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Abstract 

Since the bipolar disorder (BD) signals identified by genome-wide association study 

(GWAS) often reside in the non-coding regions, understanding the biological 

relevance of these genetic loci has proven to be complicated. Transcriptome-wide 

association studies (TWAS) providing a powerful approach to identify novel disease 

risk genes and uncover possible causal genes at loci identified previously by GWAS. 

However, these methods did not consider the importance of epigenetic regulation in 

gene expression. Here, we developed a novel epigenetic element-based 

transcriptome-wide association study (ETWAS) that tests the effects of genetic 

variants on gene expression levels with the epigenetic features as prior and further 

mediates the association between predicted expression and BD. We conducted an 

ETWAS consisting of 20,352 cases and 31,358 controls and identified 44 

transcriptome-wide significant hits. We found 14 conditionally independent genes, 

and 11 did not previously implicate with BD, which is regarded as novel candidate 

genes, such as ASB16 in the cerebellar hemisphere (P = 9.29×10-8). We demonstrated 

that several genome-wide significant signals from the BD GWAS driven by 

genetically regulated expression, and conditioning of NEK4 explaining 90.1% of the 

GWAS signal. Additionally, ETWAS identified genes could explain heritability 

beyond that explained by GWAS-associated SNPs (P = 0.019). By querying the SNPs 

in the final model of identified genes in phenome databases, we identified several 

phenotypes previously associated with BD, such as schizophrenia and depression. In 
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conclusion, ETWAS is a powerful method, and we identified several novel candidate 

genes associated with BD. 

Key words: Gene expression prediction; Epigenetic regulation; Bipolar disorder; 

Candidate gene; Missing heritability  
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Introduction 

Bipolar disorder (BD) is a severe neuropsychiatric disorder characterized by recurrent 

episodes of depression and mania that affect thought, perception, emotion, and social 

behavior. BD has a lifetime prevalence of 1-2%, and the World Health Organization 

ranks BD among the most significant contributors to the global burden of disease 1. 

Based on twin studies, the narrow-sense heritability of BD has estimated to be over 70% 

2, 3. Genome-wide association study (GWAS) has seen great strides and invaluable 

utilities in revealing initial insights into BD’s genetic architecture. Recently, a 

large-scale GWAS identified 30 loci that were significantly associated with BD 4. 

Despite the significant success of GWAS in delineating elements that contribute to the 

genetic architecture of psychiatric disorders, only a small fraction of this heritability is 

explained by associated loci 4, leaving a substantial proportion of genetic risk factors 

uncharacterized. 

 

Most of the identified variants mapped through GWAS reside in non-coding regions 

of the genome 5, that may be involved in modulating gene regulatory programs 5-9. 

Recent mechanistic studies have demonstrated that GWAS-identified variants located 

in the active chromatin regions more frequently and highly-enriched with expression 

quantitative trait loci (eQTL) 10, 11. Moreover, most common risk variants identified to 

date are only associated with diseases with modest effect sizes, and many risk variants 

have not identified via a typical GWAS, even with a large sample size 12. 

Transcriptome-wide association study (TWAS) that systematically investigates the 
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association of genetically predicted gene expression with disease risk, providing a 

powerful approach to identify novel disease risk genes and uncover possible causal 

genes at loci identified previously by GWAS 13-17.  

 

Nevertheless, gene expression highly regulated in many steps, including 

transcriptional regulation, splicing, end modification, export, and degradation. 

Transcriptional regulation of DNA into mRNA can occur on both genetic and 

epigenetic levels. The epigenetic regulation alters the accessibility of DNA to 

transcription factors by chemical modification of chromatin. For example, several 

post-translational modifications occur on the histones that could change chromatin 

structure and function 18, making it accessible or vice versa to transcription factors. 

