses. 
8. Any difference in competing risks between cases and non-cases in the age range 

analyzed is small enough to be ignored. 
 
The assumption of a consistent eligibility function means that cases develop 
diagnosable symptoms as a function of age, and the function is the same for all cohorts 
under consistent diagnostic criteria. In other words, the value of 𝐸, at age A is the same 
for all cohorts BY, while 𝐸, varies with A. The section Changes in criteria affecting 
prevalence discusses a separate effect that might make the eligibility function appear 
inconsistent even if it is not. 

Estimating parameters 
TTEPE performs a non-linear regression that estimates the parameters of a model of 
𝐷)*,, using general-purpose optimization software. The model is based on equations (1) 
through (6) selected based on the eligibility scenario. The model produces estimates 
𝐷)*,,A  from the parameters and independent variables, and the software finds the 
parameter values that minimize a cost function cost(𝐷,𝐷9). One suitable implementation 
of optimization software in the Python language is the curve_fit() function in the SciPy 
package (scipy.optimize.curve_fit in SciPy v1.5.2). Its cost function is (𝐷 − 𝐷9)/, so it 
minimizes the sum of squared errors. Python software to perform this regression and 
the simulations described below is available at OSF [28]. 
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Investigators should choose which model equation to use based on knowledge or 
estimates of the eligibility function 𝐸,. The constant 𝐸, scenario and equation (1) 
assume that all cases are eligible from birth, which may not be valid for some disorders. 
The validity of the assumption that all cases are eligible by a known age AE, i.e., the 
plateau 𝐸, scenario and equation (6), may be supported by either external evidence, 
e.g., the disorder’s definition or estimation of 𝐸,. The least restrictive approach of the 
increasing 𝐸, scenario uses equation (3) or equation (4) to estimate 𝐸,. Non-parametric 
estimates 𝐸,W	can inform a choice of a parametric form of 𝐸,. The value of 𝐸, at the 
maximum age studied 𝑀 should be set to 1 to ensure the model is identifiable. If 𝐸, = 1 
for all 𝐴 ≥ 𝐴𝐸, that fact and the value of 𝐴𝐸 should be apparent from estimates 𝐸,W, and 
the plateau 𝐸,	scenario applies. 
 
Investigators should choose forms of 𝑃)* and ℎ)*,, appropriate to the dataset. Linear, 
first-order exponential, second-order exponential or non-parametric models may be 
appropriate. Graphical and numeric model fit combined with degrees of freedom can 
guide the optimum choice of a well-fitting parsimonious model. 
 
TTEPE preferably estimates P and h simultaneously over a series of cohorts, utilizing 
data points from all cohorts, thereby enabling well-powered estimation and flexible 
model specification. Alternatively, it may be possible to estimate h in a single cohort and 
estimate P	 based on ℎZ under some conditions. 
 
Suppose the population proportion of cases represented in the data is unknown for all 
cohorts. In that case, estimates of the absolute prevalence, or the intercept, may be 
underestimated by an unknown scale factor. If that proportion is known for at least one 
cohort, we can use it to calibrate the intercept. Proportional changes in prevalence 
between cohorts are unaffected by underestimation of the intercept. If the population 
proportion of cases included in the sample changes over time, that change reflects 
changing diagnostic factors, and the estimated parameters of h automatically represent 
such changes. 

Changes in criteria affecting prevalence 
Changes in diagnostic criteria could potentially affect rates of initial diagnoses by 
changing the effective prevalence. This mechanism is distinct from diagnostic pressure. 
Changes in criteria may change the effective prevalence within a cohort, without 
affecting symptoms or etiology, by including or excluding as cases some portion of the 
cohort population compared to prior criteria. A criteria change may change the effective 
prevalence of the entirety of any birth cohort where the birth year is greater than or 
equal to the year the change took effect. For birth years before the year of criteria 
change, a change in criteria that changes the effective prevalence causes an increase 
or decrease in the size of the risk set R starting at the diagnostic year the change took 
effect. Generally, diagnostic criteria should be given in published documents, such that 
changes in criteria correspond to effective dates of new or revised specifications.  
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Let [𝐶𝐹67] be the set of criteria factors that induce a multiplicative effect on effective 
prevalence due to criteria changes that occurred at criteria years {𝑐𝑦} after the first 
𝐷𝑌	included in the study. 𝑃)* is the prevalence of cohort BY	 before the effect of any of 
[𝐶𝐹67]. For each cohort BY, the effective prevalence 𝐸𝑃)*,, at age A is  

