Covid19 2020 projection report: Germany, Israel, Italy and USA. Mid-July 2020

Isaac Meilijson School of Mathematical Sciences Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 6997801, Israel *E-mail:* isaco@tauex.tau.ac.il

July 21, 2020

Abstract

A notion of implied susceptible population size ISPS was introduced in the context of the SIR differential equations in Epidemiology, in a companion paper. It is the potential target population size for which the solution to the SIR equations would yield the current number of new affected cases. This notion is applied to the analysis and projection of Covid19 2020, illustrated on the data of Germany, Israel, Italy and USA.

1 Introduction

The SIR (Susceptibles, Infected, Removed) model introduced by Kermack & McKendrick in 1927 ([6]) for the progress of an epidemic describes the interdependence between the cumulative number X(t) of affected cases, the cumulative number R(t) of removed cases (dead or recovered) and the ensuing current number of infected cases I(t) = X(t) - R(t). The version of this model to be applied in the current report conforms with the usual assumption $dR(t) = \gamma I(t)dt$ that the number of new removed cases constitutes a fixed proportion of the currently infected cases, and the usual assumption that the number of new affected cases is proportional to the product of the number K - X(t) of susceptible cases and an increasing function of the number of currently infected cases. However, K is fitted from data instead of letting it be the total population size, and the second factor (commonly modelled as the identity function) is taken (after Grenfell, Bjørnstad & Filkenstädt ([4])) to be a fractional power $I(t)^{\alpha}$ ($0 \le \alpha < 1$) of the number of currently infected cases. In other words, letting $\alpha = \frac{1}{2}$,

$$dX(t) = \beta \sqrt{I(t)} (K - X(t)) dt \tag{1}$$

The companion publications by Alon and/or the author ([1], [7]) to the current report describe methods to estimate the parameters α, β, γ and K. It also describes a regression pre-processing procedure that modifies minimally the infected and removed components of the empirical data (X_1, I_1, R_1) ,

 $(X_2, I_2, R_2), \dots, (X_n, I_n, R_n)$, so that the proportionality of new removals and currently infected cases will better hold. This procedure ignores equation (1).

The data analyzed in the current report has been submitted to this pre-processing procedure, and maximum likelihood estimation based on the SIR differential equations has led to the estimation of the four parameters in a period considered stationary, days 60 to 120 in the monitoring of Covid19 2020. The working paradigm is that the three parameters α, β, γ hold more generally. Under this assumption, equation (1) is rewritten as

$$K(t) = X(t) + \frac{\Delta(X)}{\beta\sqrt{Y(t)}}$$
⁽²⁾

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

to be interpreted as the *implied susceptible population size* ISPS. Letting $\Delta(X)$ be a smooth version of X(t+1) - X(t), K(t) is evaluated daily to provide an idea of the current target population of the epidemic. Due to the persistent missing data on weekends, the smooth version is taken throughout to be a moving average on the week around the date in question.

A word on the parameter α . Imagine a small-world network topology composed of sparsely connected islands that are internally densely connected. Once an island is affected, contagion will apply locally. Much as in the Harris contact process ([5]), if the affected cases are considered a growing ball that transmits the disease by its perimeter, $\alpha = \frac{1}{2}$ models the intra-island spread force. The "ball" could have some fractal dimension rather than a solid area. [1] presents an argument that on infinite populations, $\alpha = 1$ yields exponential growth of X, while $\alpha < 1$ gives rise to linear growth of X, with I(t) increasing asymptotically to oscillate around the finite constant $(\frac{K\beta}{\gamma})^{\frac{1}{1-\alpha}}$. (Formula (1) explains why should the proper parameter be $K\beta$ rather than β , for a large population).

The average daily number of new affected and removed cases would then be $\frac{(K\beta)^{\frac{1}{1-\alpha}}}{\gamma^{\frac{1}{1-\alpha}}}$. These levels, to be reported for every country under study, are so high that it is reasonable to infer that only a small fraction of the population is susceptible.

Without claiming to delve deeply into Epidemiology, it is suggested that isolation measures achieve stationarity by cutting contagion across islands. Relaxing isolation measures may have the effect of allowing for more contagion between islands, and this is what ISPS is intended to reflect.