Functional class quantification in 11 diseases from the Wellcome Trust Case Control 

Consortium, including BD, showed that 80% of the common variants that contribute 

to phenotype variability could attribute to DNase I hypersensitivity sites 19. They are 

likely to regulate chromatin accessibility and transcription, further highlighting the 

importance of transcript regulation in the epigenetic level. Histone modifications are 

involved in both activation and repression of transcription 20 and further linked to 

diseases 21. Researchers have developed a growing body of computational methods to 

predict gene expression from histone modification signals of chromatin structure 22-25. 

Thus, integrating epigenetic features is essential for the prediction of gene expression 

besides genetic variants.  
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In this study, we set out to develop a four-step quantitative pipeline named epigenetic 

element-based transcriptome-wide association studies (ETWAS), based on the 

interpretation of epigenetic element, genotype, gene expression, and phenotype. We 

used ETWAS to investigate the association between gene expression and BD risk 

using the largest BD cohort currently available (as of 2020); the cohort consists of 

20,352 BD cases and 31,358 controls from Europe. We found that ETWAS 

outperformed than original methods, and we identified 14 conditionally independent 

genes associated with BD risk in 13 brain tissues. We additionally identified 11 genes 

that not previously implicated with BD.  

 

Methods 

Data Resources 

RNA sequencing data sets 

We used transcriptome and high-density genotyping data of European decedent from 

the Genotype-Tissue Expression (GTEx) study Pilot Project V8 (dbGap accession: 

phs000424.v8.p2) 11 to establish gene expression prediction models (Supplementary 

Methods). We also obtained freely available RNA-seq data from 358 European 

lymphoblastoid cell lines produced by the Genetic European Variation in Health and 

Disease 26 (Geuvadis) at https://www.ebi.ac.uk/ as the validation data set to test the 

prediction models generated in the GTEx whole blood. The tissue abbreviations, 

sample sizes are listed in Supplementary Table 1. 
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Epigenetic elements 

The chromatin states of relevant tissues were downloaded from the Roadmap 

Epigenome Project 27. We briefly utilized the 15-state model and grouped them into 

four categories: promoter, enhancer, transcription, and others. Individually, TssA and 

TssAFlnk are considered to be a promoter; TxFlnk, Tx, and TxWk are considered to be 

a transcription; EnhG and Enh are considered to be an enhancer, and the rest are 

classified as the others. Freely available transcription factor binding sites (TFBS) 

were obtained from the Encyclopedia of DNA Elements (ENCODE) 28, and the 

DNase I hypersensitive sites (DHS) were obtained from the Roadmap Epigenome 

Project. The URLs of all epigenetic data are listed in Supplementary Table 2. 

 

GWAS summary statistics 

We used the most recent summary statistics of the Psychiatric Genomics Consortium 

(PGC) Bipolar Disorder Working Group, comprising 20,352 BD cases and 31,358 

controls of European descent (Supplementary Table 3). Details on participant 

ascertainment and quality control were previously reported by Eli et al. 4 

(Supplementary Methods). We evaluated ETWAS’s performance by identifying 

significantly associated genes in an earlier reported summary statistic that did not 

overlap a genome-wide significant SNP, and looking for newly genome-wide 

significant SNPs in the expanded study. The earlier reported summary data is the first 

large collaborative BD GWAS by the same group in PGC 29, comprised of 7,481 BD 

patients and 9,250 controls of European descent (Supplementary Table 3). 
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ETWAS Framework 

Our current study based on the premise that gene expression is heritable 30. 

Considering the high heritability genes typically enriched for trait associations 15, we 

only focused on the highly heritable genes in further analyses (Supplementary 

Methods).  

 

Our prediction framework includes four main sections which act sequentially (Figure 

1, Supplementary Methods). First, for each gene, we divide the SNPs within 1 Mb of 

the transcription start/end site of the gene into multiple SNP sets according to the 

eQTL P-value and epigenetic annotations. We construct multiple elastic net and lasso 

models with the SNPs in each SNP set using the initial reference data. Second, we 

evaluate the prediction performance of each SNP set using tenfold cross-validation R2 

between the predicted and observed expression, and the SNP set with the highest 

mean R2 is selected as the best model. Third, we construct the final prediction model 

with the parameters of the best SNP set using all the samples in the reference data. We 

estimate the associations between predicted expressions and traits with the 

combination of SNP-trait effect sizes while accounting for linkage disequilibrium 

among SNPs. 

