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Abstract 
Fundus pictures of the eye allow for non-invasive inspection of the microvasculature system             
of the retina which is informative on cardiovascular health. Automated image processing            
enables the extraction of morphometric properties of this system as quantitative features that             
can be used for modelling disease risks. 

Here we report the results of the largest genome-wide association study (GWAS) of retinal              
vessel tortuosity conducted to date using data from the UK Biobank ​(​N​=63,899). We             
identified 87 loci ​associated with this trait (85 of which are novel). The heritability of the trait                 
was ​h​2​=0.23 (0.02). We carried out a replication study on a small independent             
population-based cohort, SKIPOGH (​N​=436). While the power of this study was too small to              
replicate individual hits, the effect size estimates correlated significantly between the two            
studies (Pearson correlation ​r​=0.55, ​p​=4.6E-6). Using LD score regression, we showed that            
the alleles associated with retinal vessel tortuosity point to a common genetic architecture of              
this trait with CVD and related traits.  

Our results shed new light on the genetics of cardiovascular risk factors and disease. 
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Introduction 
The fundus of the eye is covered by blood vessels which are essential for bringing oxygen                
and nutrients to the various tissues of the retina. Fundus photography allows easy and              
non-invasive inspection of this retinal microvasculature, and it is well known that there are              
disease-related changes in the morphometric properties of the vessels. The fundus is of             
interest beyond the field of ophthalmology, since pathological changes in the retinal vessels             
often reflect those in microvasculature of other organs of major importance. Indeed, based             
on the homology between the microvasculature in the retina and that found in other organs,               
retinal analysis has the potential of becoming a powerful screening tool for diseases             
elsewhere in the body, notably the brain ​1​,​2​,​3​,​4​,​5​, kidney​6​,​7 and ear​8​. The retinal            
microvasculature can therefore provide signs of systemic disease, including increased risk of            
diabetes​9​,​10​,​11,12​, obesity ​13 and cardiovascular disease (CVD)​14​,​15​,​16​,​17​,​18​, specifically        
stroke ​16,19​,​19,20​,​21​, coronary heart disease ​22​, coronary artery disease ​23​,       
hypertension ​11​,​24​,​25​,​20​,​26​,​27​,​28​,​29​,​30​,​31​,​32​,​33​,​34​, atherosclerosis​19,20,35 and myocardial infarction ​36,37​. It is       
also informative of specific eye conditions such as Plus disease in the case of retinopathy of                
prematurity​38​,​39​,​38​. 

In recent years, measuring retinal features in large genotyped cohorts has paved the way for               
studying the genetic underpinning of these phenotypes and Genome Wide Association           
Studies (GWAS) have already identified a number of loci ​40,41 associated with renal vessel             
size ​42,43​44​, optic disc morphology​45,46​ and vessel tortuosity​23​. 

In this study we carried out the largest GWAS on median retinal vessel tortuosity to date,                
confirming two known variants and discovering 85 new ones. Our discovery cohort was the              
UK Biobank, which provides a large collection of retinal images suitable for automatic             
analysis of morphometric properties of the vasculature of the human eye ​47​. We used data              
from the much smaller, yet independent, population-based cohort SKIPOGH​48​,​49 for          
replication analysis. Many of the variants we identified with our GWAS have previously been              
associated with other traits, specifically CVD and some of its risk factors. 

Results 

Automated processing of retina images defines retinal tortuosity phenotype 
We applied the ARIA​50 software for automated processing of 175,821 images from 63,899             
individuals available in the UK Biobank. We modified ARIA to operate in batch mode,              
annotating the blood vessels in each image by extracting a list of points along the midline of                 
each vessel. Using these data ​, we measured the tortuosity for each vessel (or annotated              
segment thereof) in terms of the so-called Distance Factor, i.e. the ratio between the path               
length along the vessel and the distance between its start and end point, as was first                
suggested in ​51 used the median retinal vessel tortuosity over all annotated vessels            
(averaged over multiple images if available) as trait (see Methods for more details). 