In each of the four countries that illustrate the analysis in the current report, the value $\alpha = \frac{1}{2}$ is solidly in the confidence interval for α , as dictated by a profile likelihood function. This value will be applied throughout.

Since (the ideally constant) ISPS function is viewed as a stochastic process, it is convenient to monitor its logarithmic daily rate of growth function "Delta Log K" $DLK(t) = log(\frac{K(t)}{K(t-1)})$. Under stationary behavior, this function should in principle be zero and in practice it should oscillate around zero. It should be stressed that a period of (positive) constancy of DLK signifies exponential growth of the target population.

This is apparent in Figures 3 and 6, that also illustrate a scenario beyond the monitoring period, under which DLK stays constant for 10 days and then decays exponentially at daily rate 2.5%. As this scenario calls for a reversal of the increasing trend of DLK in Israel and the USA, it is intended as an optimistic scenario, however grim its projected consequences may appear.

Israel went through a Covid19 first wave that seemed to saturate, but relaxation of measures brought the current second wave. USA is (perhaps wrongly) treated as one unit, and as such never quite stabilized. Unlike Israel and USA, the two countries Germany and Italy (similarly Switzerland) seem to have maintained beyond the training period a combination of official isolation measures and personal responsibility that has prevented so far a return to the pandemic core.

The purpose of this report is to suggest possible uses of ISPS as a measure of growth and perhaps as a driving wheel of epidemic management, without taking sides on discussions about management. With this said, under the strong evidence that $\alpha < 1$, the author rejects the postulate of exponential growth in homogeneous sub-populations.

Evaluation of ISPS and DKL will be illustrated on four countries, projecting into the near future the solution to the SIR equations, with β, γ and $\alpha = \frac{1}{2}$ as fitted in the training period, and ISPS derived from the above *DLK* scenario. Figures to be presented show *ISPS* and *DLK* as well as X, Y, R. The X, Y, R data for the four countries are tabulated in detail.

Robustness. The purpose of converting true empirical data to an implied index, ISPS in this report and implied volatility in Finance, is to reduce the effect of the model used, by adjusting to it. Projections via the scenario described above will be performed by letting α in (1) and (2) take all values in $\{0, 0.2, 0.4, 0.6, 0.8, 1\}$. For each such α , the two parameters β (highly changing) and γ (quite insensitive to α) will be estimated on the training period data, keeping K as estimated for $\alpha = \frac{1}{2}$. Figures 13, 14, 15 display (X, I, R), *DLK* and *ISPS* in Israel, for the various values of α .

2 Scenario analysis: Covid 19 in Israel

Figure 1: ISRAEL: Affected, currently infected, removed cases in the training (first 60 days) and observation periods (until day 176), and beyond. Data, SIR solution and scenario projection.

Figure 2: ISRAEL: Incremental logarithm DLK of ISPS K, data and scenario projection.

Estimation in the training period yielded $\beta = 9.9636 * 10^{-4}$ and $\gamma = 0.0382$. That is, an infected person is removed (dead or recovered) after $\frac{1}{\gamma} = 26$ days on average. If the population of susceptible cases was infinite, there would be constantly $(\frac{\beta}{\gamma})^{\frac{1}{1-\alpha}} = 194000$ infected cases and the number of daily new affected and removed cases would be $\frac{\beta^{\frac{1}{1-\alpha}}}{\gamma^{\frac{1}{1-\alpha}}} = 7400$.

Figure 2 shows that during the (presumably stationary) training period from day 60 to day 120, DLK oscillates around zero, progressively stable. It is essentially zero between days 105 and 120, after which isolation measures were lifted. DLK sharply increases and "stabilizes" around 0.015 until day 140 and then experiences a new height around 0.035 until the end of the monitoring period, day 176 (July 16, 2020). This figure also illustrates the scenario for extending DLK into the future - constant for 10 days followed by exponential decay at daily rate 2.5%. Figure 3 displays the corresponding function ISPS.

Figure 1 shows that on July 16, the cumulative number of affected cases was 44000 and the number of currently infected cases was 25000. Under the scenario above, the number of infected cases will increase to a maximum (the basic reproduction number R_0 crosses from above to below 1) of 57000 on September 3rd, by which time the cumulative number of affected cases would be 161000. Under the new stationary period reflected by the scenario, the maximal number of affected cases would be 277000.