𝐸𝑃#$,& = 𝑃#$/ 𝐶𝐹67
678(#$:&)

(7) 

where 𝐶𝐹#, the value in effect before the first 𝐷𝑌 in the study, equals 1. The combination 
of 𝑃)* and the effects of all [𝐶𝐹67|𝑐𝑦 ≤ 𝐵𝑌 + 𝐴] determines the final effective prevalence 
of each cohort. 
For a given BY	 and increasing A, 𝐵𝑌 + 𝐴 crossing any 𝑐𝑦 causes a step-change in the 
effective prevalence EP. Using a general formulation of eligibility 𝐸,, per the increasing 
𝐸, scenario and equation (3), and for clarity substituting 𝐵𝑌 + 𝐴 for DY, we obtain the 
following. For 𝐴 = 0, 𝑅)*,# = 𝐸#𝐸𝑃)*,# and 𝐷)*,# = 𝐸#𝐸𝑃)*,#ℎ)*,#. For 𝐴 ≥ 1,  

𝑅)*,, = 𝑅)*,,.% − 𝐷)*,,.% + 𝐸,(𝐸𝑃)*,, − 𝐸𝑃)*,,.%) + (𝐸, − 𝐸,.%)𝐸𝑃)*,, 
and 

𝐷)*,, = [𝑅)*,,.% − 𝐷)*,,.% + 𝐸,(𝐸𝑃)*,, − 𝐸𝑃)*,,.%) + (𝐸, − 𝐸,.%)𝐸𝑃)*,,]ℎ-* (8) 
The term 𝐸𝑃)*,, − 𝐸𝑃)*,,.% represents the change in the effective prevalence EP when 
𝐵𝑌 + 𝐴 crosses one of {𝑐𝑦}. As each 𝐶𝐹67 takes effect at 𝑐𝑦 = 𝐷𝑌 = 𝐵𝑌 + 𝐴, the newly 
effective 𝐶𝐹67 changes 𝐸𝑃)*,, and 𝑅 in all BY	 cohorts where cy corresponds to an age A 
in the range of ages studied. These changes in R affect the rates of initial diagnoses D. 
For cohorts born after cy, 𝐶𝐹67 applies to all ages. 
 
The parameters of 𝑃)* quantify the birth year prevalence controlled for diagnostic 
criteria changes, which are represented by {𝐶𝐹67}. In other words, 𝑃)* is the cohort 
prevalence that would have occurred if the initial criteria had been applied at all 
diagnostic years included in the study. 
 
To estimate the parameters, use a software model of equation (8) with optimization 
software, described in the previous section. 

Potential violations of assumptions 
Suppose a dataset represents a non-homogeneous set of cases with different effective 
values of diagnostic pressure h applying to different unidentified subgroups at the same 
DY. That would violate the assumption that the diagnostic pressure applies equally to all 
eligible undiagnosed cases at any given DY. Cases may have differing degrees of 
symptom severity, and more severe symptoms may result in earlier diagnosis [31], 
implying greater diagnostic pressure. Fig 5 illustrates this situation. The figure illustrates 
constant values of h purely for clarity, not as an assumption nor a limitation. If the data 
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represent a combination of unidentified subgroups with differential diagnostic pressure, 
the distribution of diagnoses is a sum of distributions with different values of h. Such a 
sum of distributions with different values of h may impair fit with a model that assumes 
homogeneous h. For data where 𝐸 = 1 for 𝐴 ≥ 𝐴𝐸 (plateau 𝐸,), adjusting the assumed 
value of AE	 used in estimation, called AE*, may mitigate such errors, as shown in the 
Simulation study section. Stratified estimation using subgroup data, if available, can 
avoid the issue of unidentified non-homogenous subgroups. If one suspects non-
homogeneity tied to geographic location, such as differences in diagnostic practices or 
health disparities, stratification by geographic location can elucidate such differences. 
 

 
Fig 5. Example where observed diagnosis rates represent two unidentified subgroups with 
different values of diagnostic pressure. The red and green lines represent rates of diagnosis of 
the two subgroups. Group 1 (red line) has greater diagnostic pressure than group 2  (green 
line). The solid black line shows the aggregate diagnosis rates. The dotted line shows the 
exponential fit to the aggregate diagnosis rates. The age of eligibility AE = 3 in this example. 