Retinal vessel tortuosity GWAS identifies 85 novel loci 
Applying linear regression of quantile-normalized median retinal vessel tortuosity on the           
genotypes of the matching subjects imputed to a panel of 15M genetic variants, we identified               
6481 significantly associated SNPs (see Supplementary File 1). Applying LD pruning with a             
threshold of R​2 < 0.01 within a window of 500K bases to define independence, we obtained                
a list of 87 independent lead SNPs (the top 10 are listed in ​table 1 ​, ordered by statistical                  
significance, and a full list can be found in Supplementary File 2). 
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Two of the 6481 significant variants, namely rs1808382 and rs7991229, had previously been             
associated with retinal vessel tortuosity​23​, while the remaining ​85 SNPS represent novel loci             
associated with this trait (see ​figure 1 for a Manhattan plot of our genome-wide signals).               
According to the GWAS Catalogue, there is a third known locus for retinal vessel tortuosity,               
namely ​rs73157566. Yet, the ​association signal of this SNP was only marginally significant             
and it did not replicate in the replication cohort of the study which reported it​23​. We also did                  
not replicate this finding (for details about these three variants and the respective genomic              
regions, see Supplementary Material on known associations with retinal vessel tortuosity). 

We also performed LD score regression to estimate heritability, obtaining a h ​2 = 0.2293              
(SE = 0.0229). We did not observe any significant genomic inflation (slope = 1.0135,          
SE = 0.0103). 

Trend of effect sizes replicates in the SKIPOGH cohort 
We attempted replication of our lead SNPs from the UKBB analysis in the SKIPOGH              
cohort​48​,​49 (436 individuals, multiple images per eye, for a total of 1,352 images). 60 out of                
the 87 lead SNPs were available for comparison. Given the limited sample size of the               
replication cohort, we lacked power to replicate the individual associations found in the             
discovery cohort, as none of them survived Bonferroni correction (p = 0.05/60 = 8.3E-4).              
Nevertheless, the effect size estimates using SKIPOGH data showed good concordance           
with those from the UKBB (see Supplementary File 3). First, 42 of 60 lead SNPs had the                 
same sign of their effect size estimate in both studies (binomial test p = 5.3E-4). Second, we                 
observed a Pearson correlation of r = 0.55 (p = 4.6E-6) across these estimates (see ​figure                
2 ​). Both results stay significant when removing outliers (see Supplementary Material,           
replication of effect sizes without outliers). 

Tortuosity variants are associated with numerous diseases 
A shared genetic basis of retinal tortuosity and Coronary Artery Disease had already been              
noted for locus rs1808382 (mapped to the ACTN4/CAPN12 genes), underlining the           
usefulness of retinal vascular traits as biomarkers for cardiovascular diseases​23​. We           
replicated this finding and asked to what extent it also applies to the large panel of new                 
variants we associated with retinal vessel tortuosity. Querying the GWAS Catalogue ​52 for our             
hits revealed 9 loci linked to genes that had been reported as genome-wide significant in               
associations with other diseases including coronary heart disease, myocardial infarction,          
arterial hypertension, type 2 diabetes, chronic lymphocytic leukemia, Alzheimer's disease,          
diverticular disease, glaucoma and myopia (see ​table 2 ​). Besides these 9 loci, we also              
uncovered 26 additional SNPs with pleiotropic effects on various diseases which could not             
be confidently mapped to a specific gene (see full list in Supplementary Material variants              
associated with disease outcome). We next expanded our query to include phenotypes            
known to confer a disease risk. We report a list of 12 loci linked to genes influencing both                  
tortuosity and disease risk factors (see ​table 3 ​). Furthermore, we uncovered another 9 SNPs              
showing similar pleiotropic properties, which could not be confidently mapped to a specific             
gene (see Supplementary Material). 

SNP-level statistics were aggregated to obtain gene-wise association scores using the tool            
Pascal ​53​. The results of our gene-wise association are summarized in ​figure 3 ​: red squares              
mark disease genes, reported in ​table 2 ​. Similarly, green squares indicate risk factor genes              
from ​table 3 ​.  

Genetic signal is shared with hypertension and CVD  
We extended our analysis of overlap with known genetic signal beyond variants with the              
same rsID, considering SNPs belonging to the same LD block (R​2 > 0.8). ​Figure 4 shows                
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how many of the variants identified by our retinal tortuosity GWAS had previously been              
reported as being associated with any of the large range of complex traits in the GWAS                
Catalogue ​52​. A number of traits that stand out. Firstly, both diastolic (49) and systolic blood               
pressure ​(46) have been associated with many of our newly identified loci. Second, also              
pulse pressure and BMI share 19 associated loci. We note that both elevated blood pressure               
and BMI are well-known CVD risk factors, which we purposefully did not use as covariates in                
our GWAS, so as to be able to study the overlap in signal, even though correcting for these                  
traits would have left the association signals largely unchanged (see Supplementary Material            
on Analysis of potential confounders). Furthermore, we observe a sizable number of            
tortuosity-associated variants overlapping with coronary artery disease variants, in line with           
what has recently been reported by a smaller scale GWAS on retinal vessel tortuosity​23​. For               
two additional phenotypes with a sizable overlap of trait associated variants, namely blood             
protein levels and bone mineral density, the relationship to tortuosity is less obvious, but              
might point to common pathogenic mechanisms. Similarly, for some of the other traits             
sharing several associated variants, notably, Type I and Type II diabetes, colorectal cancer,             
cholesterol, lung function, skin and eye pigmentation, and autoimmune diseases, there could            
be joint genetically modulated pathways, but some of these common associations may also             
just be spurious (see Supplementary File 4 for the full list of phenotypes and references to                
publications). 