Figure 3: ISRAEL: ISPS K, data and scenario projection.

No other scenarios are displayed in figures. However, it can be reported that a delay of one day in keeping DLK constant in Israel before starting the exponential decay will see the maximal number of affected cases increase from 277000 by over 10000, and every further delay by one day before starting the exponential decay will see the incremental maximal number of affected cases increase by 3.56% a day. If only 1% of the removed cases die, this means that every day of delay in starting the exponential decay will bring over 100 dead cases, 25% of the current total number of dead cases 400.

3 Scenario analysis: Covid 19 in USA

Estimation in the training period yielded $\beta = 2.839 * 10^{-5}$ and $\gamma = 0.0117$. That is, an infected person is removed (dead or recovered) after $\frac{1}{\gamma} = 85$ days on average. If the population of susceptible cases was infinite, there would be constantly $(\frac{\beta}{\gamma})^{\frac{1}{1-\alpha}} = 27123000$ infected cases and the number of daily new affected and removed cases would be $\frac{\beta^{\frac{1}{1-\alpha}}}{\gamma^{\frac{1-\alpha}{1-\alpha}}} = 318400$.

Figure 5 shows that in USA DLK never quite stabilizes but tends to show mean reversion towards zero until day 110, then oscillates around 0.005 until day 140 and sharply increases to its new metastable height 0.02. This figure also illustrates the scenario for extending DLK into the future - constant for 10 days followed by exponential decay at daily rate 2.5%. Figure 6 displays the corresponding function ISPS.

Figure 4 shows that on July 16, the cumulative number of affected cases was 3.4M and the number of infected cases was 2.3M. Under the scenario above, the number of infected cases will increase to a maximum (the basic reproduction number R_0 crosses from above to below 1) of 4.4M on September 23rd, by which time the cumulative number of affected cases would be 8.4M. Under the new stationary period reflected by the scenario, the maximal number of affected cases would be 10.9M.

4 Scenario analysis: Covid 19 in Italy

Estimation in the training period yielded $\beta = 9.9636 * 10^{-4}$ and $\gamma = 0.0321$. That is, an infected person is removed (dead or recovered) after $\frac{1}{\gamma} = 31$ days on average. If the population of susceptible cases was infinite, there would be constantly $(\frac{\beta}{\gamma})^{\frac{1}{1-\alpha}} = 1046500$ infected cases and the number of daily new affected and removed cases would be $\frac{\beta^{\frac{1}{1-\alpha}}}{\gamma^{\frac{1}{1-\alpha}}} = 33600$. Figure 8 shows that in Italy *DLK* stably oscillates around zero in the entire observation period.

Figure 8 shows that in Italy DLK stably oscillates around zero in the entire observation period. The scenario for extending DLK into the future - constant for 10 days followed by exponential

Figure 4: USA: Affected, currently infected, removed cases in the training (first 60 days) and observation periods (to day 176), and beyond. Data, SIR solution and scenario projection.

Figure 5: USA: Incremental logarithm DLK of ISPS K, data and scenario projection.

decay at daily rate 2.5%, may be a random effect. ISPS was estimated as 250000 during the training period and never exceeded 270000.

The maximal number of infected cases was around 100000, reached on day 90, April 21st. Affected cases are accurately fitted, but there is some disparity between the way empirical data and SIR solutions split the affected cases into infected and removed.

5 Scenario analysis: Covid 19 in Germany

Estimation in the training period yielded $\beta = 9.9636 * 10^{-4}$ and $\gamma = 0.0774$. That is, an infected person is removed (dead or recovered) after $\frac{1}{\gamma} = 13$ days on average. If the population of susceptible cases was infinite, there would be constantly $(\frac{\beta}{\gamma})^{\frac{1}{1-\alpha}} = 255600$ infected cases and the number of daily new affected and removed cases would be $\frac{\beta^{\frac{1}{1-\alpha}}}{\gamma^{\frac{1}{1-\alpha}}} = 19770$.