 
Any imbalance of case prevalence between in-migration and out-migration to and from 
the region defining the population over the study period would change the prevalence of 
individual cohorts over time. If some cases of the disorder are caused by exposures 
after birth, and those exposures vary by year, that would also change the prevalence 
over time. Either effect would violate the assumption of constant prevalence within each 
cohort. If time-varying post-natal exposures caused the disorder in multiple birth cohorts 
simultaneously, they could cause an upward bias in the estimate of diagnostic pressure 
over the years of this effect. 
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If some in-migrating cases were diagnosed before in-migration and their subsequent re-
diagnoses in the study region were labeled as initial diagnoses, that would violate the 
assumption of truly first diagnoses. Such an effect would be most evident at greater 
ages after the diagnosis of most cases. Bounding the maximum age studied 𝑀 to a 
modest value, sufficient to capture most initial diagnoses, can minimize any resulting 
bias. 
 
Apart from subgroups with non-homogeneous h, it is theoretically possible for h to have 
different effective values for cases of different ages with the same symptom severity at 
the same DY. Such an effect would represent an age bias in diagnostic pressure, 
independent of symptom severity. If there is a reason to suspect such an age bias, 
investigators can add an age term to h in the model and estimate its parameters. One 
potential form of an age bias in diagnostic pressure h would be age-specific screening 
for the disorder. Specifically regarding the United States, in 2006, the American 
Academy of Pediatrics [32] recommended screening tests for developmental disorders 
be administered at 9-, 18- and 30- (or 24-) month visits. In 2011, Al-Qabandi et al. [33] 
reviewed the literature on screening and concluded that screening programs were 
generally ineffective. Screening in the USA starting approximately 2006 might plausibly 
have increased the effective diagnostic pressure for ages 0 to 2 or 3. An analysis could 
test for elevated diagnostic pressure at ages 0 through 2 or 3, potentially with this effect 
starting in diagnostic year 2006. A model could estimate a variable for increased 
diagnostic pressure at age three across all cohorts or a specified subset. Note that for 
models that use empirical rates of diagnoses for age 0 through 2 the diagnostic 
pressure at those ages is not part of the model. An analysis model could also utilize 
empirical rates at age three. That way, that diagnostic pressure is estimated for ages 
greater than 3, thereby avoiding any potential bias associated with increased diagnostic 
pressure specific to age 3. 
 
For datasets where diagnosis follows best practices using gold-standard criteria, the 
lack of false positives may be a fair assumption. It would be difficult to discover any 
false positives in that case. Where diagnosis uses a less precise process, some false 
positives might occur. For example, diagnosticians might produce a positive diagnosis 
of individuals who do not meet formal diagnostic criteria, perhaps under pressure from 
the patient or parents, or to facilitate services for the individual. In scenarios where the 
rate of false positives is significant, the age distribution relative to the rates of true 
diagnoses may be important. If false positives are uniformly distributed over the age 
range studied, they would cause a constant additive offset to the rates of diagnoses. 
True case diagnoses should be more common at younger ages and less common as 
the risk pool is depleted, so false positives may be relatively more evident at older ages. 
If false positives are more common at older ages, their effect may be even more 
obvious. 
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Model fit 
To ensure robust conclusions, investigators should test the model fit to ascertain both 
model correctness and parameter estimation accuracy. The model fits well if summary 
measures of the error are small and individual point errors are unsystematic and small 
[34]. One can examine the fit both graphically and numerically. Plots of 𝐷)*,, vs. 𝐷)*,,A  at 
all ages for individual cohorts and separately at single ages across all cohorts can 
illuminate any issues with fit, which might occur at only some cohorts or ages. 
Visualization of the model vs. data can expose aspects of the data that might not fit well 
in a model with few parameters, suggesting a higher-order model or semi-parametric 
specifications.  
 
Suppose the model uses an assumed age of complete eligibility AE*  that differs from 
the true value of AE	 represented by the data. In that case, model fit may be impaired, 
particularly if AE*<AE. As the Simulation study section shows, setting AE*<AE		can result 
in estimation errors. Setting AE*	>AE	 tends not to impair model fit and may improve it in 
the case of non-homogeneous subgroups; see Fig 5. The presence of non-
homogeneous subgroups may be evident from examining model fit. 
 