Discussion 
GWAS Analysis 
Adapting the retina image processing tool ARIA to run on a cluster facilitated the extraction               
of median retinal vessel tortuosity estimates for close 64 thousand subjects of the UK              
Biobank, enabling a GWAS for this trait with substantially increasing power compared to             
previous studies. This gain in power resulted in the identification of 85 novel loci and the                
replication of 2 out of 3 associations known from previous studies, providing a substantially              
improved picture of the genetic architecture of this trait.  

We detected pleiotropic effects of 10 tortuosity variants associated with disease, specifically            
CVD-related diseases (Coronary Artery disease, Coronary Heart disease, Myocardial         
infarction, Hypertension), systemic diseases (diabetes, chronic lymphocytic leukemia,        
Alzheimer's disease) and ophthalmological conditions (myopia, glaucoma). Our results only          
link these diseases through common associated genetic variants to retinal vessel tortuosity.            
While one might speculate that this trait may reflect pathological developments of blood             
vessels that are causally upstream of some of these diseases, establishing such causal links              
will require more work, including the application of Mendelian randomization ​54,55​. 

This study was subject to several limitations. First, our tortuosity measurements combine            
those of arteries and veins, while most ophthalmological studies distinguish between arterial            
and venular tortuosity. This compromise was made because we could not fully automate             
vessel classification. Indeed this is a difficult problem that still seems to require some expert               
input at least for some images or vessels, which would have prevented us from analysing               
such a large set of retinal images. Yet, the noise introduced by mixing arteries and veins,                
apparently was outweighed by the gain in sensitivity we achieved, as evidenced by the large               
number of associated loci. Subsequent studies using vessel annotations distinguishing their           
type may test whether these loci obtain different effect sizes for arterial and venular              
tortuosity. The second limitation of our study was that the software tool we used estimated               
tortuosity by the Distance Factor​51​, a global measure which may not be ideal to capture               
vessel pathology (that may be better described by more local measures such as curvature ​56​,              
based on which, potentially more disease-relevant measures have been proposed ​57​,​58​). We           
provide statistics about the distributions of vessel lengths in our dataset and repeated our              
GWAS using only a subset of relatively short vessel segments on which we measured              
Distance Factor tortuosity, but observed no dramatic change in the observed effect size             
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estimates of our top hits (see Supplementary Material on Tortuosity of short vessels). Also,              
we did not adjust for spherical equivalent refractive error, which might have confounded our              
measurements to some degree. The third limitation of our study was the small size of the                
replication cohort, which prevented us from replicating any individual hits. Nevertheless, the            
effects sizes in the replication study correlated strongly with those in the discovery cohort,              
providing independent evidence that they were not driven by any artifact specific to UKBB.  

In conclusion, our highly powered GWAS on median retinal vessel tortuosity identified 85             
novel loci in the maintenance of the microvasculature system, or failure thereof, as             
precursors or symptoms of complex diseases. 

Materials and Methods 

Definition of tortuosity 
Our study assessed tortuosity using the measurements provided by the ARIA software ​50​. We             
estimated tortuosity as the total vessel length divided by the euclidean distance between the              
vessel segment endpoints. 

A number of measures have been designed to estimate vascular tortuosity. The measure             
adopted by the ARIA tool, in particular, is reported in a recent review as the AOC measure                 
(Arc Over Chord ratio)​56​. In an earlier work on retinal vascular tortuosity, this measure was               
referred to as Tau 1 ​59 (an equivalent formulation in which a unit of one is subtracted). The                 
measure was originally proposed (in the context of the femoral artery) by Smedby et al. as                
the Distance Factor​51 

UK Biobank phenotypes 
Our data was collected as part of the UK Biobank effort. The UK Biobank is a large-scale                 
study that includes over half a million volunteers from the UK (502,505 participants,             
collection years 2006-2010). It includes a repeated assessment phase (20,000 participants,           
collection years 2012-2013). The age of participants ranges between 40 and 69 (median age              
59), roughly balanced between sexes (229,122 males and 273,383 females). 

