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Abstract

We derive and validate a novel and analytic method for estimating the probability that an epidemic
has been eliminated (i.e. that no future local cases will emerge) in real time. When this probability crosses
0.95 an outbreak can be declared over with 95% confidence. Our method is easy to compute, only requires
knowledge of the incidence curve and the serial interval distribution, and evaluates the statistical lifetime of
the outbreak of interest. Using this approach, we rigorously show how the time-varying under-reporting of
infected cases will artificially inflate the inferred probability of elimination and hence lead to early (false-
positive) end-of-epidemic declarations. Contrastingly, we prove that incorrectly identifying imported cases
as local will deceptively decrease this probability, resulting in late (false-negative) declarations. Failing to
sustain intensive surveillance during the later phases of an epidemic can therefore substantially mislead
policymakers on when it is safe to remove travel bans or relax quarantine and social distancing advisories.
World Health Organisation guidelines recommend fixed (though disease-specific) waiting times for end-
of-epidemic declarations that cannot accommodate these variations. Consequently, there is an unequivocal
need for more active and specialised metrics for reliably identifying the conclusion of an epidemic.

Key-words: epidemic elimination; renewal models; ef-
fective reproduction number; epidemic curves; Bayesian
statistics; infectious disease.

I. INTRODUCTION

The timing of an end-of-epidemic declaration can have
significant economic and public health consequences.
Early declarations can negate the benefits of prior con-
trol measures (e.g. quarantines or lockdown), leaving a
population at an elevated risk to the resurgence of the
infectious disease. The Ebola virus epidemic in Liberia
(2014-2016), for example, featured several declarations
that were followed by additional waves of infections [1].
Late declarations, however, can unnecessarily stifle com-
mercial sectors such as agriculture, trade and tourism,
leading to notable financial and livelihood losses. One
of the first studies advocating the need for improved
end-of-epidemic metrics suggested that the MERS-CoV
epidemic in South Korea was declared over at least one
week later than was necessary [2]. Balancing the health
risk of a second wave of infections against the benefits of
reopening the economy earlier is a non-trivial problem

currently being faced by many countries as the COVID-
19 pandemic enters a more controlled phase.

Current World Health Organisation (WHO) guidelines
adopt a time-triggered (i.e. decisions are enacted after a
fixed, deterministic time) approach to end-of-epidemic
declarations, recommending that officials wait for some
prescribed period after the last observed infected case
before adjudging the outbreak over. The most common
waiting time, which applies to Ebola virus and MERS-
CoV among others, involves twice the maximum incu-
bation period of the disease [3]. While having a fixed
decision time is simple and actionable, it neglects the
stochastic variation that is inherently possible at the tail
of an outbreak. Recent studies have started to question
this time-triggered heuristic and investigate the factors
that could limit its practical reliability.

Specifically, [2] made initial advances in this direction
and derived mathematical formulae for assessing the end
of an epidemic in a data-driven manner. This method
uses the time-series of new cases (incidence) across an
epidemic together with estimates of its serial interval dis-
tribution, which describes the random inter-event times
between infections, and the basic reproduction number
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(the average number of secondary infections per primary
infection at the start of an epidemic) to compute the
probability that the outbreak is over at any moment.
This leads to an epidemiologically informed statistical
measure of confidence in an end-of-outbreak declaration.

This approach is important but not perfect. It assumes
that infected cases are reported without any error and it
depends on parameters that relate to the initial growth
phase of the epidemic. Moreover, to maintain simplic-
ity, it adopts a mathematically conservative description
of transmission, making its end-of-epidemic declaration
time estimates likely to be late [2]. More recent studies
[4, 5] have applied forward simulation to explore the
tail dynamics of an outbreak. These have revealed the
impact of the constant under-reporting of cases [4] and
demonstrated the sensitivity of declarations to the effec-
tive reproduction number [5], a parameter that remains
relevant across all phases of the epidemic. The effect of
different routes of transmission on declarations has also
been examined in [1] using the framework of [2].

However, there is still much we do not know about the
dynamics of an outbreak as it approaches its end. Specif-
ically, analytic and general insight into the sensitivity
of end-of-epidemic declarations to practical surveillance
imperfections is needed. Real incidence data is corrupted
by time-varying trends in under-reporting, delays in case
notification and influenced by the interaction of imported
and local cases [6, 7, 8]. Previous works have either
assumed perfect reporting [2] or treated constant under-
reporting within some simulated scenarios [4, 5]. Here
we attempt to expose the implications of more realistic
types of data corruption, particularly time-varying case
under-reporting and importation, by developing an exact
framework that provides broad and provable insights.

We build on the renewal or branching process trans-
mission model from [9, 10], to derive and test a novel
and exact real-time method for estimating the probability
of elimination; defined as the probability that no future
local cases will emerge conditioned on the past epidemic
incidence. We explain this model in Fig. 1. Using
this probability, we define an event-triggered [11, 12]
declaration metric that guarantees confidence in that
declaration provided the assumptions of the model hold.
The trigger is the first time that this probability crosses
a threshold e.g. we are 95% confident in our declaration
if the threshold is 0.95. Event-triggered decision-making
was essentially proposed by [2], has proven effective in
other fields [13, 14, 15] and belies the time-triggered
WHO approach, which fixes the time (elapsed since the
last case) but not the confidence in declaration.

We benchmark our estimate against the true proba-
bility of elimination i.e. the probability if the statistics

and effective reproduction number of the epidemic were
known precisely and show consistency under the perfect
conditions in [2] but with the caveat that we estimate ef-
fective reproduction numbers from the incidence curve in
real time. We find that even the true elimination probabil-
ities strongly depend on the specific stochastic incidence
curve observed, confirming that time-triggered decision
heuristics are unwarranted. Using our exact framework
we prove two key results about imperfect surveillance.
First, any type of time-varying under-reporting will lead
to early or false-positive event-triggers and hence decla-
rations, unless explicit knowledge of the under-reporting
scheme is available. Second, a failure to identify and
account for the differences between local and imported
cases will result in late or false-negative event-triggers,
regardless of the dynamics of case importation.