The chi-square test statistic is a numerical approach to assess absolute model fit. It can 
be applied to the overall model, individual cohorts, and single ages across cohorts. The 
p-value associated with the chi-square statistic utilizes observed and expected count 
values, not proportions. The p-value incorporates the effect of the number of 
parameters in the model via the degrees of freedom.  
 
Methods that do not model the age of first diagnosis across the range of cohorts and 
ages can produce unreliable estimates. The Introduction section gives brief 
explanations of these problems in age-period-cohort analysis and in methods that adjust 
for variables on the causal path. Models using such methods may fit the data well with 
some datasets; however, that does not mean that the models can correctly estimate 
parameters from unrestricted datasets. For example, an age-period-cohort model may 
implicitly assume an exponentially decreasing age effect and no diagnostic year effect. 
A dataset may fortuitously happen to conform to that assumption, resulting in excellent 
model fit. However, using the same model to analyze a dataset that does not follow the 
assumption may produce substantial errors in both model fit and parameter estimates. 
In another example, an analysis may test the fit of the model to only a subset or 
summary of data points, and it may fit the points it tests without recognizing a lack of fit 
to the remaining points. Simulation studies can detect such problems. 

Simulation study 
Simulation studies enable researchers to test a statistical method’s behavior where we 
know the ground truth of all parameters. They use pseudo-random synthetic data 
generated according to known parameters. A simulation study should exercise the 
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analysis model over a broad range of plausible true parameter parameters. A simulation 
study can test whether the model and solution method produce accurate estimates of 
the true parameter values across the full range and detect potential problems such as 
ambiguity or bias. We tested a model of the TTEPE method via a simulation study, 
following the recommendations in Morris [35]. 
 
The simulation study described here uses a model with first-order exponential forms of 
birth year prevalence and diagnostic pressure and plateau eligibility with the age of 
eligibility AE = 3. There are 20 successive cohorts, and the last age of follow-up is M = 
10. The parameters of primary interest are the exponential coefficients of birth year 
prevalence 𝛽! and diagnostic pressure 𝛽". The study tested six pairs of values of 𝛽" 	and	
𝛽!, each ranging from 0 to 0.1 in steps of 0.02, and each pair sums to 0.1. In one 
parameter set, the prevalence increases as 𝑒#.%×)* (10.5% per year) and diagnostic 
pressure is constant; in another parameter set, the prevalence is constant and 
diagnostic pressure increases as 𝑒#.%×-* (10.5% per year); and the other four parameter 
sets represent various rates of change of both variables. In all cases, 𝑃 = 0.01 at the 
final BY and h = 0.25 at the final DY. These simulations assume the investigators know 
the correct value of the age of eligibility AE* = 3, following the plateau EA model, from 
either knowledge of the disorder or estimation of the eligibility function 𝐸,. The study 
synthesized each data model in two ways: real-valued proportions without sampling and 
a Monte Carlo model with binomial random sample generation. The use of real-valued 
proportions tests the estimation method’s accuracy in the absence of sampling effects in 
the data. It is logically equivalent to testing in a population of infinite size. Monte Carlo 
simulation generated data sets using binomial sampling of case counts for each birth 
cohort and counts of initial diagnoses at each age within each cohort, with 1000 
iterations of random data set generation for each set of parameters. The population of 
each synthetic cohort is a constant of 500,000. The analysis estimated the parameters 
for each iteration. The results show the parameter estimation bias and model standard 
error (SE) for each parameter set over all iterations. The study estimated the 
parameters using the method described above, implemented using the Python SciPy 
curve_fit() function. 
 
Table 1 shows results using real-valued proportions without sampling, isolating the 
estimation process from random sampling variations. It shows the bias in estimating 
each of the four model parameters for each of the six combinations of 𝛽" 	and	𝛽! .	The 
biases are minimal and may be caused by finite precision arithmetic in the computer. 
The greatest bias magnitude in 𝛽@I occurs with 𝛽P = 0 and 𝛽h = 0.1 and is on the order of 
10-10. This result shows that the parameter estimation is extremely accurate in the 
absence of sampling effects. 
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Table 1. Simulation results of parameter optimization using real-valued 
proportions with no sampling. 