Figure 11 shows that in Germany DLK stably oscillates around zero in the entire observation period. Germany experienced a mini second wave with a local maximum of infected cases at day 161, that shows itself in a discontinuous jump in ISPS. Except for this, the scenario for extending DLK into the future - constant for 10 days followed by exponential decay at daily rate 2.5%, may be a random effect as in Italy. ISPS was estimated as 200000 during the training period, increased sharply to 215000 and then smoothly to 22700.

The maximal number of infected cases was around 50000, reached on day 79, April 10. Affected

Figure 6: USA: ISPS K, data and scenario projection.

Figure 7: ITALY: Affected, currently infected, removed cases in the training (first 60 days) and observation periods (to day 176), and beyond. Data, SIR solution and scenario projection.

cases are accurately fitted, but, as in Italy, there is some disparity between the way empirical data and SIR solutions split the affected cases into infected and removed.

Figure 8: ITALY: Incremental logarithm DLK of ISPS K, data and scenario projection.

Figure 9: ITALY: ISPS K, data and scenario projection.

Figure 10: GERMANY: Affected, currently infected, removed cases in the training (first 60 days) and observation periods (to day 176), and beyond. Data, SIR solution and scenario projection.

Figure 11: GERMANY: Incremental logarithm DLK of ISPS K, data and scenario projection.

Figure 12: GERMANY: ISPS K, data and scenario projection.

6 Robustness with respect to α

Figures 13, 14, 15 display (X, I, R), DLK and ISPS in Israel, for α covering the entire range [0, 1]and K frozen at the value estimated under $\alpha = \frac{1}{2}$. The values of β and γ are best fitted for each given α . The parameter γ increases slowly from 0.0368 to 0.0388 as α increases from 0 to 0.6, and then to 0.0408 and 0.0444 at $\alpha = 0.8$ and 1.0. As a curiosity, the parameter β is practically identical to the function $\frac{\beta(0)}{I_0^{\alpha}}$ where the solution for $\alpha = 0$ is $\beta(0) = 1207$ and the other constant is $I_0 = 4927$. So, if equation (1) had been written in terms of $\frac{I(t)}{I_0}$ in place of I(t), the parameter β would have been the same for all α . Material left for further thought.

It is apparent that the two top functions in Figure 13, corresponding to $\alpha = 0$ (affected cases increase proportionally to the susceptible cases only) and to $\alpha = 0.2$ are off, but all others give similar assessments to all three processes X, I and R.

Figure 13: ISRAEL: Affected, currently infected, removed cases under different α . Functions decrease from $\alpha = 0$ to $\alpha = 1$, and are similar to each other for $\alpha \ge 0.4$.

Figure 14: ISRAEL: Incremental logarithm DLK of ISPS K, under different α .

Figure 15: ISRAEL: ISPS K, under different α .