Many infectious disease epidemics, including the on-
going COVID-19 pandemic, are known to feature exten-
sive time-varying under-reporting and repeated importa-
tions from different regions [16, 17]. As this pandemic
progresses into the controlled phase in several countries,
public health authorities will need to decide when to
relax existing intervention measures such as lockdowns,
social distancing policies or travel bans. Our work sug-
gests that intensive surveillance, both of cases and their
origin, must be sustained to make informed, reliable and
adaptive decisions about the threat posed by the virus
in the late stages of the outbreak, even if reported case
numbers remain at zero for consecutive days. We hope
that our method will aid understanding and assessment
of the tail kinetics of infectious epidemics.

II. METHODS

A. Infectious disease transmission models

We can mathematically describe the transmission of an
infection within a population over time with a branching
or reproductive process based on the fundamental Euler-
Lotka equation from ecology and demography [18]. This
process models communicable pathogen spread from a
primary (infected) case to secondary ones at some time
s using two key variables: the effective reproduction
number, Rs, and the generation time distribution with
probabilities {wu} for all times u. Here Rs defines the
number of secondary cases at time s + 1 one primary
case at s infects on average, while wu is the probability
that the time for a primary to secondary transmission is
u units [18]. We make the common assumption that the
serial interval and generation time distributions are the
same, known, and do not vary with time [10].

If Is counts the newly observed infected cases at
s and a Poisson (Poiss) model is used to represent
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Fig. 1: Transmission dynamics of an infectious disease. The branching process or renewal approach to infection
propagation is outlined under a Poisson noise model in panel (a). Past, observed infected cases Is1 , which form an
incidence curve, seed new infections with probabilities proportional to wu defined by the serial interval distribution
of the disease. The total infectiousness Λs+1 sums these contributions. The effective reproduction number Rs
determines how many effective infections are passed on to the next time unit s + 1. It is common to group Rs
values over a window τ(s) to improve estimation reliability. When all future incidence values are zero we conclude
that the epidemic is over or eliminated. Panel (b) shows how Rs acts as a branching parameter, controlling whether
the epidemic grows or dies out. This parameter is therefore be essential to predicting the dynamics of an epidemic.
Panel (c) provides a breakdown of more realistic observation assumptions, where we might not be able to directly
measure the local and complete incidence Is due to unreported Us or imported (migrating) Ms cases. If we can
only observe sampled cases, Ns, or the total number of cases, Cs, then our epidemic predictions will be biased.

the noise in these observations then the renewal model
captures the branching dynamics of infectious disease
transmission with Is ∼ Poiss(Rs−1Λs) [19]. Here
Λs :=

∑s−1
u=1 Is−uwu is the total infectiousness of the

disease up to time s − 1 and summarises how previous
cases contribute to upcoming cases on day s. We use
Is1 := {I1, I2, . . . , Is} to represent the incidence curve
from time 1 to s. A schematic of this reproductive
approach to epidemic transmission is given in Fig. 1.
Usually we are interested in estimating the Rs numbers
in real time from the progressing Is1 [10, 20, 21].

This effective reproduction number is important for

forecasting the kinetics of the epidemic. If Rs > 1
then we can expect the number of infections to increase
monotonically with time. However, if Rs < 1 is sus-
tained then we can be confident that the epidemic is
being controlled and will, eventually, be eliminated [22].
In order to enhance the reliability of these estimates we
usually assume that the epidemic transmission properties
are stable over a look-back window of size k defined at
time s as τ(s) := {s, s−1, . . . , s−k+1} [10, 23]. We
let the reproduction number over this window be Rτ(s)

and apply a conjugate gamma (Gam) prior distribution
assumption: Rτ(s) ∼ Gam (a, 1/c) with a and c as shape-
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scale hyperparameters. This formulation, together with
the use of gamma prior distributions, is standard in
current renewal model frameworks [10, 20].

The posterior distribution of Rτ(s) given the relevant
window of the past incidence curve of data i.e. Iτ(s) :=
Iss−k+1 is also gamma distributed as [21]

Rτ(s) | Iτ(s) ∼ Gam
(
a+ iτ(s),

1
c+λτ(s)

)
, (1)

with grouped sums iτ(s) :=
∑

u∈τ(s) Iu and λτ(s) :=∑
u∈τ(s) Λu. If some variable y ∼ Gam(α, β) then

P(y) = yα−1e−
y/β/βαΓ(α) and E[y] = αβ. As a result,

Eq. (1) yields the posterior mean estimate, R̂τ(s) =
ατ(s)βτ(s) with ατ(s) := a + iτ(s), βτ(s) := 1/c+λτ(s).
Eq. (1) allows us to infer the grouped or averaged
effective reproduction number over the window τ(s).

We can derive the posterior predictive distribution of
the next incidence value (at time s+1) by marginalising
over the domain of Rτ(s) as in [21]. If the space of
possible predictions at s+1 is x | Iτ(s) and NB indicates
a negative binomial distribution then

x | Iτ(s) ∼ NB
(
ατ(s), pτ(s) :=

Λs+1βτ(s)
1+Λs+1βτ(s)

)
. (2)

Eq. (2) completely describes the uncertainty surround-
ing one-step-ahead incidence predictions and is causal
because all of its terms (including Λs+1) only depend
on the past observed incidence curve Is1 [21].

If a random variable y ∼ NB(α, p) then P(y) :=(
α+y−1

y

)
(1−p)αpy and E[y] = pα/1−p. Hence our poste-

rior mean prediction is Îs+1 = E[x | Iτ(s)] = Λs+1R̂τ(s).
The current estimate of Rτ(s) influences our ability to
predict upcoming incidence points. Thus, we expect that
reliable estimation of the effective reproduction number
is necessary for projecting the future behaviour of an
infectious disease epidemic. In Results we rigorously
extend and apply this insight to derive an exact method
for computing the probability that an epidemic is reliably
over i.e. that no future infections will occur.