 

Evaluating Prediction Accuracy 

The within-study prediction was evaluated in the whole blood and 13 brain tissues of 
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the highly heritable genes. The accuracy was evaluated using tenfold cross-validation 

R2 between predicted and true expression. We then evaluated the prediction models on 

an independent cohort. Cross-study prediction accuracy was measured by using 

weights derived from the best models with all whole blood samples to predict gene 

expression levels in the Geuvadis dataset. 

 

We compared the cross-validation R2 between ETWAS and recent work in parallel to 

ours, which imputed expression using only genetic variants with different models, 

such as lasso, and elastic net 13, 16. Briefly, lasso uses an L1 penalty as a variable 

selection method to select a sparse of predictors 31. In contrast, the elastic net linearly 

combines the L1 and L2 penalties of lasso and ridge regression to perform variable 

selection 32. We used the R package glmnet to implement lasso and elastic net (α = 

0.5).  

 

Transcriptomic Imputation 

ETWAS was done using gene expression prediction models derived above in 13 brain 

tissues. A strict Bonferroni-corrected study-wise threshold was used: P = 2.55×10-6 

(0.05/19,632, the total number of highly heritable genes across tissues). FUSION 

(http://gusevlab.org/projects/fusion/) was used to conduct the transcriptome-wide 

association testing. The 1000 Genomes v3 LD panel was used for the ETWAS. 

 

Conditionally Testing GWAS Signals 
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To determine how much GWAS signal remains after the expression association from 

ETWAS is removed, conditional and joint testing was done for genome-wide 

Bonferroni-corrected ETWAS genes via FUSION. Each BD GWAS SNP associations 

were conditioned on the joint gene model one SNP at a time. The overlapping genes 

were set to be in the range of 500 KB around each SNP, and the defined regions 

included only the transcribed region of the genes. The FUSION tool was used to 

perform the conditional and joint analyses with the cis-genetic component of 

expression we generated. 

 

Functional Relevance of Conditionally Independent Genes 

We examined whether the gene or transcript expression of the identified genes were 

differentially expressed between BD patients and controls and further used the Mouse 

Genome Informatics (MGI) 33 to check whether the conditionally independent genes 

are relevant to BD (Supplementary Methods).  

 

Partitioned Heritability 

To investigate whether the ETWAS identified genes could explain additional 

heritability, partitioned heritability of BD was estimated using LD score regression 

(LDSC) following previously described methodology 34
 (Supplementary Methods).  

 

Enrichment Analyses 

We performed the Genetic Association Database (GAD) disease enrichment analyses, 
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GWAS catalog enrichment analyses, and drug targets enrichment analyses 

(Supplementary Methods) to demonstrate ETWAS’s ability to identify BD-related 

genes. 

 

Phenome-wide Association Studies 

To identify phenotypes that may be associated or co-morbid with BD, we conducted a 

phenome-wide association study (pheWAS) for each SNP in the final model of the 

identified genes (Supplementary Methods).  

 

Results 

Model Generation and Evaluation 

Heritability of Gene Expression 

The mean heritability of gene expression is 0.016 for all protein-coding genes in 

whole blood, and 0.04 in brain tissues range from 0.031 to 0.049 in different tissues 

(Supplementary Table 1). We identified 2,239 high heritability genes in whole blood 

and 19,632 highly heritable gene-tissue pairs of 9,492 genes in 13 brain tissues. 

Among the heritable genes in the brain, we found that almost half of them 

(5,155/9,492) are significant only in one brain tissue (Supplementary Figure 1). We 

observed a high correlation of gene expression heritability in different brain tissues, 

with a correlation coefficient ranging from 0.40 to 0.79 (Supplementary Figure 2). 