7 Tables

		GERMANY				GERMANY	
Date	Affected	Infected	Removed	 Date	Affected	Infected	Removed
30-Jun-20	195042	8296	186746	14-Aug-20	206078	2563	203516
01-Jul-20	195418	8328	187090	15-Aug-20	206229	2517	203712
02-Jul-20	195893	7798	188095	16-Aug-20	206379	2474	203905
03-Jul-20	196370	7564	188806	17-Aug-20	206527	2432	204095
04-Jul-20	196780	7470	189310	18-Aug-20	206674	2392	204281
05-Jul-20	197198	7178	190020	19-Aug-20	206819	2354	204465
06-Jul-20	197523	6781	190742	20-Aug-20	206963	2317	204646
07-Jul-20	198064	6882	191182	21-Aug-20	207106	2282	204824
08-Jul-20	198343	6650	191693	22-Aug-20	207247	2248	204999
09-Jul-20	198699	6500	192199	23-Aug-20	207388	2216	205172
10-Jul-20	199001	6216	192785	24-Aug-20	207527	2185	205342
11-Jul-20	199332	6241	193091	25-Aug-20	207665	2155	205510
12-Jul-20	199709	6373	193336	26-Aug-20	207801	2126	205675
13-Jul-20	199919	6434	193485	27-Aug-20	207937	2098	205839
14-Jul-20	200180	6006	194174	28-Aug-20	208071	2072	206000
15-Jul-20	200456	6278	194178	29-Aug-20	208205	2046	206159
16-Jul-20	200890	5810	195080	30-Aug-20	208337	2021	206317
17-Jul-20	201102	5586	195516	31-Aug-20	208468	1996	206472
18-Jul-20	201313	5373	195940	01-Sep-20	208598	1973	206625
19-Jul-20	201521	5173	196348	02-Sep-20	208727	1950	206777
20-Jul-20	201725	4984	196741	03-Sep-20	208855	1928	206927
21-Jul-20	201926	4806	197120	04-Sep-20	208982	1906	207075
22-Jul-20	202125	4639	197485	05-Sep-20	209108	1886	207222
23-Jul-20	202320	4482	197838	06-Sep-20	209232	1865	207367
24-Jul-20	202513	4334	198179	07-Sep-20	209356	1846	207511
25-Jul-20	202704	4195	198509	08-Sep-20	209479	1826	207653
26-Jul-20	202892	4064	198828	09-Sep-20	209601	1807	207793
27-Jul-20	203078	3940	199138	10-Sep-20	209722	1789	207932
28-Jul-20	203261	3823	199438	11-Sep-20	209841	1771	208070
29-Jul-20	203442	3712	199730	12-Sep-20	209960	1754	208206
30-Jul-20	203621	3608	200013	13-Sep-20	210078	1737	208341
31-Jul-20	203798	3510	200288	14-Sep-20	210195	1720	208475
01-Aug-20	203972	3416	200556	15-Sep-20	210311	1703	208608
02-Aug-20	204145	3328	200817	16-Sep-20	210426	1687	208739
03-Aug-20	204316	3245	201071	17-Sep-20	210540	1671	208869
04-Aug-20	204485	3166	201319	18-Sep-20	210653	1656	208997
05-Aug-20	204652	3091	201561	19-Sep-20	210765	1640	209125
06-Aug-20	204817	3019	201797	20-Sep-20	210876	1625	209251
07-Aug-20	204980	2952	202028	21-Sep-20	210987	1610	209376
08-Aug-20	205142	2888	202254	22-Sep-20	211096	1596	209500
09-Aug-20	205302	2827	202475	23-Sep-20	211204	1581	209623
10-Aug-20	205460	2769	202692	24-Sep-20	211312	1567	209745
11-Aug-20	205617	2713	202904	25-Sep-20	211419	1553	209866
12-Aug-20	205772	2661	203112	26-Sep-20	211525	1539	209985
13-Aug-20	205926	2611	203315	27-Sep-20	211629	1526	210104
14-Aug-20	206078	2563	203516	28-Sep-20	211733	1512	210221