175,821 fundus eye images (87,562 images of left eyes and 88,259 images of right eyes)               
were available at the time of required data extraction. We processed all images, including              
those from the reassessment time point. Other phenotypes were used to correct biases in              
the genetic associations (age, sex, PCs of genotypes) or to study correlation with disease              
and lifestyle (all other phenotypes). The following health statistics are of interest to interpret              
the medical implications of our analysis: 26,989 participants (5.3%) reported being diabetics,            
16,787 (3.3%) reported being diagnosed with angina, 12,226 participants (2.4%) had a heart             
attack, 10,472 (2.0%) had deep-vein thrombosis (DVT, blood clot in leg), 8,216 (1.6%) were              
diagnosed with stroke, median DBP was 81 mm/Hg, median SBP was 136 mm/Hg, 227,360              
(45.2%) received medication. 

Data extraction 
The tortuosity phenotype measure was extracted using a modified version of the software             
ARIA by Peter Bunkehad ​50​. We modified this tool to run in batch mode dumping vessel               
statistics to disk in the process, processing images without the need for human interaction.              
The ARIA parameters used for vessel extraction were the default applied by the software for               
tests to images from the database REVIEW​60​. 

We now describe the phenotype extraction quality control procedure. The ARIA tool was             
used to perform segmentation of blood vessels and measurement of both their tortuosity and              
diameters. The software is designed to perform vessel diameter measurements at regular            
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intervals along the centerline of each vessel, so that the number of measured diameters              
could be used as a proxy for the total length of the vascular system depicted in one image.                  
Images for which less than 11 thousand equally spaced diameters could be measured were              
discarded. This threshold was (conservatively) set by visual inspection to discriminate lower            
quality images that were too dark, too light or out of focus. Roughly two out of three images                  
passed this quality control, with a total of 120,363 images being sent forward in the pipeline. 

Postprocessing of the data consisted in averaging the values derived from the left and right               
eye of each participant (for the resulting distribution, refer to Supplementary Material on             
Tortuosity estimates in UKBB) 

The data extraction pipeline was written in python and bash and was run on a cluster using                 
SLURM. 

UK Biobank genotype data 
Around 488,000 participants were genotyped on Axiom arrays for a total of 805,426 markers.              
From this, about 96 million genotypes were imputed using a combined reference panel from              
the 1000 Genomes and UK10K projects​61​. The annotation used to report variant positions is              
the Genome Reference Consortium Human genome build 37 (known as GRChb37 or hg37).             
We subset the genotypes using the software BGENIX, shrinking the list of investigated             
variants to those that have been assigned an rsID (around 15 million SNPs). An additional               
Quality Control was performed via a postprocessing step on the GWAS output. We filtered              
out SNPs with MAF < 5E-4 (which given the sample size of 63,899 subjects, translates to                
having an average of over 30 individuals having at least one minor allele). We filtered out                
SNPs with imputation quality < 0.3, as used in Ref. [​62​]. 

The SKIPOGH study 
We performed replication of the GWAS results in the SKIPOGH cohort​48​,​49 (Swiss Kidney             
Project On Genes in Hypertension) which is a Swiss family-based population-based cohort            
that includes 1’042 participants (493 males and 549 females), aged between 18 and 96              
years old, which have been extensively phenotyped at baseline and in a 3-year follow-up.              
Participants were recruited from three different locations in Switzerland, namely, Bern,           
Geneva and Lausanne. The genotyping was performed with the Illumina 2.5 omni chip,             
followed by an imputation based on HRC v1.1 panel using Minimach3. The annotation used              
to report variant positions is the Genome Reference Consortium Human genome build 37             
(GRChb37). 

Genome-wide association analysis 
The raw tortuosity measures extracted from the image data were transformed in order to              
correct for confounding effects that would bias the genetic association analysis (for an             
overview of the confounder analysis that we performed, please refer to Supplementary            
Material on Analysis of potential confounders). Only variables that showed a statistically            
significant correlation to tortuosity were corrected for. Specifically, we applied the linear            
model: 

tortuosity ~ age + sex + genetic PCs. 