 

Epigenetic Annotation Improve the Performance of Gene Expression Prediction 
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The prediction performance of gene expression prediction is better in highly heritable 

genes (Supplementary Figure 3), which can be supplementary to prove the 

appropriateness of focusing on high heritability genes. We evaluated whether the 

expression of highly heritable genes could be accurately imputed in 13 brain tissues 

from genotype with the epigenetic elements as prior. We noted that the 

cross-validation performance significantly increased with the number of active 

annotations increasing in 11 tissues, and the genes with at least two active annotations 

1.01× to 1.19× outperformed than the genes with 0 active annotations (Figure 2A, 

Supplementary Figure 4). We identified a negative correlation between 

cross-validation R2 and SNP number in the best models (Figure 2B, Supplementary 

Table 4), which consistent with the sparsity of the local architecture of gene 

expression and a handful of genetic variants seem to contribute to the variability in 

gene expression 35. We demonstrated that the best SNP sets for predicting gene 

expression significantly enriched in active epigenetic elements by comparing the 

epigenetic annotation frequency between the best SNP sets and all variants used 

(Pearson's chi-squared test, P < 0.01) (Figure 2C, Supplementary Figure 5). 

Specifically, the best SNP sets are distributed in the active HMM annotation at a 

frequency of 1.32-1.45 times that of all variants, while distributed in the TFBS region 

and DHS region at a frequency of 2.12-2.43 and 1.70-2.40 times that of all variants. 

We further evaluated ETWAS’s performance and compared them with recent work in 

parallel to ours via cross-validation. On average, our pipeline attained slightly better 

performance than using lasso, elastic net, and top SNP (Figure 2D, Supplementary 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.07.23.20161174doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20161174


13 

 

Figure 6). For ETWAS, the average tenfold cross-validated prediction R2 value 

ranging from 0.11 to 0.16 in different brain tissues (Supplementary Table 4). 

 

ETWAS Performance in a Separate Cohort 

We also tested the prediction models on separate cohorts. We used prediction models 

trained in GTEx blood to compare predicted and observed expression in Geuvadis. 

The average prediction R2 is 0.034. The top six genes with the highest performance 

from this analysis are illustrated in Supplementary Figure 7, proving a comparison of 

the predicted and observed expression. Among these genes, the CHURC1 trained in 

GTEx performed best, and the R2 between predicted and observed expression levels in 

Geuvadis is 0.80. A quantile-quantile plot showed expected and observed R2 from 

ETWAS is given (Supplementary Figure 8). We found a substantial departure from the 

null distribution, indicating that the ETWAS captured a substantial proportion of the 

transcriptome variability.  

 

ETWAS Identifies New BD Associations 

ETWAS Significant Hits 

We applied ETWAS to identify genes associated with BD using summary data 

comprising 20,352 BD cases and 31,358 controls of European descent. ETWAS 

identified 34 susceptibility genes associated with BD, comprising 44 total associations 

after Bonferroni corrections (P < 2.55×10-6, Figure 3A, Supplementary Table 5). For 

example, the most significant gene, NEK4, associated with BD in three tissues (PCBG 
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= 1.66×10-9, PACC = 7.38×10-9, PNAB = 1.88×10-6).  

 

Expression signals explain several BD loci 

Since several of the ETWAS hits overlapped with significant BD loci, conditional and 

joint analyses were performed to establish whether these signals were due to 

multiple-associated features or conditionally independent. We identified 14 

conditionally independent genes through conditional analyses. We observed that 

NEK4 explains most of the signal at its loci, a region contained 27 significantly 

ETWAS hits (rs2071044 lead SNPGWAS P = 9.10×10-9, conditioned on NEK4 lead 

SNPGWAS P = 0.57, explaining 0.901 of the variances) (Figure 3B). Similarly, 

conditioning on PBX4 explains most of the loci’s variance on chromosome 19 

(rs1064395 lead SNPGWAS P = 9.70×10-10, conditioned on PBX4 lead SNPGWAS P = 

0.011, explaining 0.583 of the variances) (Supplementary Figure 9A). We also found 

that LMAN2L explains most of the signal at its loci (rs6746896 lead SNPGWAS P = 

7.00×10-9, conditioned on LMAN2L lead SNPGWAS P = 0.059, explaining 0.674 of the 

variances) (Supplementary Figure 9B). 

