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ABSTRACT 

Background. Current COVID-19 pandemic poses an unprecedented threat to global health and 

healthcare systems. At least in western countries, the most amount of the death toll is accounted by 

old people affected by age-related diseases. In this regard, we proposed that COVID-19 severity 

may be tightly related to inflammaging, i.e. the age-related onset of inflammation, which is 

responsible for age-related diseases. It has been reported that systemic hyper-inflammation may 

turn to be detrimental in COVID-19 patients. 

Objective. Here, we exploited a recently closed clinical trial (NCT04315480) on the anti-IL-6 drug 

tocilizumab to assess whether microRNAs regulating inflammaging can be assessed as biomarkers 

of drug response and outcome. 

Methods. Serum levels of miR-146a-5p, -21-5p, and -126-3p were quantified by RT-PCR and 

Droplet Digital PCR by two independent laboratories on 30 patients with virologically confirmed 

COVID-19, characterized by multifocal interstitial pneumonia confirmed by CT-scan and requiring 

oxygen therapy, and 29 age- and gender-matched healthy control subjects. COVID-19 patients were 

treated with a single-dose intravenous infusion of 8 mg/kg tocilizumab and categorized into 

responders and non-responders. 

Results. We showed that COVID-19 patients who did not respond to tocilizumab have lower serum 

levels of miR-146a-5p after the treatment (p=0.007). Moreover, among non-responders, those with 

the lowest serum levels of miR-146a-5p experienced the most adverse outcome (p=0.008). 

Conclusion. Our data show that blood-based biomarkers, such as miR-146a-5p, can provide a 

molecular link between inflammaging and COVID-19 clinical course, thus allowing to enlarge the 

drug armory against this worldwide health threat. 
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INTRODUCTION 

The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus is characterized by a striking 

age-dependent morbidity and mortality, irrespective of ethnicity [1, 2]. In Italy, about 1.1% of 

COVID-19 patient deaths are attributable to people younger than 50 years, while the death toll of 

COVID-19 is mainly accounted by people with a median age of 82 years (IQR 74-88). Notably, 

most of such patients (59.7%) are affected by at least three age-related diseases [3]. Nowadays, 

whilst the pandemic is still spreading, COVID-19 is emerging as a transmissible age-related lethal 

disease, at least in western countries. 

A substantial proportion of hospitalized COVID-19 patients show a systemic dysregulation of pro-

inflammatory cytokines, a condition known as cytokine storm [4]. Such hyper-inflammatory 

response in COVID-19 patients is associated with extensive lung and endothelial cell damage, 

microvascular dysfunction, and microangiopathy that eventually lead to lung and multiorgan failure 

[5]. It is therefore unsurprising that a number of clinical trials have been started to evaluate the 

effectiveness of anti-cytokine/cytokine receptor antibodies as a treatment for hospitalized COVID-

19 patients. Tocilizumab (TCZ), the monoclonal antibody against the interleukin-6 (IL-6) receptor 

is one of these host-directed therapies [6-9]. Nevertheless, substantial variability in the clinical 

response of COVID-19 patients to TCZ treatment has been reported, probably due to the 

contribution of other factors, including age-related biological mechanisms, gender, genetic makeup, 

disease severity, timing of treatment, and immune activation [10, 11]. With regard to the latter 

issue, we have recently proposed that an age-dependent pro-inflammatory status, currently referred 

to as inflammaging, may facilitate the onset of uncontrolled COVID-19 related hyper-inflammation, 

particularly in aged people [12, 13]. Blood-based biomarkers, conceivably linked to the systemic 

inflammatory state and/or inflammaging, and able to predict the response to TCZ treatment are 

urgently needed in order to redirect this precious armory to those patients who are likely to benefit 

at its most. Under this perspective, the assessment of serum/plasma microRNAs (miRNAs) has 
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been emerging as a reliable tool to assess pharmacological interventions in a variety of human 

diseases, including age-related and infectious diseases [14].  

In this regard, a set of miRNAs capable of regulating inflammation (also known as inflamma-miRs) 

has reported to show age-dependent changes in their blood levels and to be markers of a pro-

inflammatory state (i.e. inflammaging) in healthy and non-healthy individuals [15, 16]. Of 

particular interest is miR-146a, whose molecular machinery directly regulates the inflammaging 

rate in acute myeloid leukemia patients and in a murine model of leukemia [17]. Mechanistically, 

miR-146a targets TRAF6/IRAK1, two key components of the NF-κB pathway, in order to induce a 

negative feedback loop, hence its decrease is expected to unleash inflammatory cytokines, e.g. IL-6 

[17]. Other inflammatory miRNAs are co-regulated in the same scenario, including miR-21-5p and 

miR-126-3p, which are key regulators of angiogenic processes and endothelial inflammation [18]. 