A rank-based inverse normal transformation was applied to the residuals of this linear model              
and the GWAS was run on the output as a univariate linear regression without confounders               
(refer to Supplementary Material to inspect the resulting distributions). 

The genetic association study was run using this software BGENIE​63​. The (unpruned) output             
consisted of 6481 significant SNPs (see Supplementary File 1). 
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The list of independent SNPs was calculated by performing LD pruning using the LDpair              
function of the R package LDlinkR​64​, selecting as a reference panel "GBR" (Great Britain)              
from the 1k genome project. Two SNPs were considered as independent if they had LD R​2 <                 
0.01 or were more than 500K bases apart (see Supplementary File 2). This resulted in 87                
independent lead SNPs. LD pruning was repeated with an alternative LD threshold of R2 <               
0.1 (for comparison with other GWAS studies, where such value is used) resulting in a list of                 
124 significant SNPs (see Supplementary File 5). 

The association analysis at replication stage for the SKIPOGH cohort was performed using             
the Emmax function of the Epacts software in order to account for family structure by using                
the kinship matrix in the model. Additionally, the recruitment center was included as             
covariable. 

Summary plots were generated using the R packages qqman ​65​ and the GWASTools​66​. 

Heritability 
We carried out LD score regression using the software LDHub ​67​. The portion of phenotypic              
variance cumulatively explained by the SNPs was h ​2​=0.2293 (0.0229). The measure of            
inflation was lambda_GC=1.1364; lambda GC measures the effect of confounding and           
polygenicity acting on the trait. The mean chi-square statistic mean_X​2​=1.2941. The LD            
Score regression intercept was 1.0135 (0.0103); an intercept close 1 indicates little influence             
of confounders (mostly of population stratification). The ratio of the proportion of the inflation              
in the mean X​2 that is not due to polygenicity was 0.0459 (0.0352); a ratio close to 0 is                   
desirable as it indicates low inflation from population stratification. 

Shared genetic architecture with disease 
SNP variants overlap with disease phenotypes (same rsID) was analysed using the EBI's             
GWAS Catalogue ​52​. We report independent SNPs in the tortuosity GWAS that are part of the               
GWAS Catalogue because associated to disease (or to a disease-related phenotype). This            
analysis was extended to genes and pathways using FUMA​68​. We list independent SNPs in              
the tortuosity GWAS who were in LD with SNPs that had already been reported in the                
GWAS Catalogue (see Supplementary File 4 and Supplementary File 6). 
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Supplementary Material 
Please refer to the Supplementary material file. 

Figures 

 

Figure 1 ​: Manhattan plot of genome-wide association study for retinal vessel tortuosity           
corrected for phenotypic variables that showed a statistically significant association, i.e. age,            
sex, and a subset of principal components of genotypes (PCs: 1,2,5,6,7,8,16,17,18). Refer            
to Supplementary Material analysis for correlation with potential confounders. The red line is             
the genome-wide significance level (P = 5E-8). For a zoom of the genomic location, refer to                
Supplementary Material on known associations with retinal vessel tortuosity. 

 

 

Figure ​ ​2 ​: Statistically significant correlation between the measured effect sizes in the           
discovery cohort (UKBB, N=63,899) and replication cohort (SKIPOGH, N=436). We          
considered all lead (independent) SNPs in the UKBB. Of the 87, we could find 60 with                
matching rsIDs in SKIPOGH. The resulting correlation has Pearson r = 0.55 and P = 4.6E-6. 
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Figure 3 ​: Gene-based Manhattan Plot. SNP-wise effect sizes were aggregated onto 21,722           
protein coding genes. Genome-wide significance (dashed line in the plot) was defined at P =               
0.05/21722 = 2.3E-6. Gene-based tests were computed by Pascal. Red squares indicate            
disease genes, to which we were able to map a SNP having pleiotropic effects on both                
retinal tortuosity and a disease (details are provided in ​table 2 ​). Green squares indicate              
genes associated with disease risk (​table 3 ​). 

 
Figure ​ ​4 ​: Number of variants shared with other traits reported in the GWAS Catalogue             
(SNPs in LD, R2 > 0.8). The largest peaks are blood pressure (SBP, DBP), followed by                
pulse pressure (i.e. SBP-DBP), BMI, coronary artery disease. Further traits with sizable            
number of shared associations are type I and type II diabetes, colorectal cancer, cholesterol,              
lung function, skin and eye pigmentation and autoimmune diseases. 