 

Expression signals drive BD ETWAS loci 

Among the conditionally independent genes, we identified 11 genes that were not 

implicated in the original BD GWAS, which is regarded as novel candidate genes for 

BD (Table 1). Conditioning on the expression of BRF2 explains 0.352 of the 

variances (rs12677998 lead SNPGWAS P = 1.10×10-6, conditioned on BRF2 lead 
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SNPGWAS P = 1.60×10-3) (Figure 3C). Similarly, conditioning on the expression of 

ADD3 in chromosome 10, FADS1 in chromosome 11, CDAN1 in chromosome 15, 

HDAC5 and ASB16 in chromosome 17 explains most of the variances of the lead SNP 

(Supplementary Figure 10). 

 

ETWAS increase power to find BD associations 

We identified 10 of the 14 conditionally independent genes associated with BD at the 

gene expression level or the transcript level, including eight novel genes 

(Supplementary Table 6). Five of the novel genes can be found annotated phenotypes 

in the knock out mice model. Since the phenotypes MGI arranged did not include BD, 

we listed all the phenotypes of conditionally independent novel genes reported in 

MGI (Supplementary Table 7). We found three genes (HDAC5, ASB16, and CDAN1) 

associated with cardiovascular disease (CVD) relevant phenotypes, such as cardiac 

hypertrophy, abnormal heart morphology, abnormal heart shape, and an enlarged heart. 

There is an integration of the various factors that putatively underlie the association of 

BD with CVD 36, which indirectly suggested that the genes we found may be related 

to BD. 

 

Partitioned Heritability of ETWAS identified BD genes 

We partitioned the heritability explained by SNPs around conditionally independent 

genes and found that conditionally independent genes explained 3.00% (se = 0.46%) 

of the estimated heritability, an 8.5× enrichment (P = 1.31×10-8) compared to the 
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percentage of SNPs. The GWAS loci explained 4.58% (se = 0.45%) of the estimated 

heritability, a 7.9× enrichment (P = 5.46×10-17) compared to the percentage of SNPs. 

Combining the SNPs from ETWAS and GWAS explained a much larger percentage of 

heritability (6.46%, se = 0.65%), a 7.8× enrichment (P = 9.29×10-17) compared to the 

percentage of SNPs in either category. We performed t-tests to compare the 

partitioned heritability from GWAS loci with the partitioned heritability from GWAS 

loci and the ETWAS identified conditionally independent genes. As shown in Figure 

4A, ETWAS identified genes significantly increased the proportion of explained 

heritability (P = 0.019). 

 

GAD, GWAS Catalog and Drug Target Enrichment Analyses 

The GAD disease enrichment analyses detected four significantly enriched diseases 

(Figure 4B), including bipolar disorder (P = 1.7×10-3), and attention deficit disorder 

with hyperactivity (P = 0.017). We found that BD had a significant enrichment (P < 

10-4) of GWAS catalog reported genes (Figure 4C) and Open Targets Platform 

reported drug targets (Figure 4D) in the ETWAS results, which suggested that there 

are likely to be true disease associations among the genes that fail to meet strict 

genome-wide significance.  