Under-reported and imported cases
The above formulation assumes perfect case reporting

and that all cases, Is1 , are local to the region being
monitored. We now relax these assumptions. First, we
consider more realistic scenarios where only some frac-
tion of the local cases are reported or observed at any
time. We use Ns and Us for the number of sampled and
unreported cases at time s. We consider a general time-
varying binomial (Bin) sampling model with 0 ≤ ρs ≤ 1
as the probability that a true case is sampled at time
s (hence 1 − ρs is the under-reporting probability).
Then Ns ∼ Bin(Is, ρs). The smaller ρs is, the less
representative the sampled curve N s

1 is of the true Is1 .

This is a standard model for under-reporting [6, 24]
and implies the following statistical relationship

Is = Ns + Us, Ns ∼ Poiss(ρsRs−1Λs). (3)

Raikov’s theorem [25] states that if the sum of two
independent variables is Poisson then each variable is
also Poisson. Consequently, Us is Poisson with mean
(1 − ρs)Rs−1Λs. Most studies investigating this model
make the simplifying assumption that ρs = ρ for all s
i.e. that constant under-reporting occurs. The persistence
of the Poisson relationship in Eq. (3) means that we can
directly apply the forecasting and estimation results of
the previous section to Ns. Practically, if we observe
only N s

1 then unless we have independent knowledge
of ρs (this can often be difficult to ascertain reliably
[16, 24]) we can only construct an approximation to ρsΛs
as Λ̃s :=

∑s−1
u=1wuNs−u with E[Λ̃(s)] = ρsΛs.

Second, we investigate when imported or migrating
cases from other regions, denoted by count Ms at time s,
are introduced, resulting in the total number of observed
cases being Cs. Within this framework we ignore the
under-reporting of cases and assume that Is is observed
to avoid confounding factors. We follow the approach
of [7] and describe Ms as a Poisson number with some
mean at time s of εs. Using Raikov’s theorem we obtain

Cs = Is +Ms, Cs ∼ Poiss(Rs−1Λs + εs). (4)

Eq. (4) models how imported cases combine with exist-
ing local ones to propagate future local infections.

While our work does not require assumptions on εs,
for ease of comparison later on we adopt the convention
that the sum of imports and local cases drive the epi-
demic forward with the same reproduction number and
serial interval [26]. Consequently, Is ∼ Poiss(Rs−1Λ̄s)
with Λ̄s :=

∑s−1
u=1wuCs−u. Practically, if surveillance

is poor and one assumes that all observed cases are
local then the approximate model Cs ∼ Poiss(Rs−1Λ̄s)
results. The forecasting and estimation results of the
previous section therefore apply here as well.

In Results we examine the impact of imperfect (our
null hypothesis H0) and ideal (the alternative H1)
surveillance within the context of under-reporting and
importation in turn. Ideal surveillance represents the
ability to know either Us or Ms and hence account for
their contributions. Imperfect surveillance refers to only
having knowledge of Ns or Cs and basing inferences
on these curves under the strong assumption that they
approximate the true incidence. This assumption is often
made in the literature [2, 10, 20] for the purposes of
tractability and means Eq. (1) and Eq. (2) are valid. Fig. 1
summarises the relationships from Eq. (3) and Eq. (4).
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RESULTS

An exact method for declaring an outbreak over

We define an epidemic to be eliminated or over [22]
at time s if no future, local or indigenous infected cases
are observed i.e. Is+1 = Is+2 = · · · = I∞ = 0. We can
define the estimated probability of elimination, zs, as

zs := P
(
∧∞j=s Ij+1 = 0 | Is1

)
, (5)

with Is1 as the incidence curve (data), observed until time
s. We refer to zs as an estimated probability because we
do not have perfect knowledge of the epidemic statistics
e.g. we cannot know Rs precisely. The importance of this
distinction will become clear in the subsequent section
(see Eq. (10)). However, we observe that if we could
have this idealised knowledge then Eq. (5) would exactly
define the probability of no future cases given Is1 .

Declaring the end of an epidemic with confidence µ%
translates into solving the optimal stopping time problem

tµ = arg min
s
zs ≥ µ

100 , (6)

with t95, for example, signifying the first time that we
are at least 95% sure that the epidemic has ended. Note
that zs is a function of Is1 and practically characterises
our uncertainty in the outcome of the epidemic (i.e. if
it is over or not). This uncertainty derives from the fact
that a range of possible epidemics with distinct future
incidences I∞s+1 can possess the same Is1 and Rs1 values.
Some uncertainty exists even if Rs1 is known perfectly.

Eq. (6) presents an event-triggered approach to declar-
ing the end of an epidemic with the µ threshold serving
as an informative trigger. Event-triggered formulations
have the advantage of being robust to changes in the
observed data. For example, various incidence curves,
Is1 , can be observed under the same reproduction number
time-series Rs1. Defining tµ as in Eq. (6) ensures that
we guarantee our confidence in the end-of-epidemic
declaration irrespective of the specific trajectory Is1 takes.
While Eq. (6) is written in absolute time, we may also
measure it relative to the time of the last observed case,
t0. Our waiting time until declaration is then tµ − t0.
Time-triggered approaches set some fixed waiting time
from t0 of d so that declarations occur at d+t0. However,
since zd+t0 can vary considerably among realisations
of incidence curves from the same disease, these ap-
proaches can offer no confidence guarantees.

Previous works on end-of-epidemic declarations have
either approximated zs with a simpler, more conservative
probability [2] or used simulations to estimate a quantity
similar to zs that is averaged over those simulations [4]
[5]. Further, no study has yet included real-time estimates
of Rs, within its assessment of epidemic elimination,

despite the importance of this parameter in preventing
and describing continued transmission [22]. By taking
the renewal process approach to epidemic propagation,
as shown in Fig. 1, we explicitly embed uncertainty
about Rs estimates and obtain an analytic and insightful
expression for the probability that the outbreak is over
given the observed cases (Eq. (5)).