Tables 
CHR SNP BP EA NEA FREQ BETA -log P 

19 rs16972767 39153044 G A 0.47369 -0.14961 159.5 

13 rs9559797 111085411 G C 0.58026 -0.12837 111.2 

4 rs7661961 85029494 A G 0.40333 -0.096169 63.509 

2 rs2571461 218670945 T G 0.60199 -0.093652 59.24 

4 rs1026501 120013271 G C 0.72423 0.087523 43.156 

5 rs784420 77987524 A G 0.28180 0.083675 40.774 
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5 rs341924 77944618 G T 0.50123 0.065901 30.795 

7 rs13226484 96486765 G A 0.56737 0.064379 30.21 

1 rs10788873 150250534 T A 0.53124 0.060519 26.558 

2 rs1966628 134274625 C T 0.39761 -0.061464 26.128 

Table 1 ​: The 10 most significant retinal tortuosity lead SNPs, ordered by p-value. For full              
results, refer to list of 87 independent lead SNPs (Supplementary File 2). Abbreviations:             
CHR, Chromosome; BP, base pair position; EA, effect allele; NEA, non-effect allele; FREQ,             
allele frequency of effect allele; BETA, effect size estimate; Chromosomal positions are in             
GRCh37 coordinates. 

 

SHARED SNP ref DISEASE GWAS GENE GENE P-VALUE 
rs6725887 (*) 69 Coronary heart disease WDR12 5.62E-09 (1.03E-10) 

rs6725887 (*) 70 Myocardial infarction WDR12 5.62E-09 (1.03E-10) 

rs936226 71 Hypertension CYP1A2 5.02E-20 (2.01E-13) 

rs7119 72 Type 2 diabetes HMG20A 1.21E-08 (3.85E-10) 

rs757978 73 Chronic lymphocytic leukemia FARP2 6.24E-13 (6.22E-12) 

rs9381040 74 Alzheimer's disease TREML2 8.33E-10 (3.33E-12) 

rs875107 75 Diverticular disease ANO1 3.14E-19 (1.59E-23) 

rs7588567 76 Glaucoma NCKAP5 0.033 (9.80E-18) 

rs2753462 77 Myopia FARP2 6.24E-13 (6.22E-12) 

Table 2 ​: List of variants identified by the UKBB tortuosity GWAS which were independently             
found to be associated with disease outcome in an independent study. We report only exact               
variants (same rsID in both tortuosity and disease GWAS). We report only variants which we               
could confidently map to a gene. Gene p-values were computed by using two tools, and both                
results are given for comparison: the first value was computer by Pascal ​53 and the second                
(in parenthesis) by MAGMA ​78​. Variants associated with more than one disease are marked              
with a star. 
 

SHARED SNP ref RISK FACTOR (diseases) GENE GENE P-VALUE 
rs6495122 79 Diastolic blood pressure (CVD) CPLX3 6.88E-15 (4.14E-10) 

rs1378942 (*) 80 Diastolic blood pressure (CVD) CSK 2.66E-15 (2.89E-20)  

rs17355629 81 Pulse pressure (CVD) LRCH1 9.92E-19 (1.33E-19) 

rs35252676 82 Pulse pressure (CVD) LHFPL2 1.44E-25 (2.03E-42)  

rs9555695 83 Waist-hip ratio (obesity) COL4A2 4.42E-05 (1.80E-72)  

rs7655064 83 Waist-hip ratio (obesity) MYOZ2 1.10E-12 (1.42E-12)  

rs11083475 84 Heart rate (rhythm disorders) ACTN4 1.00E-100 (7.18E-63)  

rs1378942 (*) 85 Mean arterial pressure (CVD) CSK 2.66E-15 (2.89E-20) 

rs2571445 86 Lung function (pulmonary disease) TNS1 2.09E-55 (5.75E-60)  

rs9303401 87 Cognitive ability (mental disorders) PPM1E 1.16E-09 (2.72E-12)  

rs17263971 88 eGFR (Chronic Kidney Disease) SYNPO2 3.19E-10 (5.85E-23) 

rs3791979 89 Intraocular pressure (open angle glaucoma) TNS1 2.09E-55 (5.75E-60)  

rs12913832 90 Intraocular pressure (open angle glaucoma) HERC2 3.00E-15 (1.82E-10)  

Table 3 ​: List of variants identified by the UKBB tortuosity GWAS which were independently             
found to be associated with disease risk factors in an independent study. We report only               
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exact variants (same rsID in both tortuosity and disease GWAS). We report only variants              
which we could confidently map to a gene. Variants associated with more than one disease               
are marked with a star. 
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