True Parameters Bias 𝑷K 
at final BY 

Bias 𝜷𝑷I  Bias 𝒉K 
at final DY 

Bias 𝜷𝒉I  

𝛽P 𝛽h     
0.1 0 5.9E-12 8.9E-11 -5.5E-10 -1.8E-10 
0.08 0.02 0 0 -2.8E-17 -1.4E-17 
0.06 0.04 -1.7E-18 0 1.1E-16 1.4E-17 
0.04 0.06 3.5E-18 1.4E-17 -5.6E-17 -6.9E-18 
0.02 0.08 0 3.5E-18 5.6E-17 -1.4E-17 
0 0.1 -4.7E-11 -6.6E-10 2.2E-9 7.7E-10 

P	= 0.01 at the final BY, h =0.25 at the final DY, AE*=AE	=3, M = 10, and there are 
20 successive cohorts. 
𝛽! , 𝛽" are coefficients for prevalence and diagnostic pressure, respectively. 
P, prevalence; BY, birth year;	DY,	diagnostic year. 

 
Table 2 shows the Monte Carlo analysis of the same parameter sets where the data use 
binomial sampling. It shows the bias and model SE of each parameter for each 
parameter set. The bias of the primary parameter 𝛽!W remains small, on the order of 10-5 
or 10-6. The SE is relevant when there is sampling, and it shows the effect of sampling 
compared to Table 1. 
 
Table 2. Simulation results of parameter optimization using Monte Carlo with 
binomial sampling, 1000 iterations.  

True 
Parameters	

𝑷K	at final BY  𝜷𝑷I  𝒉	Kat final DY 𝜷𝒉I  

𝛽P 𝛽h Bias SE Bias SE Bias SE Bias SE 
0.1 0 -2.0E-6 1.0E-4 -2.0E-5 0.0013 3.3E-5 0.0070 -5.4E-6 0.0019 
0.08 0.02 -2.6E-6 1.1E-4 -3.2E-5 0.0012 1.5E-4 0.0072 4.4E-5 0.0019 
0.06 0.04 7.8E-6 1.2E-4 2.7E-5 0.0013 -4.4E-4 0.0079 -1.2E-4 0.0021 
0.04 0.06 1.3E-5 1.5E-4 6.5E-5 0.0015 -5.8E-4 0.0085 -1.6E-4 0.0022 
0.02 0.08 -2.0E-6 1.6E-4 -9.8E-6 0.0016 4.5E-4 0.0086 9.4E-5 0.0023 
0 0.1 4.5E-6 1.8E-4 7.1E-6 0.0017 2.0E-4 0.0094 2.7E-5 0.0023 

Population of each cohort = 500,000. P	=0.01 at the final BY, h	=0.25 at the final 
DY, AE*=AE	=3, M = 10, and there are 20 successive cohorts. 
𝛽! , 𝛽" are coefficients for prevalence and diagnostic pressure, respectively.  
P, prevalence; BY, birth year;	DY,	diagnostic year. 

 
Table 3 gives results where estimation uses an assumed value of the age of eligibility 
AE* that, in some cases, does not match the true value of AE = 3 represented by the 
data. Synthesis uses one homogenous group with consistent h at each value of DY. 
Estimation used various assumed values of AE* to test the effect of the choice of AE*. 
Estimation using	AE* = 2 results in substantial estimation errors and model misfit that is 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2020.08.05.20169151doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.05.20169151
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Time-to-Event Prevalence Estimation 

 
 

25 

obvious from plots of data vs. model (not shown). Estimation using AE* = 3 , AE* = 4 , or 
AE* = 5 produces accurate results, with slightly more error where AE* = 5. Plots show 
that the model fits well in all three cases (not shown). The choice of AE* is not critical as 
long as 𝐴𝐸∗ ≥ 𝐴𝐸. These data use real-valued proportions rather than binomial 
sampling to avoid confusing model mismatch with sampling effects. 
 
Table 3. Comparison of the effect of the choice of assumed 𝑨𝑬∗ vs. true value of 
𝑨𝑬 = 𝟑, with one homogeneous group of cases.	

