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Abstract

The COVID-19 pandemic has become a crucial public health issue in many countries including the

United States. In the absence of the right vaccine strain and sufficient antiviral stockpiles on hand, non-

pharmaceutical interventions have become valuable public health tools at the early stages of the pandemic

and they are employed by many countries across the globe. These interventions are designed to increase

social distancing between individuals to reduce the transmission of the virus and eventually dampen the

burden on the healthcare system. The virus transmissibility is a function of the average number of contacts

individuals have in their communities and it is highly dependent on population density and daily mobility

patterns, along with other social factors. These show significant variation across the United States. In this

article, we study the effectiveness of social distancing measures in communities with different population

density. Specifically, first we show how the empirical estimation of reproduction number differs for two
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completely different states, thus the experience of the COVID-19 outbreak is drastically different, sug-

gesting different outbreak growth rates in practice. Second, we develop an age-structured compartmental

model for simulating the disease spread in order to demonstrate the variation in the observed outbreak

characteristics. We find that early trigger and late trigger options present a trade-off between the peak

magnitude and the overall death toll of the outbreak which may also vary across different populations.

Keywords: COVID-19, decision analytics, compartmental model, simulation, reproductive number, so-

cial distancing

1 Introduction

On March 11, 2020, the World Health Organization (WHO) declared the global outbreak caused by Coro-

navirus Disease 2019 (COVID-19) as a pandemic. This new virus is of the coronavirus family, named

SARS-CoV-2 (CDC 2020b) which was first detected in Wuhan, China, on December 2019, and quickly

spread around the world. Currently, the total number of people diagnosed with COVID-19 has exceeded

six million and it is present in nearly every country. As of June 2020, this number continues to rise with

corresponding fatalities (CDC 2020c). Although there are still several unknowns regarding the natural

characteristics of the virus, the main mode of transmission is identified to be mainly through respiratory

droplets expelled from the mouth or nose of an infected person and subsequently inhaled by a suscep-

tible person. It is also possible to get COVID-19 through contact with contaminated surfaces as well

(CDC 2020a). Such modes of transmission creates a disease dynamic that is easy to grow. In addition,

early epidemiological estimates show that the severity of this novel virus is relatively very high in elderly

population than younger populations (Verity et al. 2020).

The COVID-19 pandemic has become a crucial public health issue in many countries including US.

In the absence of the right vaccine strain and sufficient antiviral stock piles on hand, non-pharmaceutical

interventions have become valuable public health tools at the early stages of the pandemic and employed

by many countries across the globe including the US. These interventions are designed to increase social

distancing between individuals to reduce the transmissibility and eventually dampen the burden on the

healthcare system so that the overall risk of public health is minimized. The effectiveness of these social
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distancing measures depends on the population density and underlying mobility patterns of a region.

In the United States (US), the states show significant variation in population density and demographic

configurations. For example, when Nebraska is compared to New York the population density and the

mobility patterns are drastically different. Nebraska has low population density and mobility patterns

with low-use of public transportation. New York, on the other had, especially New York City exhibit high

population density and high-use of public transportation.

In this article, we study the practical effectiveness of both social distancing measures for outbreak in

regions with different population density and mobility patterns as well as reopening strategies. Specifi-

cally, first we show that the evolution of the empirical fit for reproduction number (i.e. a measure for trans-

missibility) for two different states in the US, i.e., Nebraska and New York, for the COVID-19 outbreak

are drastically different, suggesting different outbreak transmission rates in practice, emulating different

states. Second, we develop an age-structured compartmental model to simulate the disease spread for

different growth rates and show that the observed outbreak characteristics are different for these states.

Third, employing computational experiments with the simulation model we show that social distancing

measures with different decision parameters and paths (e.g., various triggers to start and different lengths

of social distancing) can result in effective management of the outbreak in dissimilar states. We find that

early trigger and late trigger options present a trade-off between the peak magnitude and the overall death

toll of the outbreak. Finally, we analyze reopening strategies with a two-phased reopening scenario. We

show that for outbreaks with small transmission rate a short length of social distancing and immediate

reopening scenario may be feasible. Whereas, for outbreaks with medium or high transmission rate the

longer the phases until the re-opening the more dampened the burden of the outbreak; and the further

the timing of the peak, which may provide more time for the public health officials to increase healthcare

capacity.

2 Literature Review

While the early epidemiological estimates about the natural progression of the disease were reported

with significant uncertainty, the public health authorities and researchers around the globe reported their
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surveillance data and findings that provided details about case fatality rates and transmissibility. An

early study on the transmission dynamics of COVID-19 analyzed data of the first 425 confirmed cases

in Wuhan, China and found that the mean incubation period was 5.2 days. However, the 95th percentile

of the incubation period was 12.5 days in this sample (Li et al. 2020a). In addition, this study estimated

the basic reproductive number (R0), which is the average number of secondary cases generated from a

single infectious case in a completely susceptible population, as anywhere between 1.5 and 3.5 (Li et al.

2020a). These epidemiological estimates show that the virus strain is highly transmissible and can infect

mass populations across the globe in a very short amount of time. Another study on news reports and press

releases about COVID-19 outside Wuhan estimated the mean incubation period and 97.5th percentile as

5.1 days and 11.5 days, respectively (Lauer et al. 2020). Linton et al. (2020) also estimated the expected

incubation time around 5 days with relatively higher range of 2 to 14 days. Given relatively high estimates

of the basic reproductive numberR0, and relatively long incubation period, there is an exponential growth

of confirmed COVID-19 cases in several countries and developing control measure for the epidemic is

quite challenging. More importantly, a significant proportion of cases are reported to be asymptomatic

but infectious cases (Li et al. 2020a). This characteristic of the virus is found one of the main drivers

of the spread of COVID-19 across populations. Therefore, social distancing measures are crucial for

gaining time for healthcare systems to meet the demand for care and ultimately mitigating the impact of

the pandemic.

By mid-March, there has been a significant impact on the economy of several countries as more re-

strictions to mitigate the risk are being implemented, such as travel bans, cancellation of social events

(concerts, sports, etc.), closure of non-essential businesses, “stay at home” orders. While social distanc-

ing interventions have been implemented in various states of the US and also in other countries worldwide

they have been very controversial policy since they can have significant impact on the economy. Because

it is usually hard to accurately estimate the transmissibility and severity of infections caused by a newly

emerged virus at the early stages of the epidemic, there will still be many uncertainties about disease pro-

gression dynamics in the communities. Therefore, the public health decision makers will have to make

important decisions on using school closures and other social distancing measures as community mitiga-
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tion strategies until the right strain of a vaccine is developed and distributed. However, these strategies

may vary based on the social and demographic characteristics of different communities. In this article,

we present the timely evolution of the estimates of the reproductive number in two different states, i.e.,

New York where we observe high transmission rates; and Nebraska where we observe relatively lower

community transmission rates, along with a baseline scenario based on more global estimates. We eval-

uate social distancing measures to analyze whether one unified policy would be effective in completely

different states in the United States.