		ISRAEL				ISRAEL	
Date	Affected	Infected	Removed	 Date	Affected	Infected	Removed
30-Jun-20	24441	6904	17537	14-Aug-20	112722	50975	61747
01-Jul-20	25244	7583	17661	15-Aug-20	115342	51636	63706
02-Jul-20	26257	8483	17774	16-Aug-20	117949	52258	65690
03-Jul-20	27047	9176	17871	17-Aug-20	120540	52842	67698
04-Jul-20	28055	10060	17995	18-Aug-20	123115	53389	69726
05-Jul-20	29170	11024	18146	19-Aug-20	125672	53898	71775
06-Jul-20	29958	11677	18281	20-Aug-20	128211	54369	73842
07-Jul-20	30749	12359	18390	21-Aug-20	130731	54804	75927
08-Jul-20	32222	13653	18569	22-Aug-20	133230	55202	78028
09-Jul-20	33557	14875	18682	23-Aug-20	135708	55565	80143
10-Jul-20	34825	16025	18800	20 Aug 20 24-Aug-20	138164	55892	82271
10 Jul 20	36266	17302	18964	25-Aug-20	140597	56185	84412
12-Jul-20	37464	18206	10168	26 - A ug - 20	143007	56444	86562
12-5ul-20	38670	10200	10370	20-Mug-20	145303	56670	88722
13-3 ul-20 14 Jul 20	40632	20872	19570	27-Aug-20	145555	56863	00800
14-Jul-20	40032	20012	19700	20-Aug-20	147754	57024	90890
15-3 ul - 20 16 $1 \text{ ul} - 20$	42300	22324	20030	29-Aug-20	150089	57154	95005
10-Jul-20 17 Jul 20	44100	23623	20305	30-Aug-20	152400	57254	95245
17-Jul-20	40704	24427	21277	01 Sop 20	154084	57202	97430
10 Jul - 20	47322	20099	22223	01-5ep-20	150941	57323	101000
19-Jul-20	49020	20001	25195	02-Sep-20	109172	57504 57976	101000
20-Jul-20	50818	20022	24197	03-Sep-20	101375	57370	103998
21-Jul-20	52700	27470	25229	04-Sep-20	163550	57361	100189
22-Jul-20	54672	28376	26296	05-Sep-20	165698	57319	108379
23-Jul-20	56738	29340	27398	06-Sep-20	167818	57251	110567
24-Jul-20	58889	30351	28538	07-Sep-20	169909	57158	112751
25-Jul-20	61118	31401	29717	08-Sep-20	171972	57040	114932
26-Jul-20	63416	32479	30937	09-Sep-20	174006	56899	117107
27-Jul-20	65778	33579	32198	10-Sep-20	176012	56735	119277
28-Jul-20	68195	34693	33502	11-Sep-20	177988	56549	121440
29-Jul-20	70661	35812	34849	12-Sep-20	179936	56341	123595
30-Jul-20	73170	36932	36238	13-Sep-20	181855	56113	125742
31-Jul-20	75715	38045	37670	14-Sep-20	183744	55864	127880
01-Aug-20	78291	39147	39144	15-Sep-20	185605	55597	130008
02-Aug-20	80893	40233	40660	16-Sep-20	187437	55312	132126
03-Aug-20	83516	41299	42217	17-Sep-20	189240	55008	134232
04-Aug-20	86155	42341	43814	18-Sep-20	191015	54688	136326
05-Aug-20	88807	43356	45451	19-Sep-20	192760	54352	138408
06-Aug-20	91467	44342	47126	20-Sep-20	194478	54001	140477
07-Aug-20	94133	45295	48838	21-Sep-20	196166	53634	142532
08-Aug-20	96801	46216	50585	22-Sep-20	197827	53254	144573
09-Aug-20	99469	47102	52367	23-Sep-20	199459	52861	146598
10-Aug-20	102134	47951	54183	24-Sep-20	201064	52455	148609
11-Aug-20	104794	48764	56030	25-Sep-20	202640	52036	150604
12-Aug-20	107446	49539	57907	26-Sep-20	204190	51607	152583
13-Aug-20	110089	50276	59813	27-Sep-20	205712	51167	154545
14-Aug-20	112722	50975	61747	28-Sep-20	207207	50717	156490