AE*	used in 
estimation 

Bias 𝑷K	at final 
BY 

Bias 𝜷𝑷I  Bias 𝒉K 
at final DY 

Bias 𝜷𝒉I  

2 0.002 -0.019 -0.0096 0.036 
3 5.9E-12 8.9E-11 -5.5E-10 -1.8E-10 
4 -4.4E-12 -6.6E-11 4.8E-10 1.64E-10 
5 1.5E-11 2.2E-10 -1.85E-9 -7.18E-10 
AE, age of complete eligibility. True values: 𝛽P	= 0.1, 𝛽h = 0,	𝑃 = 0.01 at the final 
BY, h =0.25 at the final DY, AE = 3. Maximum age M = 10. 20 successive cohorts. 
Diagnostic pressure is consistent across cases at each DY. Simulation uses real 
values, no sampling.	

 
Table 4 shows results with an intentional mismatch between estimation assuming one 
homogeneous group and data representing two unlabeled subgroups with different 
values of h, illustrated in Fig 5. Note in Fig 5 the visible error of the exponential fit to the 
data at age = 3 and a good fit for age > 3. In this synthetic dataset, the two subgroups 
are of equal size, and the true value of h in one group is twice that of the other. This 
information is unknown to the estimation, and the data does not indicate subgroup size 
or membership. In the worst case, estimation uses AE* = AE = 3, and the 𝛽@I bias is 
0.001, which is 1% of the actual value of 0.1. This error is due to the subgroups having 
different values of diagnostic pressure, and the estimation does not account for that 
difference. When using AE* = 4 or AE* = 5, the 𝛽@I bias becomes 6 × 10.' or less, and 
the model fit is improved (not shown). 
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Table 4. Comparison of the effect of the choice of assumed AE*	 vs. true value of 
AE = 3, with two unidentified subgroups with different hazards, mismatched to 
analysis.	

AE*	used in 
estimation 

Bias 𝑷K	at final 
BY 

Bias 𝜷𝑷I  Bias 𝒉K 
at final DY 

Bias 𝜷𝒉I  

3 -4.3E-4 0.001 0.0018 -0.002 
4 -3.8E-4 6.1E-4 -0.004 -0.0016 
5 -3.3E-4 3.5E-4 -0.0097 -0.0011 
AE, age of complete eligibility. True values: 𝛽P	= 0.1, 𝛽h = 0,	𝑃 = 0.01 at the final 
BY, h =0.25 at the final DY, AE = 3. Two equal-sized groups of cases where the 
one group’s diagnostic pressure ℎ is twice that of the other, while the estimation 
assumes one homogeneous group. Maximum age M = 10. 20 successive 
cohorts. Simulation uses real values, no sampling.	

Discussion 
Readers familiar with the problems of methods that assume an age distribution, ignore 
it, or estimate it inappropriately, including age-period-cohort methods, may be 
concerned about the possibility that the model may be unidentified or biased. 
Unidentified means that multiple parameter set values could produce the same 
predicted values; hence, multiple parameter sets could result from analyzing a single 
dataset [36]. For example, in age-period-cohort analysis, age, diagnostic year, and birth 
year interact such that models are inherently unidentified and estimates may be 
severely biased even if the model fit appears to be excellent with some fortuitous 
datasets. One can constrain the model to make it identified, but the constraints are 
inherently arbitrary and can severely bias the results. TTEPE avoids those problems by 
utilizing the age at first diagnosis data and modeling this information as a non-linear 
function of birth year and diagnostic year based on first principles, rather than treating it 
as a separate variable or assuming its value. Fig 2 illustrates why fitting the age 
distribution of diagnosis enables identifying correct parameter values. As noted in the 
Introduction, some analytic methods adjust for variables on the causal path, leading to 
biased estimates. The TTEPE models described here avoid that problem as well. 
 
The simulations described in the previous section show that the simulated model 
consistently produces correct, accurate estimates of the true parameter values across a 
broad range of true values. The model is also robust to the small variations in observed 
values that result naturally from binomial sampling.  
 
It is possible but challenging to prove mathematically that a model is identifiable [36], 
and we have not done that. We have not found any evidence that the models described 
are unidentified. The TTEPE method is general; it enables a wide variety of models, 
with various parametric or non-parametric forms of the variables, and one can add 
variables. Optimizing parameter values simultaneously across multiple birth cohorts 
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helps discriminate between parameter sets that might interact within one cohort. It is 
possible to specify a model with collinearity within a single cohort that can result in 
nonidentifiability in the special case that analysis uses only one cohort. As with any 
regression, investigators using TTEPE should ensure sufficient data points to precisely 
estimate all of the specified parameters. 
 