Social distancing measures have significant impact on the spread of infectious diseases in popula-

tions, this is also observed during the COVID-19 pandemic (Courtemanche et al. 2020). Recently, in

the literature there are several analytical approaches developed to analyze effectiveness and/or cost effec-

tiveness of various public health mitigation strategies. Fumanelli et al. (2016) consider school closure

based social distancing interventions in which closure strategies are based on school absenteeism: na-

tionwide, countywide, reactive school-by-school and reactive gradual. Gojovic et al. (2009) developed a

simulation model for H1N1 2009 outbreak in a structured population in Ontario and evaluated different

mitigation strategies. In their analysis the decision analytic framework is used for different mitigation

strategies including school closures, however, these analyses are limited and do not involve any cost ef-

fectiveness analysis. Ciavarella et al. (2016) studied school closure policies at municipality level for

mitigating influenza spread using compartmental models. Decision analytics and support systems are

used with compartmental model to control infectious disease epidemics.

While a pandemic possibility continuously posed global risks to public health systems and business

continuity (Araz et al. 2020), federal and state health departments developed public health policies for mit-

igation and response (Ramirez-Nafarrate et al. 2019). While modeling and simulation studies are used for

optimal pharmaceutical intervention design, which include vaccination policies (Duijzer et al. 2018b,a),

non-pharmaceutical interventions are also modeled with disease progression dynamics (Griffiths et al.

2000, Teytelman & Larson 2012). In developing social distancing policies, researchers and public health

officials have used models and quantitative analyses to evaluate their effectiveness and costs under pos-

sible pandemic scenarios. Some studies demonstrate school closures can have a significant impact on
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the effective reproduction number and on the overall spread of disease (Lee et al. 2010). One advocates,

for example, 26 weeks of school closure in conjunction with other policies (Sander et al. 2010). Since

the H1N1 influenza pandemic in 2009 many studies showed the cost effectiveness and epidemiological

impact of a large set of school closure policies. Different than the H1N1 pandemic in 2009, COVID-19

pandemic has raised more political, social and economical challenges as it turned to be a more severe

pandemic. Therefore, in this article we evaluate several more comprehensive social distancing policies

coupled with different strategies to reopen. The outcomes measures considered for the policies are health

care utilization and fatalities via a model that is calibrated based on state specific transmission data and

socio-demographic decomposition. This study contributes to the literature by presenting a data driven

epidemiological modeling with decision analytics framework to inform social distancing policies for dif-

ferent states. In addition the analysis show that multiple waves of infections should be expected based on

the social distancing policies, which would vary in peak magnitude and timing depending on the policies.

Finally, the study highlights how time gained by using social distancing interventions can vary across

states with different population configurations until mass vaccination or antiviral dispensing can become

available.

3 Model

In this paper, we present a decision analytic approach for social distancing during a pandemic. We de-

velop and simulate an age structured mass action model integrated with a decision analytical approach to

evaluate the impact of social distancing measures and reopening strategies. The impact of these strategies

are evaluated based on the computational results obtained for cumulative attack rate, projected peak value

of infections, i.e., peak prevalence (%), timing of the peak, peak hospitalizations, and cumulative deaths.

In our decision analytic approach, the social distancing measures are triggered with the prevalence in

the community similar to Araz et al. (2012), as most of the social distancing policies are implemented

by monitoring the % of cases as triggers. All the considered reopening strategies that are evaluated are

modeled after a fixed duration of social distancing policies and with a gradual removal strategy imple-

mented based on multiple phases. We assume the social distancing policies are implemented based on
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the prevalence of COVID-19 infections in the community and a series of reopening decisions are con-

sidered after a fix duration of social distancing. The considered closure durations are 1, 2, 3, 4, 8, 16

and 24 weeks which are coupled with the prevalence based triggers, i.e., 0.001%, 0.05%, 0.1%, 0.2%,

0.3%, 0.4%, 0.5% and 1%. See Figure 2 for all the scenarios considered in our analyses. The removal

of the policies are modeled in phases, following the guidelines released from CDC (2020b). Next, we

first present the differential equation based disease spread model constructed to simulate disease progres-

sion in the communities, then we explain the triggering strategies used for social distancing policies and

phase-based reopening.

3.1 Disease Spread Model

Compartmental disease spread models are widely utilized in computational and mathematical epidemiol-

ogy (Anderson & May 1991). In these models all individuals act similarly but separately from each other

in a homogeneously mixed population (Dimitrov et al. 2009). Here, in this study we use an age-structured,

continuous time compartmental model using a population specific data and considering uncertainty on

several input parameters. The equations (1)-(7) model the transmission dynamics of COVID-19 disease

in a given population and flow of individuals moving from one disease state to another as given in Fig-

ure 1. They represent the disease progression for individuals who are first susceptible then exposed to

the disease, and then become asymptomatic or symptomatically infectious. Asymptomatic infectious in-

dividuals either develop symptoms and become symptomatically infectious or recover from the disease

without any symptoms. The symptomatic infectious individuals can either recover themselves or be hos-

pitalized. The hospitalized individuals can either recover or die from the disease. Si(t) represents the

number of susceptible individuals in the community at time t and for age group i, Ei(t) represents the

exposed individuals, while IAi
(t) is used for asymptomatic infectious individual and ISi

(t) is used for

the symptomatic infectious cases. Ri(t) is used for the recovered cases in age group i and Hi(t) is the

hospitalized cases at time t for the age group i. FinallyDi(t) represents the number of deaths in each age

group at time t. The force of infection for each age group is represented with λi, and it is computed as

λi =
∑k

j=1 βijcij(IAi
(t)+ISi

(t))

N(t)
.
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Figure 1: Natural progression of COVID-19 with hospitalization

d(Si(t))

dt
= −λiSi(t) (1)

d(Ei(t))

dt
= λiSi(t)− (αξ1 + (1− α)ξ2)Ei(t) (2)

d(IAi
(t))

dt
= αξ1Ei(t)− (θ1 + θ2)IAi

(t) (3)

d(ISi
(t))

dt
= (1− α)ξ2Ei(t) + θ1IAi

(t)− (r + h)ISi
(t) (4)

d(Hi(t))

dt
= hISi

(t)− (φ1 + φ2)Hi(t) (5)

d(Ri(t))

dt
= θ2IAi

(t) + r1ISi
(t) + ϕ1Hi(t) (6)

d(Di(t))

dt
= ϕ2Hi(t) (7)

Using the model presented above we have derived the basic reproductive number R0 of the system,

which is age specific, since the model is an age structured one. Using the next generation operator the

theoretical expression forR0 is derived as given below. See the Appendix B for the details of the derivation

process.