The aim of this report is to evaluate the levels of circulating inflamma-miRs, such as miR-146a, 

miR-21-5p, and miR-126-3p [16], in COVID-19 patients treated with TCZ and age-matched healthy 

control subjects, in order to assess whether such biomarkers of inflammaging may be of help in 

such a dramatic clinical setting. 

 

MATERIALS AND METHODS 

Among the 46 patients presenting with virologically confirmed COVID-19, characterized by 

multifocal interstitial pneumonia confirmed by CT-scan and requiring oxygen therapy, and enrolled 

in a Phase 2, open-label, single-arm study at Università Politecnica delle Marche, Italy 

(Clinicaltrials.gov, NCT04315480), sera samples of 30 patients were available for miRNA dosage. 

Eligible patients presented with worsening respiratory function, defined as either decline of oxygen 

saturation (SO2) > 3% or a > 50% decline in PaO2/FiO2 (P/F) ratio in the previous 24h; need to 

increase FiO2 in order to maintain a stable SO2 or new-onset need of mechanical ventilation; 

increase in number or extension of areas of pulmonary consolidation. Assessment of radiological 

pattern and definition of the extent of lung involvement were performed and scored as previously 
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described [19]. Patients with severe heart failure, bacterial infection, hematological neoplasm, 

severe neutropenia or thrombocytopenia, and serum alanine aminotransferase > 5x UNL were 

excluded. All enrolled subjects provided written informed consent. The study was approved by the 

Regional Institutional Review Board (Comitato Etico Regione Marche) and was conducted in 

accordance with the Declaration of Helsinki. A Simon’s optimal two-stage design was adopted. 

TCZ was administered as a single-dose intravenous infusion of 8 mg/kg over a 90-minute time span 

after premedication with 40 mg methylprednisolone. Patients were classified as responders (R) if 

fulfilling one of the following criteria: i) improvement of oxygen saturation by more than 3% points 

and/or increase in P/F by 50% and/or P/F increase above 150 mmHg 72 hours after tocilizumab 

AND persistence of this improvement at day 7, OR ii) no evidence of worsening of respiratory 

function as defined above. Dead and intubated patients were classified as Non-responders (NR). 

Samples of serum were collected at baseline (T0) and after 72 hours (T1) from TCZ infusion. 

Twenty-nine age- and gender-matched healthy control subjects (CTR), without SARS-CoV-2 

infection or any other acute or chronic illness, were enrolled. Mean age of CTR was 64.1±8.6 years. 

MiRNAs were quantified on serum by RT-PCR and Droplet Digital PCR (ddPCR) by two 

independent laboratories as previously described [15, 20]. To achieve normal distribution, results 

were expressed as log2(relative expression) and log2(copies/μl), respectively. Results were 

presented as Z-scores to allow proper comparison between relative and absolute quantification. 

Data were tested for normality using the Shapiro-Wilk test. Student’s t test for independent samples 

and two-way mixed ANOVA with Tukey post hoc tests were used to compare the levels of 

investigated miRNAs between COVID-19 patients and CTR and between time points in COVID-19 

patients, respectively. The agreement between RT-PCR and ddPCR was assessed using Pearson’s 

correlation and Bland-Altman analysis. Pearson’s coefficient was used for the estimation of the 

correlations between miRNAs expression levels and clinical parameters. Exploratory factor analysis 

was performed as previously described [21] to identify underlying factors in the study population. 
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Two-tailed p value < 0.05 was considered significant. Statistical analysis was performed using 

SPSS version 26 (IBM, USA). 

 

RESULTS 

The final study population was composed of 29 subjects, one sample was excluded due to 

hemolysis. Demographic and clinical characteristics of the samples are reported in Table 1. None of 

the patients were smokers. The median time between onset of symptoms and TCZ infusion was 9 

days (IQR 4-14 days).  At the end of the study, 16 patients were classified as responders (R) and 13 

patients as non-responders (NR). Given the age-dependent expression of the investigated miRNAs 