 

Validation of novel loci in subsequent BD study 

We further employed ETWAS to identify new expression-trait associations using an 

early released summary association data for BD in 2012, comprising 7,481 BD cases 
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and 9,250 controls of European descent 29. We identified four conditionally 

independent novel genes using the 2012 BD GWAS summary, that is, associations 

more than 500 kb away from any genome-wide significant SNPs in that study. We 

then looked for genome-wide significant SNPs at these loci in the larger 2019 BD 

GWAS 4 (expanded to 20,352 BD cases and 31,358 controls). We identified all the 

four novel BD-associated genes contained genome-wide significant SNPs in the 2019 

GWAS summary data (P < 5×10-8, Supplementary Table 8). Thus, ETWAS is highly 

predictive of robust phenotypic associations. 

 

Phenome-wide association study 

A total of 158 phenotypes, such as cognitive, immunological, metabolic, neurological, 

psychiatric, were significantly associated with the SNPs in the final model of the BD 

genes (Supplementary Figure 11A). To determine whether the pheWAS traits were 

genetically correlated with BD, a genetic correlation was done between BD and the 

most recent GWAS for each of the phenotypes. We found 38 phenotypes, including 

nine psychiatric phenotypes, genetically correlated with BD (P < 0.05) 

(Supplementary Figure 11B). After Bonferroni corrections, there were nine 

phenotypes such as schizophrenia and depression positive correlated with BD. These 

phenotypes have previously been implicated as risk factors for BD, reaffirming the 

SNPs’ relevance in the final models. 

 

Discussion  
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In this study, we developed a four-step quantitative pipeline named epigenetic 

element-based transcriptome-wide association studies (ETWAS). We identified 44 

genes with genetically-predicted expression levels associated with BD risk. 

Additionally, through conditional and joint analyses, we identified 14 conditionally 

independent genes associated with BD risk in 13 brain tissues. Eleven of these genes 

that not previously implicated with BD, suggesting they are potential novel candidate 

genes. 

 

We applied conditional and joint association methods to identify genes with 

significant ETWAS associations when analyzed jointly to account for multiple 

associations in the same locus. Importantly, the ETWAS expression signals were 

driving the significance for several previously implicated BD loci when conditioned 

on the ETWAS genes. For example, the conditioning of NEK4 led to explain 90.1% of 

the GWAS signal, which suggests that after considering the predicted expression 

signal of NEK4, there is little residual association signal from the genetic variant in 

the GWAS locus. We identified 14 conditionally independent genes through 

conditional analyses, three (NEK4, LMAN2L, and PBX4) implicated in the original 

BD GWAS, and the rest eleven genes is regarded as novel candidate genes for BD. 

Zhihui et al. 37 have reported the association between psychiatric risk alleles and 

mRNA expression of NEK4, and the overexpression of NEK4 could reduce mushroom 

density spines in rat primary cortical neurons, the most mature form of all spines that 
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responsible for long-term memory. Future studies could interrogate whether 

expression differences of other candidate genes are consistent with our findings. 

 

Since gene’s heritability providing an upper bound of the predictive accuracy, 

expression of genes that are not significantly heritable at current sample sizes are not 

included in this project. Some of the strongly implicated genes in BD risk were not 

assayed, such as ITIH1, FADS2, and NCAN 4, due to non-significant heritability 

estimates in any of the brain tissue. We detected the overlap between the conditionally 

independent genes identified via ETWAS and GWAS reported genes with 

significantly heritable in at least one brain tissue. We identified only one gene 

(LMAN2L) reported in the GWAS discovery dataset (20,352 cases and 31,358 

controls). However, another three genes (ADD3, HDAC5, and PACS1) were 

implicated in a more massive combined data with 29,764 BD cases and 169,118 

controls (Supplementary Figure 12). Furthermore, two genes (NEK4 and FADS1) 

were Bonferroni-corrected significant in several brain tissues, while others only 

significant in specific tissues. Since expression regulation may be common across 

tissue types, it was refreshing not to see consistency across panels. For instance, PBX4 

had a P-value of 2.13×10-8 in the cerebellum but a P-value of 0.069 in the cortex. 