R0i =

∑k
j=1 βijcij(t) [(1− α)ξ2(θ1 + θ2)− αξ1(θ1 + r + hi)]Si(0)

(αξ1 + (1− α)ξ2)(θ1 + θ2)(r + hi)N(0)
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. Now, the time dependent reproductive number i.e., Ri(t) for age group i can be stated as following:

Ri(t) =

∑k
j=1 βijcij(t) [(1− α)ξ2(θ1 + θ2)− αξ1(θ1 + r + hi)]Si(t)

(αξ1 + (1− α)ξ2)(θ1 + θ2)(r + hi)N(t)

.

Proposition 1 The epidemic control can be achieved if Ri(t) ≤ 1 can be satisfied with social distancing

policies for all age groups.

We calibrate the model based on the daily cases reported for considered communities to achieve the

observed disease propagation and using the result stated in proposition 1 we derive community specific

analysis for evaluating the social distancing policies.

3.2 Modeling Closure and Reopening Decisions

We evaluate a range of social distancing and reopening strategies for different scenarios for the trans-

missibility and estimated ranges of severity of the pandemic. Each social distancing policy alternative

consists of a prevalence-based trigger and a fixed duration until a reopening decision is made as shown

in Figure 2.

Now we explain the modeling process of closure and reopening decisions. As defined earlier IAi
(t)

represents the asymptomatic infections for age group i at time t and ISi
(t) represents the symptomatic

infections for age group i at time t. In our model, age groups i ∈ {k, a, e} are defined as k for ”kids”, a

for ”adults” and e for ”elderly”. Let the function f(t) be the cumulative number of individuals infected

at time t which is computed as following:

f(t) =

∫
t

(IAk
(t) + ISk

(t)) +

∫
t

(IAa(t) + ISa(t)) +

∫
t

(IAe(t) + ISe(t)) (8)

We can mathematically define trigger time for social distancing policy to take place as follows:

t∗ = argmin(f(t)) | f(t) > trigger (9)
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Figure 2: Social Distancing Triggers and Duration Options
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Given the policy trigger time, t∗, below we show how contact rates cij(t) for each age group changes

at time t as the closure and reopening decisions are implemented. As the effects of policies would take

some time to be observed, let δ be the implementation time after the trigger is hit.

cjk(t) =



copen·· if t < t∗

copen·· else if t∗ ≤ t < t∗ + δ

cclosed·· else if t∗ + δ ≤ t < t∗ + δ + social distancing duration

copen·· otherwise

(10)

3.3 Data

The early published estimates of the basic reproduction number (R0) of the COVID-19 were slightly

higher than 2 (Li et al. 2020a). However, depending on the source of the data used in these estimation

studies, there were some variation in these estimates. Beside the basic reproductive number, other es-

timates of the key parameters used in the model are presented in Table 1 which are compiled from the

literature and include the latency period, proportion of the asymptotically infected individuals, age depen-

dent hospitalization and mortality rates. Using the cumulative cases data from each state we considered in

this study, i.e., New York and Nebraska we have estimated respective reproduction numbers. Then, using

the theoretical formula for R(t) we have calibrated contact rates to achieve the observed reproduction of

the cases estimated for each state. See Appendix Table 8 for the values used for the model calibration.

In this article, we use daily number of cases data published by the CDC from the January 3rd, 2020 to

April 23rd, 2020 for the states of New York and Nebraska and calibrated the contact rate parameter value

to achieve the reproductive number estimated for each state. The cumulative number of case over time

for each state are presented in Figure 3, with respective time dependent reproduction number estimates.

11

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139329doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139329


Figure 3: Cumulative Cases in New York and Nebraska by the end of April, 2020
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Table 1: Model Parameters

Definition of Parameters Notation Value Range References
Force of infection computed - - -
Basic reproductive number R0 2.1 [1.5, 3.15] -
Transmission between age groups βij A. Table 7 − -
Age specific contact rates cij A. Table 8 − Mossong et al. (2008)
Asymptomatic latency period ξ1 5 days − Li et al. (2020b)
Symptomatic latency period ξ2 5 days − Li et al. (2020b)
Asymptomatic α Uniformly distributed 10− 34.8% CDC, 2020
proportion Mizumoto et al. (2020)
Rate of asymptomatic θ1 5% − Li et al. (2020b)
developing symptoms
Asymptomatic recovery period θ2 7 days − Li et al. (2020b)
Symptomatic recovery period r 7 days − Li et al. (2020b)
Age specific hospitalization rate hi Uniformly distributed A. Table 9 CDC, 2020
Age specific recovery rate ϕ1 A. Table 9 − CDC, 2020
Age specific mortality rate ϕ2=1-ϕ1 A. Table 9 − CDC, 2020

4 Results

Using our compartmental model, we evaluate different social distancing strategies by varying two key

parameters, namely the threshold prevalence to start the social distancing policies and the length of so-

cial distancing. We also evaluate these strategies for different R0 values (i.e., epidemic growth rate), as

empirically we find different growth rate values for different states, in addition to a base case of globally

estimated R0 value of 2.1.

For example, the case reproduction dynamics in New York is different than the one in Nebraska.

New York has higher transmission rate and Nebraska has lower transmission rate than the base scenario

(R0 = 2.1). Figure 4a shows the temporal dynamics of outbreak for the three different growth rates

with R0 values of 1.57, 2.1 and 3.15, when no social distancing policy is executed. i.e., labeled as ”no

intervention”.

We find that practical growth rate of the outbreak in a region directly affects the dynamics of the

outbreak. Regions with high transmission rate should expect to experience their peak to be observed

much earlier than regions with lower transmission rate. Similarly, the magnitude (i.e. peak height) of the

outbreak is significantly higher for those regions with high growth rate than those with small growth rate,
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Figure 4: The graph compares differentR0 values, 1.57, 2.1 and 3.15. Lines indicate the median value and
the shading indicates the inner 95% range of values of the 100 simulations. Peak timing and magnitude
of the pandemic depends on the R0 values.
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as expected.