We derive this by inferring Rs within a sequential
Bayesian framework from Is1 , by using a moving window
of length k time units. We denote this estimate Rτ(s)

with window τ(s) spanning Iss−k+1 [10, 21]. Our main
result is summarised as a theorem below (see Methods
for further details). Fig. 2 illustrates how our computed
zs probability varies across the lifetime of an example
incidence curve, thus providing a real-time, causal and
dynamically updating view of our confidence in its end.

Theorem 1. If the posterior distribution of the grouped
effective reproduction number, Rτ(s), given the incidence
curve Is1 has form Gam

(
ατ(s), βτ(s)

)
then the estimated

probability that this epidemic has been eliminated at

time s is zs =
∏∞
j=s

(
1 + Îj+1

ατ(j)

)−ατ(j)
with Îj+1 =

Λj+1R̂τ(j) and R̂τ(j) = ατ(j)βτ(j) as the mean posterior
incidence prediction and effective reproduction number
estimate at time j.

We outline the development of this theorem. First, we
decompose Eq. (5) into sequentially predictive terms as:

zs = P (Is+1 = 0 | Is1)
∏∞
j=s+1 P

(
Ij+1 = 0 | Ij1

)
. (7)

For simplicity, we rewrite Eq. (7) as zs = q0
∏∞
j=1 qj .

The factor qj conditions on Is+j1 , which includes all the
epidemic data, Is1 and the sequence of assumed zeros
beyond that i.e. Is+js+1 = 0 for j ≥ 1. This sequence is
treated as pseudo-data. Note that q0 is just a one-step-
ahead prediction of 0 from the available incidence curve.

We solve Eq. (7) by making use of known renewal
model results derived in [10, 21, 23] and outlined in
Methods. The renewal transmission model allows us to
estimate the effective reproduction number Rs and hence
compute zs in real time (see Fig. 1). This estimate at
time s, Rτ(s), uses the look-back window τ(s) of k time
units (e.g. days). The posterior over Rτ(s) is shape-scale
gamma distributed as Gam

(
ατ(s), βτ(s)

)
with ατ(s) :=

a + iτ(s) and βτ(s) := 1
c+λτ(s)

(see Eq. (1)). Here (a, c)
are hyperparameters of a gamma prior distribution placed
on Rτ(s) and iτ(s) and λτ(s) are grouped sums of the
incidence Iu and total infectiousness Λu for u ∈ τ(s).
The total infectiousness describes the cumulative impact
of past cases and is defined in Methods.

Under this formulation, the posterior predictive dis-
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Fig. 2: Elimination probabilities across the lifetime of an epidemic. We simulate a single epidemic curve, Is
(blue, case counts on left y-axis), under a gamma distributed serial interval distribution (similar to that used in
[27] for Ebola virus) and a true Rs profile that step changes from 2 to 0.5 at s = 100 days. We compute the
true and estimated elimination probabilities, z∗s and zs, conditional on all cases observed up to time s in grey
and red respectively (right y-axis). The circle (black) indicates when the outbreak can be declared over with 95%
confidence. Observe how zs and z∗s respond to the low Is at the beginning of the epidemic before remaining 0 until
we get to the tail of the outbreak. The central question in this study is how few cases need to be observed in the
recent past before we can be confident that the epidemic has been eliminated.

tribution of the incidence at s + 1 is negative bino-
mially distributed (NB) (see Eq. (2)). The probability
of Is+1 being zero from this distribution gives q0 =
(1 + Λs+1βτ(s))

−ατ(s) by substitution. The next term,
q1, can be computed similarly because we condition on
Is+1 = 0 as pseudo-data (i.e. the sequential terms in
Eq. (7)) and update Λs+2, βτ(s+1) and ατ(s+1) with this
zero. Iterating for all terms yields

zs =
∏∞
j=s(1 + Λj+1βτ(j))

−ατ(j) , (8)

which is an exact expression for zs. As zero incidence
values accumulate with time Λj+1 → 0 and hence qj →
1. As a result, only a finite number of terms in Eq. (8)
need to be computed and the initial ones are the most
important for evaluating zs.

The posterior mean estimate of Rτ(s) is R̂τ(s) =
E[Rτ(s) | Is1 ] = E[Rτ(s) | Iτ(s)] = ατ(s)βτ(s) with Iτ(s) as
the incidence values in the τ(s) window (the remaining
Is−k1 are assumed uninformative [10]). This follows
from the Gam distribution and implies a posterior mean
incidence prediction Îs+1 = E[Is+1 | Iτ(s)] = Λs+1R̂τ(s)

from the NB posterior predictive distribution [21]. Sub-

stituting these into Eq. (8) gives:

zs =
∏∞
j=s

(
1 +

Îj+1 = Λj+1R̂τ(j)
ατ(j)

)−ατ(j)
. (9)

This completes the derivation. Theorem 1, when com-
bined with Eq. (6), provides a new, analytic and event-
triggered approach to adjudging when an outbreak has
ended. Eq. (9) provides direct and quantifiable insight
into what controls the elimination of an epidemic and
can be easily computed and updated in real time.

Understanding the probability of elimination

We dissect and verify the implications of Theorem 1,
which presents an exact and novel method for estimating
the probability that any infectious disease epidemic has
been eliminated. Eq. (8) formalises the expectation that
any decrease in case incidence increases zs. This results
because ∂qj/∂ατ(j) > 0 for all ατ(j), meaning that qj is
monotonically increasing in ατ(j) and hence iτ(j). As zs
is a product of qj and every qj is positive then zs is also
monotonically increasing in all incidence window sums.
Consequently, any process that reduces incidence surely
increases the probability of elimination.
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The main variable controlling zs is the average pre-
dicted incidence Îj+1. Reducing either Λj+1 or R̂τ(j)

will increase our confidence in a declaration made after
a fixed time (the time-triggered approach) or, decrease
the time of declaration for a fixed confidence (the
event-triggered approach). Since Λj+1 depends on the
serial interval distribution, which is characteristic of the
infectious disease of interest, some epidemics will be
intrinsically harder to control and hence eliminate [28].
The only factor we can manipulate is R̂τ(j), which
is reduced by initiating interventions e.g. vaccination,
social-distancing or quarantine. As a result, sustained
control efforts will, as expected, increase zs [22].