[15], analyses were conducted after controlling for age. A significant interaction between time and 

responder status was found for miR-146a-5p levels (F[1,26]=6.904, p=0.014, partial η2=0.210). A 

significant increase in miR-146a-5p levels was observed in R patients 3 days after the 

administration of TCZ (Z-score difference = 1.25; p<0.001). No significant differences in baseline 

miR-146a-5p levels were found between R and NR (p=0.392), while post-treatment miR-146a-5p 

levels were higher in R vs. NR (Z-score difference = 0.98; p=0.007) (Figure 1A). Notably, droplet 

digital ddPCR analysis, which allows for the quantification of miRNA copies/μl of serum, 

confirmed RT-PCR results (F[1,25]=5.696, p=0.025, partial η2=0.186), with a strong Pearson’s 

correlation between techniques (Pearson’s r=0.74, p<0.0001). The Bland-Altman agreement 

analysis revealed a small +0.32 Z-score unit bias [95% CI: -1.09 – 1.73] between ddPCR and RT-

PCR, confirming a reasonable agreement between the two methods (Figure 1B). Absolute 

quantification of miR-146a-5p copies revealed a mean increase from 3.2±1.4 to 5.3±1.3 copies per 

μl in R patients and a mean decrease from 3.4±1.7 to 2.1±1.6 copies per μl in NR patients. 

No significant interaction between the responder status and time was showed for miR-21-5p 

(F[1,26]=1.089, p=0.306, partial η2=0.040). However, the main effect of time showed that 

circulating miR-21-5p was 0.433 SD higher at T1 compared to T0 (F[1,26]=5.048, p=0.033, partial 

η
2=0.163), regardless of the responder status (Figure 1A). The simple main effect of time was 
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confirmed by ddPCR (p=0.007). Bland-Altman analysis revealed a strong agreement between 

methods (ddPCR – RT-PCR Bias= -0.12, 95% CI: -0.26 – 0.03). 

TCZ treatment does not modulate angio-miR-126-3p levels (F[1,26]=0.621, p=0.438, partial 

η
2=0.023), and no difference was observed between R and NR, or time points. 

Multiple comparisons of age-adjusted circulating inflamma-miRs showed significantly lower miR-

146-5p (mean difference = -1.498, p<0.001), miR-21-5p (mean difference = -0.486, p=0.025), and 

miR-126-3p (mean difference = -0.972, p<0.001) levels in COVID-19 patients compared to CTR 

subjects (Figure 1A). 

Notably, age-adjusted baseline levels of miR-21-5p (p=0.016), -126-3p (p=0.006), and -146a-5p 

(p=0.008) were significantly lower in 5 NR COVID-19 patients who died in the 1-week follow-up 

period compared to NR survivors (Figure 1C). 

Partial bivariate correlations adjusted for age were computed to analyze the relations between 

inflamma-miRs and selected variables, including plasma IL-6, hemoglobin, neutrophil, lymphocyte 

and platelet count, D-dimer, and PaO2/FiO2 ratio in COVID-19 patients at both time points. The 

results, summarized in the correlation plot (Figure 1D), show significant positive correlations 

between the baseline neutrophil count and the three inflamma-miRs. Moreover, negative 

correlations exist between post-intervention IL-6 levels and both T0 and T1 inflamma-miR levels. 

The circulating levels of the three miRNAs are negatively related to D-dimer level at T1. 

Finally, an exploratory factor analysis (EFA) was conducted on the COVID-19 study population to 

identify latent variables that could be associated with clinical outcomes. The analysis returned 5 

factors cumulatively explaining 84.7% of the total variance. The first factor, which included the 3 

inflamma-miRs and age, explained most of the total variance (31.3%) and was the only factor 

significantly associated with mortality at the univariate logistic regression (p=0.043, OR 0.07 [95% 

CI 0.01 – 0.91]), confirming that a latent variable encompassing low levels of circulating inflamma-

miRs and increasing age is associated with mortality more than IL-6. Results of the EFA are 

summarized in Figure 1E and reported in Supplementary Table 1. 
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DISCUSSION 

To our knowledge, this is the first report showing a significant association between serum miR-

146a-5p levels and response to TCZ treatment in COVID-19 patients. Two independent assays, 

which provide relative and absolute quantification of serum miR-146a-5p, revealed a significant 

increase of miR-146a-5p serum levels only in patients classified as “responders” to TCZ treatment. 

Since miR-146a acts as a negative regulator of the NF-κB signaling [22], our data show that TCZ 

response reduces the expression level of pro-inflammatory genes, such as IL-6, which are under the 

control of the NF-κB pathway. Notably, miR-146a-5p levels are significantly reduced in the group 

of non-responder COVID-19 patients with the worst outcome. Even though the number of patients 

is low, these results suggest that low levels of circulating miR-146a-5p in COVID-19 patients may 

predict poor outcome among those who develop systemic hyper-inflammation. Notably, circulating 

miR-146a levels significantly decline with age and chronic age-related conditions, such as type 2 

diabetes [15]. Current literature agrees about its pivotal role in inflammaging and age-related 

diseases [17]. We recently suggested that the features of the current pandemic strongly suggest a 

role of inflammaging in worse COVID-19 outcomes, which mainly affect old people affected by 

age-related diseases [12, 13]. Interestingly, a randomized controlled trial evaluating the efficacy of a 

triple antiviral therapy with combined interferon beta-1b, ribavirin, and lopinavir-ritonavir on 