Furthermore, when same social distancing policies are employed for these different states, we ob-

served different effects of the interventions. For example, Figure 4b compares one specific social distanc-

ing policy, i.e., triggering when the cumulative outbreak reaches 0.5% infections under different basic

reproductive number scenarios. For states with higher growth rate, the outbreak results in higher and

earlier first peak, and an earlier second peak. For regions with lower reproduction number, the social

distancing trigger threshold is reached later and the observed peak would be smaller. These simulations

suggest that the same social distancing policy can have different effects on the evolution of the epidemic

in different populations. Thus, we evaluate each state separately. In the following sections, we evaluate

base scenario with (R0 = 2.1), high transmission rate scenario with (R0 = 3.15) and low transmission

scenario with (R0 = 1.57) in order to reflect the time dependent reproduction number estimates using

COVID-19 cumulative cases data from each state.

4.1 Base Scenario (R0 = 2.1)

Early estimates for the characteristics of the COVID-19 virus suggest that basic reproductive number

would be greater than 2, however wide uncertainty rages are also reported (Li et al. 2020b). Therefore

we use a base case scenario for the transmission dynamics with an R0 value of 2.1. One critical question
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in mitigation efforts is to decide when to start the social distancing. Figure 5 shows how applying two

distinct trigger thresholds, i.e., 0.5% and 1%, can change the dynamics of the outbreak with a fixed

duration of social distancing under the base case scenario with 8 weeks of social distancing. Specifically,

the graph compares early trigger (0.5%) and late trigger (1%) options with no intervention. When the

social distancing policy is triggered early (0.5%), the outbreak has a smaller first peak in number of

cases, and a much higher second peak. Conversely, when the social distancing policy is triggered late

(1%), the outbreak has a higher first peak, and a smaller second peak. The early trigger results in an

earlier second peak than when a late trigger is used. In both cases, the peaks are considerably dampened

compared to the peak without any social distancing implemented.

R0=2.1 1st Wave 2nd Wave
Peak (%) Peak Time Peak (%) Peak Time

No Intervention 1.42% 226th day – –

Ea
r l

y
Tr

ig
ge

r
(0

.0
01

) 4 weeks

0.0004% 20th day

1.43% 283rd day
8 weeks 1.42% 345th day
16 weeks 1.42% 471st day
24 weeks 1.41% 594th day

La
te

T r
ig

ge
r

(0
.5

)

4 weeks

0.11% 141st day

1.30% 289th day
8 weeks 1.27% 356th day
16 weeks 1.26% 488th day
24 weeks *out of 600 range

V e
ry

la
te

Tr
ig

ge
r

(1
.0

)

4 weeks

0.22% 156th day

1.18% 292nd day
8 weeks 1.10% 359th day
16 weeks 1.09% 501st day
24 weeks *out of 600 range

Table 2: Total infection peak magnitude and peak timing with different school closure/ social distancing
scenarios - no closure as baseline, 4 weeks closure, 8 weeks closure, 16 weeks closure, and 24 weeks
closure.

For an outbreak with baseline transmission rate our systematic and extensive simulations suggest the

main benefit of social distancing is to buy time by delaying the peak as shown in Table 2. The length

of social distancing phase has minimal to no effect on the magnitude of the second wave. However, it

directly changes the timing of the second wave. This time until the second wave could help public health

officials to prepare for a second wave. The threshold used to trigger the social distancing policy has

significant implications on the epidemic dynamics. Specifically, early triggers result in a small first wave
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and a larger second wave. Conversely, later triggers result in a relatively bigger first wave, and smaller

second wave when compared to the second waves of other policy triggering options. This result suggests

that depending on the hospital bed and ICU capacity, early triggers or late triggers may be used to balance

the magnitudes of the waves for mitigation and to manage the health care system capacity.

Figure 5: Comparison of triggers (1%and 0.5%) for social distancing policies with the no intervention
strategy.
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The number of hospitalizations also follow a similar trend as preented in Figure 6 for social distanc-

ing. We compare hospitalization volumes for early and late trigger with 8 weeks and 16 weeks of social

distancing. Using an earlier trigger results in a smaller initial peak in hospitalizations than triggering that

later. Conversely, the second peak is observed higher when an early trigger is used than the later trigger.

The length of the social distancing policy merely delays the second peak, both for early and late triggers,

with no material impact to the size of the second peak. Using a smaller prevalence value for triggering

the policy results in a smaller first peak than the later trigger, however, the second peak for early trigger is

larger than that of late trigger. The length of the social distancing again affects the timing of the second

peak.
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Figure 6: Comparison of hospitalization volumes for early and late trigger (i.e., columns) for 8 weeks and
16 weeks closures (i.e., rows).

(a) Early trigger, 8 weeks social distancing
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(b) Late trigger, 8 weeks social distancing
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(c) Early trigger, 16 weeks social distancing
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(d) Late trigger, 16 weeks social distancing
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4.2 Higher Transmission Scenario (R0 = 3.15)

While some highly dense US states observed faster growth in the number of cases, e.g., New York and Cal-

ifornia, some states with lower population density observed steep and later increase in the cases. There-

fore, we simulate a scenario with higher transmission rate which is achieved with R0 = 3.15. Similar to

base case scenario, simulations suggest the main benefit of social distancing is to buy time by delaying

the peak as shown in Table 3. The length of social distancing phase has minimal to no effect on the mag-

nitude, i.e., height of the peak of the second wave. However, it directly changes the timing of the second

wave. The magnitudes of the second peaks for high transmission scenario, for all trigger options, is more

than 2 times larger than those of for the baseline transmission scenario.

Depending on the length of the social distancing implemented, public health officials gain time until

the second wave ranging from one month, when the least aggressive scenario is employed, to 9 months,

when the most aggressive scenario is employed. Such delay in the second peak could enable increasing

hospital capacity, explorations for vaccinations and improved public health awareness.
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R0=3.15 1st Wave 2nd Wave
Peak (%) Peak Time Peak (%) Peak Time

No Intervention 3.52% 130th day – –

Ea
rl

y
Tr

ig
ge

r
(0

.0
01

) 4 weeks

0.0008% 23rd day

3.52% 168th day
8 weeks 3.50% 208th day
16 weeks 3.50% 289th day
24 weeks 3.48% 368th day

La
te

T r
ig

ge
r

(0
.5

)
4 weeks

0.30% 89th day

3.12% 172nd day
8 weeks 2.97% 216th day
16 weeks 2.93% 301st day
24 weeks 2.92% 387th day

V e
ry

la
te

Tr
ig

ge
r

(1
.0

)

4 weeks

0.57% 97th day

2.76% 174th day
8 weeks 2.54% 220th day
16 weeks 2.46% 312nd day
24 weeks 2.44% 404th day

Table 3: Total infection peak magnitude and peak timing with different school closure/ social distancing
scenarios - no closure as baseline, 4 weeks closure, 8 weeks closure, 16 weeks closure, and 24 weeks
closure.