Interestingly, zs is insensitive to the uncertainty in our
estimates or predictions, despite its derivation from the
posterior distributions of Eq. (1) and Eq. (2). This is a
consequence of the inherent data shortage at the tail of
an epidemic (there are necessarily many zero incidence
points), which likely precludes the inference of anything
more complex than mean statistics [23]. Moreover, when
the incidence is small stochastic fluctuations can dom-
inate epidemic dynamics. Consequently, to maximise
the reliability of our zs estimates we recommend using
long windows (large k) for R̂τ(j). Short windows are
more sensitive to recent fluctuations and are more prone
to yielding uninformative estimates when many zero
incidence points occur [23].

Last, we validate the correctness of our estimated zs
by considering a hypothetical setting in which the true
reproduction number, {Rs : s ≥ 0}, is known without
error. This allows us to derive the true (but generally
unknowable) probability of elimination z∗s at time s,
given complete information of the epidemic statistics.
Under the renewal model P (Is+1 = 0 | Is1) = e−RsΛs+1 .
Repeating this process for future zero infected cases
(akin to describing its likelihood) gives:

z∗s =
∏∞
j=s e

−Λj+1Rj = e−
∑∞
j=s Λj+1Rj . (10)

Observe that z∗s depends on the serial interval distribution
and the level of implemented control, which modulates
Rs. These are the two main factors underlying the
transmission of the infectious disease.

The true declaration time with confidence µ% is then
t∗µ = arg mins z

∗
s ≥

µ
100 (see Eq. (6)). We can verify

our approach to end-of-epidemic declarations if we can
prove that tµ sensibly converges to t∗µ. At the limit of
ατ(j) → iτ(j) →∞, the estimated R̂τ(j) tends to the true
Rj because under those conditions the posterior mean
estimate coincides with the grouped maximum likelihood
estimate of Rj , which is unbiased. Applying this limit

to qj in Eq. (9) we find that as R̂τ(j) → Rj :

lim
iτ(j)→∞

(
1 +

Λj+1R̂τ(j)
iτ(j)

)−iτ(j)
= e−Λj+1Rj , (11)

implying that zs → z∗s and hence tµ → t∗µ.
This asymptotic consistency suggests that zs and tµ

indeed approximate the true but unknowable probability
of elimination z∗s and declaration time t∗µ. Other end-of-
epidemic metrics in the literature have not shown such
theoretical justification. We illustrate zs and z∗s across a
simulated and representative incidence curve in Fig. 2.
There we find a close correspondence between these
probabilities and observe a clear sensitivity to changes in
incidence at the beginning and end of this outbreak. Note
that zs and z∗s (and hence declaration times derived from
them) are deterministic functions of Is1 and are more
precisely written: zs | Is1 and z∗s | Is1 .

Given this dependence, it is often more meaningful to
characterise the relative declaration time of the epidemic
∆tµ = tµ − t0 with t0 as the time of the last observed
case. This allows us to sensibly compare zs values from
various realisations of Is1 and to compute confidence
intervals on ∆tµ from either simulated or empirical
data. In both cases we first generate M conditionally
independent Is1 [u] trajectories (e.g. by bootstrapping over
the original Is1 time-series). Here u counts the 1 to M
trajectories. Every zs | Is1 [u] provides a sample of ∆tµ.
We can then obtain confidence intervals by inverting
frequentist probabilities e.g. [a, b] forms a 95% interval
if 0.95 = P(a ≤ ∆tµ ≤ b) = 1

M

∑M
u=1 1(∆tµ[u] <

b ∧∆tµ[u] > a) with 1(.) as an indicator function.

Practical comparisons and verification

We have only validated our approach at an asymptotic
limit that is not realistic for elimination i.e. the proof that
zs and tµ converge to their true counterparts requires
infinite incidence. While this proof suggests our formu-
lation is mathematically correct, it does not indicate its
performance on actual elimination problems. We now
verify out method more practically. We first use sim-
ulated data to show that ∆tµ and ∆t∗µ correspond well
over several end-of-epidemic problems, where we are far
from this limit. These simulations also demonstrate why
time-triggered approaches can be misleading; depending
on the specific instance of Is1 observed a fixed time can
lead to either early or late declarations. We then provide a
direct comparison with the approach of [2] on empirical
data. We find that our method performs well even when
tested on bootstrapped incidence curves resulting from
fitting the empirical data to the model of [2], which
assumes different transmission dynamics.
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(a) (b)

(c) (d)

Fig. 3: True and estimated declaration times. We simulate M = 500 independent incidence curves under renewal
models with Rs profiles indicating (a) rapidly controlled, (b) recovering and (c) rising and then decaying transmission
and provide normalised histograms of the true (∆t∗95) and estimated (∆t95) 95% relative declaration times. The
bottom row of (d) plots the true Rs curves (red) in absolute time underlying (a)-(c) in order. The columns of
(a)-(c) correspond to exponential, gamma and approximately delta serial interval distributions with the same mean.
The top row of (d) (blue) plots these distributions over absolute time. Generally we find that ∆t95 ≈ ∆t∗95. This
approximation is at its worst when the serial interval is exponential and hence maximally variable for a given mean.