Keep in mind that the eligibility function 𝐸, is different from the age distribution of 
diagnoses; 𝐸, is an attribute of the disorder under study. Specifically regarding ASD or 
autism, the literature shows that cases begin to show predictive symptoms well before 
age three, and some are diagnosed at age two [37]. According to some but not all 
diagnostic criteria, symptoms must be present by age three. There is evidence that 
some cases with milder symptoms who do not meet diagnostic criteria at age three do 
meet criteria at a later age [38]. Most of those diagnosed at an early age develop more 
severe symptoms over time [39]. These phenomena are consistent with the discussion 
above of non-homogeneous subgroups with different effective values of diagnostic 
pressure. The phenomenon of late development of diagnosable symptoms may be 
worthwhile to investigate, particularly with datasets representing initial diagnoses over a 
broad range of ages. That phenomenon can be modeled as the eligibility function 
continuing to increase for many years of age. There is also evidence that some 
individuals who meet or appear to meet case criteria before three years of age no 
longer meet criteria at some later age [40]. As Table 3 and Table 4 show, some errors in 
estimating the eligibility function and erroneously assuming the homogeneity of the 
severity of cases have only a minor effect on parameter estimates when the assumed 
age of eligibility is chosen carefully. 
 
The assumption that case status is binary may not be completely valid, at least in the 
case of autism or ASD. Different diagnostic assessment tools, assessments by different 
professionals, and the use of different cut-off thresholds within a tool can produce 
somewhat different results [37].  
 
This paper states the assumptions that underlie TTEPE analysis. The DAG of Fig 3  
illustrates the assumed causal paths from birth year, diagnostic year, and age, including 
the set of time-varying diagnostic factors and the effect of changes in criteria on 
effective prevalence. The DAG and associated analysis appear to cover all plausible 
mechanisms to explain observed trends in rates of initial diagnoses. 
 
TTEPE provides accurate estimates of prevalence parameters with a strong power to 
detect small differences. The Monte Carlo simulation study in Table 2 shows a 
magnitude of bias of the prevalence coefficient 𝛽@I not exceeding 6.5 x 10-5 or 0.0065% 
per year. The model SE of 𝛽@I ranges from 0.0012 to 0.0017, where the true 𝛽P ranges 
from 0 to 0.1. Using the largest observed SE and 1.96 x SE as a threshold for 95% 
confidence intervals, the method can detect differences in 𝛽P of 0.0033, i.e., 0.33% per 
year. Investigators can expect similar performance for real-world datasets that meet the 
baseline assumptions and have characteristics comparable to the simulated data. The 
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population size and prevalence affect the numbers of incident diagnoses and hence the 
SE. Note that there are 20 cohorts and 11 ages (0 through 10) in the simulation study, 
so there are 220 data points. Each data point is an independent binomial random 
sample. The analysis estimates four parameters that define the curves that fit the data. 
The large number of independent data points and the small number of model 
parameters help produce the small bias and model SE. If the each cohort’s population 
or the prevalence was substantially smaller or the number of parameters was greater, 
we would expect the bias and SE to be larger. These could occur with small geographic 
regions, very rare disorders, or higher-order or semi-parametric models, respectively. 
 
TTEPE is useful for answering some important questions, such as the actual trend in 
case prevalence over multiple birth cohorts of disorders such as autism 
and intellectual disability, as described in Elsabbagh [17] and McKenzie [26], 
respectively. Accurate trend estimates can inform investigation into etiology. Where 
datasets include appropriate covariates, stratified analysis can estimate the 
relationships between various population characteristics and trends in true case 
prevalence and diagnostic factors. Example covariates include sex, race, ethnicity, 
socio-economic status, geographic region, parental age, environmental exposure, 
genetic profile, and other potential factors of interest. 
 
Investigators may utilize domain knowledge to inform specialized analyses. For 
example, they may incorporate knowledge of mortality rates and standardized mortality 
ratios, rates of recovery from the condition before diagnosis, or the characteristics of 
migration in and out of the study region. 
 
It may be feasible to extend TTEPE to disorders and diseases where the time scale 
starts at some event other than birth. For example, the time origin might be the time of 
completion of a sufficient cause, and various outcomes may serve as events of interest. 
It is important to ensure that the eligibility function with respect to the time origin is 
consistent across cohorts. 
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