		ITALY				ITALY	
Date	Affected	Infected	Removed	Date	Affected	Infected	Removed
30-Jun-20	240436	16496	223940	14-Aug-20	249354	8695	240659
01-Jul-20	240578	15563	225015	15-Aug-20	249543	8605	240937
02-Jul-20	240760	15255	225505	16-Aug-20	249730	8517	241213
03-Jul-20	240961	15060	225901	17-Aug-20	249916	8431	241485
04-Jul-20	241184	14884	226300	18-Aug-20	250101	8346	241755
05-Jul-20	241419	14621	226798	19-Aug-20	250284	8263	242022
06-Jul-20	241611	14642	226969	20-Aug-20	250466	8181	242286
07-Jul-20	241819	14709	227110	21-Aug-20	250647	8100	242547
08-Jul-20	241956	14242	227714	22-Aug-20	250827	8020	242807
09-Jul-20	242149	13595	228554	23-Aug-20	251005	7942	243063
10-Jul-20	242363	13459	228904	24-Aug-20	251182	7865	243317
11-Jul-20	242639	13428	229211	25-Aug-20	251358	7789	243569
12-Jul-20	242827	13303	229524	26-Aug-20	251532	7714	243818
13-Jul-20	243061	13179	229882	27-Aug-20	251705	7640	244065
14-Jul-20	243230	13157	230073	28-Aug-20	251876	7567	244309
15-Jul-20	243344	12919	230425	29-Aug-20	252046	7495	244551
16-Jul-20	243506	12493	231013	30-Aug-20	252215	7424	244791
17-Jul-20	243712	12305	231408	31-Aug-20	252382	7354	245029
18-Jul-20	243921	12120	231800	01-Sep-20	252548	7284	245264
19-Jul-20	244129	11942	232187	02-Sep-20	252713	7216	245497
20-Jul-20	244336	11768	232568	03-Sep-20	252876	7148	245728
21-Jul-20	244544	11600	232944	04-Sep-20	253037	7081	245956
22-Jul-20	244751	11437	233314	05-Sep-20	253198	7015	246183
23-Jul-20	244958	11279	233679	06-Sep-20	253356	6949	246407
24-Jul-20	245165	11126	234039	07-Sep-20	253514	6884	246630
25-Jul-20	245372	10978	234394	08-Sep-20	253670	6820	246850
26-Jul-20	245578	10833	234745	09-Sep-20	253825	6756	247068
27-Jul-20	245784	10693	235091	10-Sep-20	253978	6693	247284
28-Jul-20	245989	10557	235432	11-Sep-20	254130	6631	247498
29-Jul-20	246194	10424	235770	12-Sep-20	254280	6569	247711
30-Jul-20	246398	10296	236103	13-Sep-20	254429	6508	247921
31-Jul-20	246602	10170	236432	14-Sep-20	254577	6448	248129
01-Aug-20	246804	10048	236757	15-Sep-20	254723	6387	248335
02-Aug-20	247006	9929	237078	16-Sep-20	254868	6328	248540
03-Aug-20	247207	9812	237395	17-Sep-20	255011	6269	248742
04-Aug-20	247408	9699	237709	18-Sep-20	255153	6210	248943
05-Aug-20	247607	9588	238019	19-Sep-20	255294	6152	249141
06-Aug-20	247805	9480	238325	20-Sep-20	255433	6095	249338
07-Aug-20	248003	9375	238628	21-Sep-20	255571	6038	249533
08-Aug-20	248199	9271	238928	22-Sep-20	255707	5981	249726
09-Aug-20	248394	9170	239224	23-Sep-20	255843	5925	249918
10-Aug-20	248589	9071	239517	24-Sep-20	255976	5869	250107
11-Aug-20	248782	8974	239807	25-Sep-20	256109	5814	250295
12-Aug-20	248974	8879	240094	26-Sep-20	256240	5759	250481
13-Aug-20	249165	8786	240378	27-Sep-20	256370	5705	250665
14-Aug-20	249354	8695	240659	28-Sep-20	256498	5651	250848