We start by investigating true Rs profiles describing
epidemics with (a) rapidly controlled, (b) partially re-
covering and (c) exponentially rising and falling trans-
mission. For each profile we simulate M = 500 con-
ditionally independent Is1 curves and compute zs | Is1
and z∗s | Is1 using Eq. (9) and Eq. (10), We then obtain
relative declaration times ∆t95 and ∆t∗95 for each curve
using Eq. (6) and the time of the last case, t0, of that
curve. This yields the normalised histograms of Fig. 3,

with panels (a)-(c) identifying respective Rs profiles,
which are plotted in the bottom row of (d) in order.
Columns of (a)-(c) correspond to exponential, gamma
(with parameters taken from [27] to match Ebola virus
epidemics) and approximately delta distributed serial
interval distributions, shown in the top row of (d). All
distributions in (d) have approximately the same mean.

These simulated examples cover many practical mod-
els (and epidemic growth patterns) as described in [18]
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and provide some key insight into end-of-epidemic dec-
larations. Specifically, we find that the variability of the
tail of the serial interval distribution (for a given mean)
controls the variance and mean of ∆tµ and how well
it approximates ∆t∗µ. This is especially obvious in the
simulations featuring the exponential distribution, which
is maximally variable for a given mean, where relative
declaration times can vary of the order of months making
time-triggered approaches likely to be strongly biased
and unreliable. While in the gamma distributed case
this bias falls to the order of one week, time-triggered
approaches can only be justified in the limit of very tight
serial intervals as in the delta distributed case.

Generally, we find that ∆t∗µ ≈ ∆tµ and note that
the biggest discrepancy, which is under the exponential
distribution is still reasonable given the variation in the
individual relative declaration times. This also represents
the worst case performance. While most realistic serial
intervals are likely to be represented by a gamma-type
distribution, which has an analogue to the infectious
and latent periods of an SEIR compartmental model,
the exponential and delta distribution also have meaning
as reflecting the dynamics of SIR models and classical
branching processes respectively [18, 29]. When the se-
rial interval is tightly specified, it appears that the specific
dynamics of Rs are not as important in determining the
declaration times provided it remains notably below 1.
Last, we comment (not shown) that the variability of the
relative declaration times also increases as µ decreases.

At present, we have only verified our method for under
ideal reporting conditions. Practical surveillance will be
investigated in subsequent sections. We now compare our
method to that of [2], which assumes ideal surveillance.
This approach describes epidemic transmission using a
NB branching process that is strictly only valid at the
beginning of the outbreak and which differs noticeably
from our renewal model. We compare both methods on
MERS-CoV data from South Korea, first investigated in
[2]. Note that the elimination probabilities derived in
[2] are a mathematically conservative approximation of
our zs. We use the same set of bootstrapped incidence
curves generated from fitting the model of [2] to the
MERS-CoV data to obtain confidence intervals over the
probability of elimination from each method.

Fig. 4 presents our main results with time relative to
the last observed case in each bootstrap (∆s). While
the median 95% relative declaration times (black circles)
are reasonably close, the approach of [2] leads to a
late declaration. This effect is reduced if we use the
lower bound of the zs curves instead of their median.
When zs is small (which is not practical for defining
end-of-epidemic declarations) we find that the methods

are less consistent. The WHO declaration time for this
epidemic is at least one week later than the time proposed
by both methods [2]. While our method shows wider
uncertainty, the similarity of these intervals suggests that
our formulation is robust to moderate model mismatch.

Fig. 4: Empirical method comparison. We compare
95% confidence intervals on the elimination probability
from [2] (blue) and zs from Eq. (9) (red) from boot-
strapped epidemics based on the MERS-CoV data from
South Korea used in [2]. Black circles define the median
time when each method deems the epidemic to be over
with 95% confidence (the event trigger). Time is relative
to the last observed case in each epidemic bootstrap.

Under-reporting leads to premature declarations

Having verified zs and hence tµ as reliable and sensi-
ble means of assessing the conclusion of an epidemic, we
now investigate the effect of model mismatch due to im-
perfect surveillance. We start with case under-reporting,
which affects all infectious disease outbreaks to some
degree. While previous works have drawn attention to
how constant under-reporting can bias end-of-epidemic
declarations [4] [5], no analytic results are available.
Moreover, the impact of time-varying under-reporting,
which models a wider range of more realistic surveil-
lance scenarios [6, 30], remains unstudied. We provide
some mathematical background for under-reporting in
the renewal process framework in the Methods.

Fig. 1 illustrates how under-reporting results in only
a portion, Ns, of the total local cases, Is being sampled
or observed. We use Us = Is − Ns ≥ 0 to denote
the unreported cases. We investigate two hypotheses or
models about the incidence curve, a null one, H0, where
we assume that the observed cases N s

1 represent all
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the infected individuals and an alternative hypothesis
H1, in which the unreported cases U s1 (and hence Is1)
are known and distinguished. The estimated elimination
probabilities under both surveillance models are:

H0 : zs |N s
1 = P

(
∧∞j=sNj+1 = 0 |N s

1

)
and

H1 : zs | Is1 = P
(
∧∞j=s Ij+1 = 0 |N s

1 ∧ U s1
)
.

(12)

Here H0 portrays a naive interpretation of the ob-
served (Ns) incidence, while H1 indicates ideal surveil-
lance. Intensive and targeted population testing should
interpolate between H0 and H1. We compute zs |N s

1

by constructing the sampled total infectiousness Λ̃s :=∑s−1
u=1wuNs−u and then applying Theorem 1. This fol-

lows because Ns can also be described by a Poisson
renewal model (see Methods for details). We therefore
find that zs |N s

1 =
∏∞
j=s(1 + Λ̃j+1β̃τ(j))

−a−nτ(j) with
nτ(j) and λ̃τ(j) as the sums of Nu and Λ̃u within the
τ(j) window and β̃τ(j) = 1/c+λ̃τ(j). We get zs | Is1 directly
from Eq. (8) since this is the perfect surveillance case.