4.3 Lower Transmission Scenario (R0 = 1.57)

For an outbreak with low transmission rate our simulations suggest the main benefit of social distancing,

similar to baseline scenario and high transmission scenario, is to buy time by delaying the peak as shown in

Table 4. However, for the low transmission scenario the magnitude of the peak, even with no intervention,

is small compared to the high and baseline transmission rates. Furthermore, the timing of the peak for

low transmission is much later than that of baseline transmission (i.e., 432nd day versus 226th day). In

fact, the hospital capacity might be already enough or could be increased until the peak time to cover the

0.39% peak magnitude. Overall, the closure length should depend on the extra capacity needed to handle

the patients during the peak.

4.4 Evaluating Closure/Reopening Decisions

Since our compartmental model is age structured, it allows us to look at each age group separately in ad-

dition to overall population. This feature enables us to explore the vulnerability of high risk population.

Therefore, here we compare cumulative attack rate (CAR), % deaths and peak hospitalizations in each
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R0=1.5 1st Wave 2nd Wave
Peak (%) Peak Time Peak (%) Peak Time

No Intervention 0.39% 432nd day – –
Ea

r l
y

Tr
ig

ge
r

(0
.0

01
) 4 weeks

0.0003% 19th day

0.38% 538th day
8 weeks *out of 600 range
16 weeks *out of 600 range
24 weeks *out of 600 range

La
te

T r
ig

ge
r

(0
.5

)

4 weeks

0.045% 260th day

0.34% 551st day
8 weeks *out of 600 range
16 weeks *out of 600 range
24 weeks *out of 600 range

V e
ry

la
te

Tr
ig

ge
r

(1
.0

)

4 weeks

0.08% 294th day

0.30% 556th day
8 weeks *out of 600 range
16 weeks *out of 600 range
24 weeks *out of 600 range

Table 4: Total infection peak magnitude and peak timing with different social distancing scenarios - no
closure as baseline, 4 weeks closure, 8 weeks closure, 16 weeks closure, and 24 weeks closure.

age group separately for all transmission scenarios. In Figure 7, we present % deaths for each age group

for different transmission scenario considered. We find that the burden of the pandemic on elderly popu-

lation is the worse, in all potential transmission scenario. Specifically, as the transmission rate increases,

cumulative death % for elderly population increases drastically. This suggests that for dense regions, high

risk groups should be given more attention.

On the other hand, early trigger and late trigger would result in different death tolls. We compare

different closure strategies for all levels of social distancing along with different trigger levels (See Ap-

pendix C and Table 5). Early trigger results in a relatively lower death rate in low transmission rate while

late trigger results in a larger death rate as shown in Table 5. This result is presented for 16 weeks of so-

cial distancing. However, for the base scenario and higher transmission rate scenario the expected deaths

would be lower when later trigger levels are used. Appendix C shows that till the 16 week of social dis-

tancing (1 week, 2 weeks, 3 weeks, 4 weeks and 8 weeks) in all transmission rates death % decreases as

we increase the trigger level.(See Appendix C and Tables 10, 11, 12, 13, 14, 15).

To control the rapidly growing outbreak across the US, public health officials and governments issued

shelter-in-place orders. Although social distancing and shelter-in-place orders help mitigate the outbreak,

it has significant economic and social costs. For example, in the US during the social distancing for
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Figure 7: Cumulative Deaths (%) for differentR0 values for each age group; social distancing is triggered
when cumulative prevalence is reached 0.5% for 8 weeks.
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R =1.57
R =2.10
R =3.15

R0 Trigger % Death(%) Peak Hospitalization Rate CAR CAR (+asymptomatic)
1.57 - 0.135 0.051 18.203 22.191
1.57 0.001 0.0003 0.0001 0.048 0.060
1.57 0.5 0.006 0.005 0.837 1.020
1.57 1.0 0.012 0.010 1.613 1.966
2.1 - 0.270 0.197 33.587 40.914
2.1 0.001 0.268 0.197 33.453 40.812
2.1 0.5 0.261 0.174 32.618 39.797
2.1 1.0 0.251 0.153 31.550 38.450
3.15 - 0.438 0.522 49.125 59.829
3.15 0.001 0.437 0.521 49.147 59.865
3.15 0.5 0.428 0.436 48.147 58.650
3.15 1.0 0.421 0.365 47.240 57.547

Table 5: Death rate, maximum hospitalization rate, Cumulative attack rate (CAR) and Cumulative attack
rate including the asymptomatic cases with 16 weeks of social distancing.

COVID-19, the unemployment rates have spiked. To identify possible reopening strategies, we evaluate

a two-phase reopening strategy. We compare this strategy to two basic alternatives: (1) No closures (i.e.,
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no social distancing) , (2) Immediate reopening (i.e., no phases).

For example, Figure 8 shows the three different scenarios: (1) no-closure, (2) Immediate reopening,

and (3) Reopening with Phases for an outbreak with medium growth rate. The no-closure strategy is

without any social distancing implemented, indicated by the red line. The immediate reopening strategy

is returning back to original contact rates for all age groups immediately after 8 weeks of closure shown by

the yellow line. The reopening with phases strategy, indicated by the blue line in Figure 8a, corresponds

to reopening with phases of length 8-weeks, i.e., after 8 weeks of social distancing an 8-week long phase 1

starts with increases the contact rate with certain rate. Phase 1 is followed by another 8-week long phase 2,

where contact rates are even more increased. Finally, after phase 2, original contact rates are restored (See

Appendix Table 8 for the corresponding contact rates). In Figure 8a, we observe that phased reopening

results in smaller outbreak sizes (i.e., smaller peak magnitude) than both the no-closure strategy and the

immediate reopening strategy. We have also evaluated reopening strategies with 24-week length phases.

Figure 8b shows that the burden of the pandemic is further mitigated using longer term phases.