Similarly, HDAC5 had a P-value of 2.41×10-8 in the cerebellar hemisphere but a 

P-value of 4.90×10-3 in the substantia nigra. Although it may be due to 

tissue-specificity, it is essential to note that it may also be due to specific effects and 

the quality of the RNA data and panel size of different tissue types from GTEx. 
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The GAD disease enrichment analyses detected four GAD disease terms, including 

bipolar disorder, attention deficit disorder with hyperactivity (ADHD), magnesium, 

and arterial stiffness. Sandra et al. 38 conducted a nationwide follow-up study with a 

total of 2,409,236 individuals investigating the relationship between ADHD and 

anxiety with the onset of BD. They found that prior diagnoses of ADHD and anxiety 

disorders are associate with an increased risk of bipolar disorder. By using a 

Mendelian randomization analysis, Wenwen et al. 39 found that magnesium 

supplementation would increase BD risk. Lithium, the most common treatment for 

bipolar disorder, could inhibit glycogen synthase kinase-3 by competition for 

magnesium 40. Jess et al. 41 performed a cross-sectional metabolic and vascular 

function evaluation on a sub-sample near completion after a mean follow-up of 27 

years and identified chronicity of mood symptoms contribute to vasculopathy in a 

dose-dependent fashion. GWAS catalog enrichment analyses and drug target 

enrichment analyses further suggest that ETWAS identified genes are likely to be true 

disease associations even those fail to meet strict genome-wide significance. 

 

Although we are convinced the method we used to predict gene expression with the 

combination of genetic variants and regulatory elements has significant potential to 

delineate further the biological mechanisms for human complex diseases, our current 

study’s limitations also need to be addressed. First, although gene expression is 

amenable to genetic prediction with relatively modest sample sizes because of the 
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sparse genetic architecture of gene expression 35, recent evidence also suggests that 

larger expression reference panels will help increase the total number of significant 

cis-heritable genes available for prediction 15. However, due to the limitation of the 

published transcriptome data sets, the sample size of our reference data was not large 

enough, as mentioned above. Second, in part due to the historical paucity of eQTL in 

populations of non-European ancestry, all subjects from the two reference panels were 

limited to be European ancestry, and the results may not apply to other populations. 

Since the genetic predictors of gene expression are more accurate in populations of 

similar ancestry 42, further study with a larger sample size of different races with both 

genotype and gene expression levels is needed. Third, although ultrarare variants have 

been reported to drive substantial cis heritability of human gene expression 43, it is 

unrealistic to include singletons in expression prediction models at present. Finally, 

identification of BD-associated genes by ETWAS does not imply causality, and 

functional studies are needed to determine underlying mechanisms of risk 

comprehensively. Larger transcriptome and GWAS datasets for BD are likely to 

improve statistical power for gene identification in the future. Likewise, transcriptome 

datasets from specific ancestry could also improve future BD ETWAS approaches. 

 

In conclusion, ETWAS is a powerful method that increases statistical power to 

identify genes associated with BD. We hope ETWAS could provide novel insights 

into the identification of additional susceptibility genes and further delineate the 

biological mechanisms for other human complex diseases. 
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Figure Legends 

Figure 1. Schematic of ETWAS approach.  

 

Figure 2. Epigenetic data improved the performance of gene expression prediction in 

brain tissues. (A) The cross-validation R2 of the best prediction models were sorted 

according to the active annotation number and grouped into three categories: 0, 1, ≥2. 

One asterisk (*) indicates P-value smaller than 0.05 (P < 0.05), two asterisks (**) 

indicates P-value smaller than 0.01 (P < 0.01). (B) The correlation between the 

prediction performance and SNP number used in the best model. The x-axis 

represents cross-validation R2 and the y-axis represents the SNP number of the best 

model. (C) The epigenetic annotation distributions of the SNPs used for all genes and 

the best ETWAS models in two brain tissues. (D) Accuracy of individual-level 

expression imputation models. Accuracy was estimated using cross-validation R2 

between predicted and true expression. Bars show the mean estimate across 2 brain 

tissues and five methods: Top, Lasso, Enet, ETWAS.lasso and ETWAS.enet. 