Since Ns ≤ Is for all s then λτ(j) ≥ λ̃τ(j) for all j
implying that βτ(j) ≤ β̃τ(j). This means that zs |N s

1 ≥∏∞
j=s(1+Λ̃j+1βτ(j))

−a−nτ(j) := c. From Eq. (8) we can
rewrite zs | Is1 =

∏∞
j=s(1+Λj+1βτ(j))

−nτ(j)−uτ(j)−a with
uτ(j) = iτ(j) − nτ(j) as the total number of unreported
cases in the window τ(j). We examine the ratio of
zs |N s

1 to zs | Is1 , which is at least as large as c/(zs | Is1 ).
If this ratio is above 1 then the elimination probability
is being inflated by imperfect surveillance. We find
that c/(zs | Is1 ) =

∏∞
j=s(1 + Λj+1βτ(j))

uτ(j)
(

1+Λj+1βτ(j)
1+Λ̃j+1βτ(j)

)
.

Since Λj ≥ Λ̃j at every j and the remaining term is
always ≥ 1 we do find this inflation and consequently

zs |N s
1 ≥ zs | Is1 =⇒ tµ |H0 ≤ tµ |H1. (13)

At no point have we assumed any form for the under-
reporting fraction, denoted ρs at time s (see Methods).

Thus any under-reporting, whether constant (i.e. all
ρs are the same) or time-varying will engender early or
false-positive end-of-epidemic declarations provided Ns

is randomly sampled from Is (so Theorem 1 holds; see
Eq. (3)). We highlight this principle by examining a ran-
dom sampling scheme using empirical SARS 2003 data
from Hong Kong [10]. We binomially sample the SARS
incidence with random probability ρs ∼ Beta(a, b). We
set b = 40 and compute a so that the mean sampling
fraction E[ρs] = fρ takes some desired (fixed) value. We
investigate various fρ and show that early declarations
are guaranteed in (a) and (b) of Fig. 5. The impact of ρs
is especially large when under-reporting leads to early
but false sequences of 0 cases. We present results in
absolute time to showcase this effect.

Importation results in late declarations

The influence of imported cases on end-of-epidemic
declarations has not been investigated in the literature.
Repeated importations or migrations of infected cases
are a common means of seeding and re-seeding local
infectious epidemics. We assume that Is is the total count
of local cases in our region of interest but that at time s
there are also Ms imported cases that have migrated from
neighbouring regions. The total number of infected cases
observed is Cs = Is+Ms as displayed in Fig. 1. We pro-
vide mathematical background on how importations are
included within the renewal framework in Methods. We
consider two hypotheses about our observed incidence
data that reflect real epidemic scenarios.

Under the null hypothesis, H0, we assume that all
cases are local and so we cannot disaggregate the com-
ponents of Cs. The alternative, H1, assumes perfect
surveillance. Imported cases are distinguished from local
ones underH1 and their differing impact considered. The
relevant elimination probabilities for each model are

H0 : zs |Cs1 = P
(
∧∞j=sCj+1 = 0 |Cs1

)
and

H1 : zs | Is1 = P
(
∧∞j=s Ij+1 = 0 | Is1 ∧M s

1

)
.

(14)

SinceH0 deems all cases local, it models Cs as a renewal
process with total infectiousness Λ̄s :=

∑s−1
u=1Cs−uws.

Thus we use Theorem 1 to obtain the jth factor of
zs |Cs1 as qj |Cs1 = (1+Λ̄j+1β̄τ(j))

−a−cτ(j) with β̄τ(j) =
1/c+λ̄τ(j). Here cτ(j) and λ̄τ(j) are sums of Cu and Λ̄u
over window τ(j).

Under H1 the imported cases are distinguished but
all cases still contribute to ongoing local transmission
[7, 26]. Consequently, Is still adheres to a renewal trans-
mission process and Theorem 1 yields the jth factor of
zs | Is1 as qj | Is1 = (1 + Λ̄j+1β̄τ(j))

−a−iτ(j) . We compare
qj | Is1 with qj |Cs1 directly to easily prove that

zs |Cs1 ≤ zs | Is1 =⇒ tµ |H0 ≥ tµ |H1. (15)

Not accounting for migrations shrinks the elimination
probability leading to false-negative or unnecessarily late
declarations. This result makes no assumption on the
dynamics for importation other than it possesses Poisson
noise (so Theorem 1 is valid for Cs) and so holds quite
generally (see Methods for further details).

We illustrate this phenomenon using empirical MERS-
CoV data from Saudi Arabia [31] in (c) and (d) of
Fig. 5. Here repeated importations occur as zoonotic
camel to human transmissions. We show the increasing
effect of importation by adding further (artificial) imports
via a Poisson noise variable with mean ε (see Eq. (4)).
The mean fraction of imported to total cases across the
incidence curve is then fε. In Fig. 5 we see that larger ε
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(a) (b)

(c) (d)

Fig. 5: Case under-reporting and importation lead to early and late declarations respectively. In (a) and
(b) we binomially sample an empirical SARS 2003 incidence curve from Hong Kong with reporting probabilities
drawn from a beta distribution with mean fρ. In (a) we plot the elimination probability zs when surveillance is
ideal i.e. there is no underreporting (red) versus when the under-reporting is unknown (blue). The difference in the
95% declaration times, denoted δt95, from these curves is in (b). As fρ increases we are more likely to declare
early. In (c) and (d) we consider an empirical MERS-CoV 2014-5 incidence curve from Saudi Arabia with local
and imported cases. We increase the fraction of imported cases to fε by adding Poisson imports with mean ε and
in (c) compute zs with (red) and without (blue) accounting for the difference between imports and local cases.
The change in t95 is given in (d). As ε and hence fε increase late declarations become more likely. We repeat our
sampling or importation procedure M = 1000 times to obtain confidence intervals in (a)–(d). As fε → 0 or fρ → 1
we attain the ideal of no unreported or imported cases.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.20152082doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20152082
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

promotes increasingly later declaration times. In Fig. 5
we do not add any noise beyond the time of the last
local case. If imports do come after this case it is likely
to change the time at which t0 is assumed and hence
will notably worsen the bias from importation.