COVID-19 patients showed that the interferon-induced decline in circulating IL-6 is associated with 

earlier viral clearance [23]. The data herein reported confirm this prediction, showing that COVID-

19 clinical course may be accelerated by inflammaging, or that COVID-19 may accelerate 

inflammaging itself. Overall, our results represent a proof-of-principle of the feasibility of dosing 

selected inflamma-miRs, specifically miR-146a-5p, as biomarkers of response to anti-inflammatory 

therapeutic intervention in COVID-19 patients. Moreover, such markers represent themselves as 

putative drug targets [22]. 
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Further larger, multi-center, and possibly prospective clinical trials are necessary to identify the true 

potential of miR-146a-5p assessment as a predictive or prognostic biomarker in tocilizumab 

administration to COVID-19 patients and therefore validate the clinical relevance of our 

preliminary observations. 
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TABLE 1. Baseline clinical and demographic characteristics of 29 COVID-19 patients treated with 

tocilizumab (TCZ), divided into responders (R) and non-responders (NR). Data are mean (SD). P 

value from t tests for continuous variables and z tests for categorical variables. LMWH, low-

molecular weight heparin. 

 

Variable Responder (n=16) Non-responder (n=13) P value 

Age (years) 65.9 (10.6) 69.4 (12.8) 0.424 

Gender (males, %) 11 (68.8%) 6 (46.2%) 0.219 

Time between onset of 
symptoms and TCZ infusion 
(days) 

9.8 (5.9) 9.6 (3.0) 0.925 

Prophylactic LMWH 10 (62.5%) 6 (46.2%) 0.379 

IL-6 (pg/mL) 33.1 (40.9) 146.1 (252.4) 0.088 

Hemoglobin (g/dL) 12.9 (1.7) 12.6 (1.1) 0.604 

Neutrophils (n/mm3) 5031 (2580) 6382 (3708) 0.258 

Lymphocytes (n/mm3) 673 (262) 650 (227) 0.801 

Platelets (n/mm3) 200063 (83781) 217769 (76300) 0.561 

D-dimer (ng/mL) 573.1 (687.4) 1109.4 (1498.4) 0.287 

PaO2/FiO2 146.1 (75.4) 162.2 (48.5) 0.570 

1-week follow-up (n, %)    

 Home discharge 16 (100%) 7 (53.8%) 0.002 

 Intensive care 0 1 (7.7%) 0.258 

 Death 0 5 (38.5%) 0.006 
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FIGURE LEGEND 

Figure 1. (A) Serum levels of miR-146a-5p, -21-5p, and -126-3p in 29 COVID-19 patients at 

baseline (T0) and after 72 hours from treatment with tocilizumab (T1), divided into responders (R) 

and non-responders (NR), and in 29 age-matched healthy control subjects (CTR). Data are 

expressed as Z-scores of log2(relative expression) and presented as mean ± SD. *, p<0.05; ***, 

p<0.001 for unpaired t test (CTR vs. COVID-19) and for simple main effects analysis (R vs. NR). 

(B) Bland-Altman plot for inter-method agreement between Droplet Digital PCR (ddPCR) and RT-

PCR in the quantification of circulating miR-146a-5p. The blue line represents the mean bias 

between the two methods, the dashed lines indicate the limits of agreement. (C) Age-adjusted 

baseline miR-21-5p, -126-3p, and -146-5p levels in dead vs. survivor NR patients. Data are 

expressed as Z-scores of log2(relative expression) and presented as estimated marginal mean ± 

SEM. *, p<0.05; **, p<0.01 for one-way ANCOVA. (D) Correlation plot showing partial 

correlations, controlling for age, between inflamma-miR levels and selected variables at both time 

points. The color and the size of the circles depend on the magnitude of the correlation. Blue, 

positive correlation; red, negative correlation. Significant correlations are marked with * (p<0.05), 

** (p<0.01), or *** (p<0.001). (E) Summary of exploratory factor analysis and subsequent logistic 

regressions on COVID-19 patients. Baseline variables are reported into each circle according to the 

factor loading. The areas of the circles are proportional to the amount of variance (reported in 

brackets) explained by each factor. Overlapping circles include variables loading onto two factors. 

The green arrow points out the significant association between factor 1 and survival, while the gray 

lines indicate non-significant associations. 
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