 

Figure 3. ETWAS identifies new BD associations. (A) Manhattan plot of the ETWAS 

(upper) and GWAS (lower) results for BD (n = 20,352 cases and n = 31,358 controls). 

The blue line represents the Bonferroni-corrected significant thresholds, P = 2.55×

10-6 for ETWAS and P = 5×10-8 for GWAS. (B-C) Regional association of ETWAS 

hits. Chromosome 3 (B) and chromosome 8 (C) regional association plot. The 

marginally associated ETWAS genes are shown in blue and the conditionally 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.07.23.20161174doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20161174


30 

 

significant genes are shown in green. The bottom panel shows a regional Manhattan 

plot of the GWAS data before (gray) and after (blue) conditioning on the predicted 

expression of the green genes. 

 

Figure 4. (A) Partitioned heritability of conditionally independent genes and GWAS 

loci. The null expectation, equal to the percentage of SNPs in each category (gray), 

and P values report the difference from this expectation. Fold enrichment relative to 

the null expectation is shown in parentheses below each category. Error bars show 

1.96× SE. (B) GAD disease enrichment analyses of ETWAS genes. (C) GWAS 

catalog enrichment analyses of ETWAS genes. The two histograms show the expected 

number of genes with P < 0.01 based on 10,000 random permutations. The large red 

points show the observed number of previously known BD genes/targets that fall 

below this threshold. (D) Drug targets enrichment analyses of ETWAS genes.  
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Table 1. Conditionally independent ETWAS genes for BD. 

Gene Tissue Best eQTL aCross-validation R2 TWAS Z-score bTWAS P-value cImplicated in 2018 BD GWAS  

NEK4 CBG rs2019065 0.108 6.03 1.66×10-9 Yes 

NEK4 ACC rs2255107 0.073 5.78 7.38×10-9 Yes 

NEK4 NAB rs731831 0.131 4.77 1.88×10-6 Yes 

LMAN2L SUB rs11891926 0.146 -5.48 4.36×10-8 Yes 

PBX4 CER rs2288865 0.072 5.60 2.13×10-8 Yes 

RP11-382A20.3 CEH rs8034801 0.094 5.59 2.32×10-8 No 

HDAC5 CEH rs7207464 0.093 5.58 2.41×10-8 No 

PACS1 FRO rs7114014 0.107 5.55 2.84×10-8 No 

FTCD NAB rs2839258 0.195 -5.39 7.08×10-8 No 

ASB16 CEH rs9910055 0.185 5.34 9.29×10-8 No 

BRF2 HYP rs12549353 0.141 5.33 1.01×10-7 No 

ADD3 CER rs4918489 0.155 5.09 3.68×10-7 No 

FADS1 CEH rs174568 0.197 -5.07 3.90×10-7 No 

FADS1 CER rs174535 0.174 -4.82 1.43×10-6 No 

HIST2H2AA3 COR rs2039800 0.034 -4.83 1.39×10-6 No 

ZNF584 SCC rs1550813 0.168 4.82 1.45×10-6 No 

CDAN1 CER rs1359003 0.073 4.78 1.73×10-6 No 
aThe cross-validation R2 between predicted and observed gene expression is based on tenfold cross-validation within training data. bTo account for multiple 

testing, we used a significance threshold of 2.55×10-6 for all phenotypes. cWhether there are any genome-wide significant SNPs within 500 kb away from the 

gene. Note: CBG, Brain Caudate basal ganglia; ACC, Brain Anterior cingulate cortex BA24; NAB, Brain Nucleus accumbens basal ganglia; CER, Brain 

Cerebellum; CEH, Brain Cerebellar Hemisphere; FRO, Brain Frontal Cortex BA9; SUB, Brain Substantia nigra; HYP, Brain Hypothalamus; SCC, Brain 

Spinal cord cervical c-1; COR, Brain Cortex. 
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