Figure 8 shows the different scenarios for the base transmission scenario and two possible lengths

of reopening phases. We also show outbreaks with different growth rate and with other possible lengths

of reopening phases. For example, Figure 9 shows different possible lengths of reopening phases for an

outbreak with baseline transmission rate. For all lengths considered, the longer the phase duration is, the

more dampened the outbreak burden, as well as the further in time the peak is observed. For example, the

peak is reduced more than half with 24-week long phases instead of 4-week long phases. This presents a

trade-off between hospital capacity especially how much it could be enhanced with the delay of the peak

by social distancing and the size of the second peak as a result of the length of social distancing.

Similarly, Figure 10 shows different possible lengths of reopening phases for an outbreak with higher

transmission case. Again, for all lengths of social distancing considered, the longer the phase windows

the more the reduction in the epidemic size is achieved. Though, surprisingly, the observed peak time for

different reopening phases shifts marginally.

Finally, Figure 11 shows different possible duration of reopening phases for the pandemic with smaller

growth rate. Unsurprisingly, the overall outbreak is much smaller. Specific to this scenario, reopening
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phases with 16-week and 24-week length of closure delays the peak timing even beyond the next 600

days. Arguably, the healthcare system could absorb a reopening with the minimum length considered,

i.e., 4-weeks. In other words, we note that for regions with low transmission rate with enough hospital

capacity, reopening relatively sooner might be a feasible strategy.

Table 6 summarizes possible scenarios that minimizes expected Cumulative Attack Rate (CAR) and

expected total death rate under different transmission cases considered. For lower transmission rate, an

8-week closure results in a significantly bigger reduction in CAR as well as total death toll than 4-week

closure. For medium transmission rate, i.e., the baseline, we observe that a 24-week closure results in a

significantly higher reduction in CAR as well as total death toll. For higher transmission rate, although

a 24-week closure results in highest reduction in CAR as well as total death toll, the overall reduction

magnitudes are very small. Furthermore, the marginal reduction due to additional weeks to closure appear

to be negligible. To achieve reductions similar to other transmission rates longer closure scenarios should

be considered.

As for reopening, we also show that reopening with phases might be more crucial in dense populations

like New York where higher transmission is estimated. Especially, long time window reopening can

significantly reduce the burden of the outbreak; which makes it easier for the healthcare system. However,

in places where lower transmission rates are estimated, e.g., in Nebraska, reopening with phases will also

be useful but as critical as in New York. Even the shortest time-window reopening strategies considered

results with cases that the healthcare system can absorb. To summarize, one size fits all reopening policies

treating entire population as one is vulnerable to result in inefficiencies. Premature reopening strategies

may result in excessive overload in hospitalizations and ICU capacity creating a deadlock in healthcare

system. Reopening strategies with phases might provide a feasible middle ground to manage the trade-off

between improving the economy and giving more time to health officials to improve healthcare capacity

and develop vaccines.

Early reopening might result in increased number of infections and death tolls in the dense areas

and late reopening might result in economic loss in comparatively less dense areas. Each region should

consider its own hospital/ICU capacity and other limitations while easing social distancing. Our model
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(a) Reopening with phases of 8-week length

(b) Reopening with phases of 24-week length

Figure 8: Prevalence curve comparison in ”No closure”, ”Immediate reopening” and ”Reopening with
Phases” for medium growth rate. (a) 8 weeks reopening strategy, (b) 24 weeks reopening strategy
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Figure 9: Comparison of the different reopening strategies forR0: 2.1, 8 weeks of closure followed by (a)
4 weeks in Phase 1 and Phase 2, (b) 8 weeks in Phase 1 and Phase 2, (c) 16 weeks in Phase 1 and Phase
2 (d) 24 weeks in Phase 1 and Phase 2.
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Figure 10: Comparison of the different reopening strategies for R0: 3.15, 8 weeks of closure followed
by (a) 4 weeks in Phase 1 and Phase 2, (b) 8 weeks in Phase 1 and Phase 2, (c) 16 weeks in Phase 1 and
Phase 2 (d) 24 weeks in Phase 1 and Phase 2.

0 100 200 300 400 500 6000

1

2

3

4 Reopening
with 4 weeks in both Phases

Closure Ph
as

e 
1

Ph
as

e 
2

Open

(a) Phase 1 (4 weeks) and Phase 2 (4 weeks)

0 100 200 300 400 500 6000

1

2

3

4

Reopening
with 8 weeks in both Phases

Closure Phase 1 Phase 2 Open

(b) Phase 1 (8 weeks) and Phase 2 (8 weeks)

0 100 200 300 400 500 6000

1

2

3

4

Reopening
with 16 weeks in both Phases

Closure Phase 1 Phase 2 Open

(c) Phase 1 (16 weeks) and Phase 2 (16 weeks)

0 100 200 300 400 500 6000

1

2

3

4

Reopening
with 24 weeks in both Phases

Closure Phase 1 Phase 2 Open

(d) Phase 1 (24 weeks) and Phase 2 (24 weeks)

25

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139329doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139329


Figure 11: Comparison of the different reopening strategies for R0: 1.57, 8 weeks of closure followed
by (a) 4 weeks in Phase 1 and Phase 2, (b) 8 weeks in Phase 1 and Phase 2, (c) 16 weeks in Phase 1 and
Phase 2 (d) 24 weeks in Phase 1 and Phase 2.
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Objectives
Min. CAR Min. Death

Threshold Closure Reduction (%) Threshold Closure Reduction (%)
R0 = 1.57 1% 4 weeks -0.296 1% 4 weeks -0.326
R0 = 1.57 1% 8 weeks -0.779 1% 8 weeks -0.791
R0 = 1.57 *out of 600 day range
R0 = 1.57 *out of 600 day range
R0 = 2.10 1% 4 weeks -0.029 1% 4 weeks -0.030
R0 = 2.10 1% 8 weeks -0.040 1% 8 weeks -0.041
R0 = 2.10 1% 16 weeks -0.061 1% 16 weeks -0.070
R0 = 2.10 1% 24 weeks -0.749 1% 24 weeks -0.781
R0 = 3.15 1% 4 weeks -0.027 1% 4 weeks -0.027
R0 = 3.15 1% 8 weeks -0.033 1% 8 weeks -0.034
R0 = 3.15 1% 16 weeks -0.038 1% 16 weeks -0.037
R0 = 3.15 1% 24 weeks -0.041 1% 24 weeks -0.041

Table 6: Highlight of different scenarios (i.e., different closure triggers and lengths) for the three trans-
mission rates that minimizes both the cumulative attack rate (CAR) and total death toll, separately. The
bold rows indicate the scenarios for each transmission rate, that minimizes these objectives. Note that
independently minimizing CAR and minimizing total deaths result in the same scenarios.

provides a framework to consider the various trade-offs (e.g., the length of social distancing vs the number

of hospitalizations) at a local level.