DISCUSSION

Understanding and predicting the temporal dynamics
of infectious disease transmission in real time is crucial
to controlling existing epidemics and to thwarting future
resurgences of those outbreaks, once controlled [20]. To
achieve this understanding it is necessary to characterise
and study the infectious disease throughout its lifetime.
While many works have focussed on the growth, peak
and controlled phases of epidemics (see Fig. 2), relatively
less research has examined how the tail of the outbreak
shapes the kinetics of its elimination. For example,
while much is known about how the basic and effective
reproduction numbers influence the growth rate, peak
size and controllability of an epidemic [18, 32], the
relationship between these numbers and the waiting time
to epidemic elimination is still largely unexplored.

However, this relationship has important implications
for public health policy. Knowing when to relax non-
pharmaceutical interventions, such as social distancing
or lockdowns, can be essential to effectively managing
and mitigating the financial and social disruption caused
by an outbreak as well as to safeguarding populations
from the risk of future waves of the disease [1, 2].
The ongoing COVID-19 pandemic for instance, which
in many countries is now entering the controlled phase,
provides a current and important example where this
question might soon become urgent.

Existing WHO guidance on deciding when an out-
break can be safely declared over takes a time-triggered
approach. This means a fixed waiting time from the last
observed case, usually based on the incubation period
of the disease, is adopted [3]. While this approach is
easy to follow, it does not change between outbreaks of
the same disease, even if the patterns of transmission
are very different and cannot provide a measure of the
reliability of this suggested declaration time. The few
existing studies that have investigated this waiting-time
problem [2, 4, 5] have all converged on what is known
as an event-triggered solution in control theory [11].

Event-triggered decision-making has been shown to be
more effective than acting at deterministic or fixed times
for a range of problems including several involving the
optimising of waiting or stopping times [12, 13, 14, 15].
Moreover, because it directly couples decision making to
observables of interest (in our case the incidence curve),

it can better adapt or respond to changes in dynamics.
Here we have attempted to build upon these realisations
to better characterise the relationship between epidemic
transmission and elimination. Specifically, we focussed
on computing the probability at time s, zs, that the total
future incidence of the epidemic is zero.

This probability is directly responsible for determining
how quickly an epidemic will end. In fact, if an outbreak
is defined as surviving if it can propagate at least 1 future
infection then 1 − zs is precisely its survival function
and is therefore rigorously linked to the future risk of
cases. By taking a renewal process approach, we were
able to derive an analytic and real-time measure of zs
that explicitly depends on up-to-date estimates of the
effective reproduction number (see Eq. (9)). This result
formed the main theorem of this paper and provided a
clear and easily-computed link between epidemic trans-
mission and elimination. To our knowledge, no previous
work has directly obtained zs. Specifically, [2] computed
a simpler and more conservative quantity while [4] and
[5] approximated something similar via simulation, and
so cannot provide real-time formulae. The event-trigger
for declaring an outbreak over with µ% confidence is
then the first time that zs crosses a threshold of µ

100 .
To validate the correctness of our approach we con-

sidered several comparisons. We proved mathematically
that our formulae recover the true elimination proba-
bility and event trigger given perfect knowledge of the
epidemic. This provided theoretical justification for our
approach (Eq. (11)). We verified practical performance
by benchmarking our method against the known (true)
declaration times from simulated outbreaks (Fig. 3) and
on empirical data by comparing to [2] (Fig. 4). Fig. 3 also
explained why time-triggered methods can be unreliable.
Diseases with wider serial interval distributions engender
more inherently variable declaration times, which cannot
be summarised well by fixed or deterministic times.

A key motivation for developing our method was to
gain rigorous insight into the tail dynamics of epidemics.
We therefore explored two prevalent sources of noise
in surveillance – unreported and imported cases. While
[4, 5] both looked at the effect of constant under-
reporting on declarations, general insight into the more
realistic time-varying case is lacking. Further, no analy-
ses have yet considered the influence of importation on
the epidemic tail. By adapting zs to various surveillance
hypotheses we proved two key results. First, we showed
that any type of random under-reporting will precipitate
early declarations, which worsen as the fraction of un-
reported cases increases (Eq. (13)).

Second, we found that any random importation pro-
cess will lead to conservative declarations. This effect
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is more exaggerated as the fraction of imports increase
(Eq. (15)). We illustrated the biases of both unreported
and imported cases using empirical data (Fig. 5). These
results provide a clearer picture of how the epidemic tail
is sensitive to imperfections in the collection or reporting
of incidence data and highlights a need for continued,
heightened surveillance both in the quality of data (e.g.
intensive testing rates can reduce under-reporting or at
least measure it) and associated metadata (i.e. this can
prevent misidentification of cases which is the main issue
with unknown or unrecognised imports).

While our method provides a straightforward frame-
work for estimating the lifetime of an epidemic and for
investigating various surveillance noise sources, it has
several limitations. It assumes that the serial interval is
stationary and that reporting delays can be ignored [10].
Moreover, we neglect transmission heterogeneity and do
not assess interactions among sources of reporting noise.
While these could bias zs and alter declaration times,
some of these more realistic dynamics can be included as
future extensions. We can adjust for delays by applying
nowcasting techniques [24] and include heterogeneity
by using a negative binomial renewal model [1]. Future
generalisations of our method will consider how data
about reporting trends (e.g. from seroprevalence or case
ascertainment studies) might be included to improve end-
of-epidemic time estimates and compensate for biases.

Real-time assessments of epidemic dynamics are cru-
cial for understanding and aptly responding to unfolding
epidemics [20]. We hope that the analytic approach that
we developed here will serve as a useful tool for gaining
ongoing insight into the tail dynamics of an outbreak,
motivate the adoption of more event-triggered decision
making and provide clear impetus for improving and
sustaining surveillance across all phases of an epidemic.
Our method is freely available in both R and Matlab at
https://github.com/kpzoo/end-of-epidemic.
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