		USA				USA	
Date	Affected	Infected	Removed	Date	Affected	Infected	Removed
30-Jun-20	2590668	1758754	831914	14-Aug-20	5629506	3455419	2174087
01-Jul-20	2636414	1788351	848063	15-Aug-20	5714005	3499104	2214900
02-Jul-20	2687588	1829489	858099	16-Aug-20	5798406	3542182	2256223
03-Jul-20	2742049	1831276	910773	17-Aug-20	5882639	3584591	2298048
04-Jul-20	2795361	1875515	919846	18-Aug-20	5966637	3626271	2340366
05-Jul-20	2841241	1817227	1024014	19-Aug-20	6050334	3667165	2383169
06-Jul-20	2891124	1854401	1036723	20-Aug-20	6133669	3707222	2426447
07-Jul-20	2936077	1881644	1054433	21-Aug-20	6216582	3746392	2470190
08-Jul-20	2996098	1928142	1067956	22-Aug-20	6299016	3784629	2514387
09-Jul-20	3054699	1968937	1085762	23-Aug-20	6380917	3821890	2559027
10-Jul-20	3117946	2015545	1102401	24-Aug-20	6462235	3858136	2604099
11-Jul-20	3184573	2067296	1117277	25-Aug-20	6542921	3893331	2649590
12-Jul-20	3245925	2115572	1130353	26-Aug-20	6622930	3927442	2695488
13-Jul-20	3304942	2163411	1141531	27-Aug-20	6702219	3960439	2741780
14-Jul-20	3364157	2196652	1167505	28-Aug-20	6780749	3992297	2788452
15-Jul-20	3431574	2246010	1185564	29-Aug-20	6858483	4022992	2835491
16-Jul-20	3497847	2284558	1213289	30-Aug-20	6935388	4052503	2882884
17-Jul-20	3550655	2310668	1239986	31-Aug-20	7011431	4080815	2930616
18-Jul-20	3605749	2338479	1267270	01-Sep-20	7086585	4107911	2978674
19-Jul-20	3662614	2367725	1294889	02-Sep-20	7160822	4133780	3027042
20-Jul-20	3721274	2398415	1322859	03-Sep-20	7234121	4158414	3075707
21-Jul-20	3781757	2430559	1351198	04-Sep-20	7306459	4181805	3124653
22-Jul-20	3844091	2464168	1379922	05-Sep-20	7377818	4203950	3173867
23-Jul-20	3908304	2499253	1409050	06-Sep-20	7448181	4224847	3223334
24-Jul-20	3974318	2535720	1438598	07-Sep-20	7517534	4244496	3273038
25-Jul-20	4042055	2573474	1468582	08-Sep-20	7585865	4262899	3322966
26-Jul-20	4111435	2612420	1499015	09-Sep-20	7653163	4280061	3373102
27-Jul-20	4182376	2652464	1529912	10-Sep-20	7719421	4295988	3423433
28-Jul-20	4254796	2693511	1561285	11-Sep-20	7784631	4310688	3473943
29-Jul-20	4328611	2735466	1593145	12-Sep-20	7848789	4324170	3524619
30-Jul-20	4403738	2778236	1625503	13-Sep-20	7911892	4336446	3575446
31-Jul-20	4480091	2821724	1658366	14-Sep-20	7973938	4347528	3626410
01-Aug-20	4557583	2865839	1691744	15-Sep-20	8034926	4357429	3677497
02-Aug-20	4636129	2910486	1725643	16-Sep-20	8094859	4366165	3728694
03-Aug-20	4715640	2955573	1760068	17-Sep-20	8153737	4373751	3779986
04-Aug-20	4796032	3001007	1795025	18-Sep-20	8211566	4380205	3831361
05-Aug-20	4877216	3046700	1830516	19-Sep-20	8268349	4385544	3882805
06-Aug-20	4959105	3092561	1866545	20-Sep-20	8324093	4389787	3934305
07-Aug-20	5041615	3138502	1903112	21-Sep-20	8378803	4392954	3985849
08-Aug-20	5124658	3184439	1940219	22-Sep-20	8432487	4395064	4037424
09-Aug-20	5208152	3230288	1977865	23-Sep-20	8485155	4396138	4089017
10-Aug-20	5292012	3275965	2016047	24-Sep-20	8536814	4396197	4140617
11-Aug-20	5376157	3321393	2054765	25-Sep-20	8587474	4395262	4192212
12-Aug-20	5460507	3366493	2094013	26-Sep-20	8637146	4393356	4243790
13-Aug-20	5544982	3411193	2133789	27-Sep-20	8685841	4390501	4295340
14-Aug-20	5629506	3455419	2174087	28-Sep-20	8733570	4386719	4346852

Acknowledgements

Thanks are due to Nitay Alon for joint work and to Eytan Ruppin and Laura Sacerdote for helpful suggestions.

The data analyzed in this work is taken from the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University.

References

- Alon, N. and Meilijson, I. (2020). Random time transformation analysis of Covid19 2020. MedRxiv.
- Bassan, B., Marcus, R., Meilijson, I. and Talpaz, H. (1997). Parameter erstimation in differential equations, using random time transformations. *Journal of the Italian Statistical Society*, 6, 177– 199.
- Black, F. and Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81 (3), 637-654.
- [4] Grenfell, B.T., Bjørnstad, O.N. and Filkenstädt, B. A. (2002) Dynamics of Measles epidemics: scaling, noise, determinism and predictability with the TSIR model. *Ecological Monographs*, 72(2), 185-202.
- [5] Harris, T.E. (1974). Contact interactions on a lattice. Annals Probab, 2 (6), 969-988.
- [6] Kermack, W. O., McKendrick, A. G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society A, 115 (772), 700-721.
- [7] Meilijson, I. (2020). Implied susceptible population size: modelling and projecting Covid19 dynamics via the SIR equations. MedRxiv.