5 Conclusions

In this paper, we present a compartmental model for COVID-19 outbreak dynamics with three age groups,

(i.e. kids, adults and elderly). We perform systematic and extensive simulations to evaluate social dis-

tancing and reopening scenarios for regions with different disease dynamics. Specifically, we find that the

effective growth rate of the disease is different for different regions in the US. For example, New York, i.e.,

high density urban population, has a higher transmission rate whereas Nebraska, i.e., low density more

rural population, has a lower transmission rate than the base case considered. Our simulations suggest

that depending on the transmission rate estimated, the magnitude and the timing of the peak cases would

vary across regions; thus the optimal mitigation policies may vary.

Furthermore, we present a trade-off between overall death toll of the outbreak and the enhanced hos-

pital capacity in a region by preparations during the delayed time of the outbreak peak. Specifically, we
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consider triggering social distancing early (0.001%), late (0.5%), or very late (1%). We find that early

trigger social distancing strategies result in small death tolls, however relatively larger second waves.

Conversely, late trigger social distancing strategies result in higher initial death tolls but relatively small

second waves This study show that policy makers should expect multiple waves of cases as a result of

the social distancing policies implemented when there are no vaccines available for mass immunization

and appropriate antiviral treatments. Social distancing policies only provide time for managing the cases

in the population until these pharmaceutical interventions become available. We have shown that with

higher transmission scenario it is better to use relatively later trigger with longer closure duration. Also

our results show that social distancing is comparatively more effective when there is lower transmission

in terms of the time gained for pharmaceutical interventions mentioned above.

Finally, we note that there is so much unknown about COVID-19, and our models include several

assumptions regarding parameter values as summarized in Table 1. Although, we expect the relative

comparisons of different strategies should still apply, the results of this work should be considered within

the limitations of the model parameters. Our results are based on parameters obtained mainly from CDC

reports and early estimates of the disease. As the parameters are refined, our projections will be improved.

The number of hospitalizations and deaths will also depend on how effectively we protect our high risk

populations. In the reopening scenarios, phase 1 and phase 2 are solely based on contact rate relaxations

in social distancing. Depending on the current situation, the restrictions and contact rates may have been

tightened to prevent hospitalizations for overwhelming local capacities. As a future work, we are planning

on controlling the spread proactively so that we could control the hospital capacity and actively use the

risk-based guidelines to manage the pandemic speed.
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A Epidemic Model Parameters

R0 = 1.57 R0 = 2.1 R0 = 3.15
kid - kid 0.3745 0.4993 0.7489

kid - adult 0.3256 0.4341 0.6512
kid - elderly 0.2791 0.3721 0.5581
adult - kid 0.2024 0.2699 0.4049

adult - adult 0.1760 0.2347 0.3521
adult - elderly 0.1508 0.2011 0.3016
elderly - kid 0.3745 0.4993 0.7489

elderly - adult 0.3256 0.4341 0.6511
elderly - elderly 0.2791 0.3721 0.5581

Table 7: Age specific transmission rate (β) for different reproduction numbers (R0).

Open Cond. Closed Cond. Phase 1 - Reopening Cond. Phase 2 - Reopening Cond.
kid - kid 0.63 0.13 0.38 0.50

kid - adult 0.31 0.19 0.25 0.28
kid - elderly 0.06 0.06 0.06 0.06
adult - kid 0.38 0.13 0.25 0.31

adult - adult 0.50 0.19 0.38 0.44
adult - elderly 0.13 0.06 0.06 0.13
elderly - kid 0.06 0.13 0.06 0.06

elderly - adult 0.63 0.31 0.47 0.53
elderly - elderly 0.31 0.31 0.31 0.31

Table 8: Age specific contact rates (cij) for open condition - no social distancing, closed condition - social
distancing, Reopening condition - Phase 1 and Reopening condition - Phase 2.

Hospitalization Rate Recovery Rate Mortality Rate
Kid 0.01 - 0.05 0.999 0.001

Adult 0.22 - 0.26 0.986 0.014
Elderly 0.60 - 0.80 0.935 0.065

Table 9: Age specific hospitalization rate, recovery rate and mortality rate.
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B Basic Reproduction Number R0i

The basic reproductive number (R0i) is define as the number of secondary cases an infectious individ-

ual on a particular age group i generates during the time period he/she is infectious on the susceptible

population of their age group at the beginning of an epidemic. The individuals that can potentially infect

the population in our model are infected individuals either symptomatic or asymptomatic in this case. To

compute the R0i we use the next generation operator Van den Driessche & Watmough (2002). Let the

vector F be the rate of new infections flowing to the latent compartment and the vector V to be the rate

of transfer of individuals out of the compartment that are able to transmit the disease. Then using our

system of equations we define:

F =



∑k
j=1 βijcij(IAi

(t)+ISi
(t))

N(t)
Si(t)

0

0

 and V =


(αξ1 + (1− α)ξ2)Ei(t)

−αξ1Ei(t) + (θ1 + θ2)IAi
(t)

−(1− α)ξ2Ei(t)− θ1IAi
(t) + (r + hi)ISi

(t)


In order to compute R0i let the gradient of F be define as F =

[
∂F

∂Ei(t)
∂F

∂IAi(t)
∂F

∂ISi(t)

]
and let the gradient

of V be define as V =
[

∂V
∂Ei(t)

∂V
∂IAi(t)

∂V
∂ISi(t)

]
then we get:

F =


0

∑k
j=1 βijcij

Si(0)
N(0)

∑k
j=1 βijcij

Si(0)
N(0)

0 0 0

0 0 0

 and V =


αξ1 + (1− α)ξ2 0 0

−αξ1 −θ1 − θ2 0

−(1− α)ξ2 −θ1 (r + hi)


Then R0i is the spectral radius of the second generation operator ρ(FV−1) also know as the dominant

eigenvalue of the matrix FV−1. Hence,

FV−1 =



∑k
j=1 βijcij [(1−α)ξ2(θ1+θ2)−αξ1(θ1+r+hi)]Si(0)

(αξ1+(1−α)ξ2)(θ1+θ2)(r+hi)N(0)
−r−θ1−hi

(θ1+θ2)(r+hi)
1

r+hi

0 0 0

0 0 0


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Then the dominant eigenvalue of FV−1 defined as ρ(FV−1) is the R0i which means that the basic repro-

ductive number for each age group i is:

R0i =

∑k
j=1 βijcij [(1− α)ξ2(θ1 + θ2)− αξ1(θ1 + r + hi)]Si(0)

(αξ1 + (1− α)ξ2)(θ1 + θ2)(r + hi)N(0)

C Comparison of different closure strategies (1 week, 2 weeks, 3

weeks, 4 weeks, 8 weeks and 24 weeks of social distancing)

R0 Trigger (%) Death (%) Peak Hospitalization (%) CAR CAR (+asymptomatic)
1.57 - 0.135 0.051 18.233 22.217
1.57 0.001 0.132 0.050 17.916 21.825
1.57 0.5 0.130 0.048 17.646 21.499
1.57 1.0 0.128 0.046 17.348 21.158
2.1 - 0.270 0.196 33.590 40.956
2.1 0.001 0.270 0.196 33.646 40.952
2.1 0.5 0.268 0.191 33.363 40.633
2.1 1.0 0.267 0.185 33.202 40.446
3.15 - 0.437 0.523 49.082 59.925
3.15 0.001 0.436 0.525 49.135 59.801
3.15 0.5 0.436 0.506 48.976 59.604
3.15 1.0 0.433 0.486 48.719 59.352

Table 10: Death rate, maximum hospitalization rate, Cumulative attack rate (CAR) and Cumulative attack
rate including the asymptomatic cases with 1 week of social distancing.
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R0 Trigger (%) Death (%) Peak Hospitalization (%) CAR CAR (+asymptomatic)
1.57 - 0.135 0.051 18.191 22.179
1.57 0.001 0.127 0.051 17.326 21.103
1.57 0.5 0.123 0.047 16.858 20.540
1.57 1.0 0.119 0.042 16.235 19.787
2.1 - 0.270 0.198 33.560 40.926
2.1 0.001 0.270 0.199 33.591 40.892
2.1 0.5 0.267 0.185 33.259 40.553
2.1 1.0 0.265 0.174 32.962 40.112
3.15 - 0.437 0.523 49.036 59.749
3.15 0.001 0.436 0.526 49.110 59.844
3.15 0.5 0.434 0.490 48.766 59.380
3.15 1.0 0.430 0.451 48.338 58.921

Table 11: Death rate, maximum hospitalization rate, Cumulative attack rate (CAR) and Cumulative attack
rate including the asymptomatic cases with 2 weeks of social distancing.

R0 Trigger (%) Death (%) Peak Hospitalization (%) CAR CAR (+asymptomatic)
1.57 - 0.135 0.051 18.219 22.226
1.57 0.001 0.119 0.050 16.375 19.975
1.57 0.5 0.113 0.045 15.563 18.964
1.57 1.0 0.106 0.040 14.710 17.945
2.1 - 0.270 0.198 33.580 40.886
2.1 0.001 0.270 0.197 33.613 40.932
2.1 0.5 0.266 0.181 33.113 40.350
2.1 1.0 0.262 0.167 32.637 39.777
3.15 - 0.437 0.518 49.106 59.807
3.15 0.001 0.437 0.522 49.194 59.895
3.15 0.5 0.432 0.472 48.593 59.224
3.15 1.0 0.428 0.431 48.096 58.555

Table 12: Death rate, maximum hospitalization rate, Cumulative attack rate (CAR) and Cumulative attack
rate including the asymptomatic cases with 3 weeks of social distancing.
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R0 Trigger (%) Death (%) Peak Hospitalization (%) CAR CAR (+asymptomatic)
1.57 - 0.135 0.050 18.222 22.188
1.57 0.001 0.108 0.050 15.008 18.266
1.57 0.5 0.098 0.045 13.696 16.724
1.57 1.0 0.091 0.039 12.821 15.606
2.1 - 0.270 0.196 33.592 40.957
2.1 0.001 0.270 0.196 33.575 40.935
2.1 0.5 0.266 0.179 33.098 40.269
2.1 1.0 0.262 0.163 32.611 39.688
3.15 - 0.437 0.524 49.156 59.853
3.15 0.001 0.436 0.523 49.059 59.800
3.15 0.5 0.431 0.463 48.428 59.070
3.15 1.0 0.425 0.413 47.832 58.281

Table 13: Death rate, maximum hospitalization rate, Cumulative attack rate (CAR) and Cumulative attack
rate including the asymptomatic cases with 4 weeks of social distancing.

R0 Trigger (%) Death (%) Peak Hospitalization (%) CAR CAR (+asymptomatic)
1.57 - 0.134 0.051 18.163 22.167
1.57 0.001 0.032 0.036 4.866 5.948
1.57 0.5 0.028 0.026 4.175 5.096
1.57 1.0 0.028 0.018 4.010 4.903
2.1 - 0.270 0.197 33.579 40.923
2.1 0.001 0.270 0.198 33.567 40.933
2.1 0.5 0.265 0.176 32.984 40.182
2.1 1.0 0.259 0.154 32.243 39.287
3.15 - 0.437 0.524 49.054 59.887
3.15 0.001 0.436 0.521 49.053 59.827
3.15 0.5 0.429 0.444 48.241 58.764
3.15 1.0 0.422 0.377 47.449 57.760

Table 14: Death rate, maximum hospitalization rate, Cumulative attack rate (CAR) and Cumulative attack
rate including the asymptomatic cases with 8 weeks of social distancing.
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R0 Trigger (%) Death (%) Peak Hospitalization (%) CAR CAR (+asymptomatic)
1.57 - 0.135 0.051 18.219 22.182
1.57 0.001 0.001 0.001 0.003 0.005
1.57 0.5 0.006 0.005 0.810 0.987
1.57 1.0 0.011 0.010 1.590 1.938
2.1 - 0.270 0.197 33.553 40.928
2.1 0.001 0.134 0.196 19.309 23.614
2.1 0.5 0.083 0.147 12.357 15.083
2.1 1.0 0.059 0.083 8.412 10.262
3.15 - 0.437 0.523 49.098 59.806
3.15 0.001 0.437 0.519 49.147 59.825
3.15 0.5 0.427 0.434 48.016 58.597
3.15 1.0 0.419 0.360 47.149 57.479

Table 15: Death rate, maximum hospitalization rate, Cumulative attack rate (CAR) and Cumulative attack
rate including the asymptomatic cases with 24 weeks of social distancing.

37

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.24.20139329doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.24.20139329

