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Abstract: Since mid-March 2020, global COVID-19 pandemic has experienced an 
exponential growth in process from sporadic to sudden outbreaks. This paper selects the 
8-day surge data of daily cases, death and recovery rates (March 19-26, 2020) from 18 
countries with severe pandemic situation to discuss the impact of 9 factors of both 
socioeconomic and natural on the pathogen outbreak. Moreover, the paper also elaborates 
analysis and comparison of relatively slow 4-week (February 1-29, 2020) data of China's 
surge cases to determine the relationship between social and natural factors and on the 
spread of pandemic, which provides an effective reference for delaying and controlling the 
pandemic development.  
 
Introduction 

Since March, the COVID-19 pandemic is spreading exponentially. Although many 
countries have adopted response strategies, the pandemic has so far spread in more than 
200 countries/territories/areas around the world, which infected 
more than one million people and caused tens of thousands of deaths [1]. 

The study of relevant factors on the sudden spread of pandemic has become the 
most direct means to effectively delay and control the outbreak. From the recently 
published literature, the first focus is on the impact of social factors, especially 
government control on the pandemic situation of COVID-19[2-18]; According to the data 
of pandemic situation, a model is developed to predict the effect of government 
intervention measures to slow down the pandemic situation and then how long these active 
intervention measures need to be maintained to control the situation [19-20]. When social 
factors such as government intervention have an effect, the impact of natural factors to 
slow down the pandemic and the degree of impact is begun to be concerned. Only few 
scholars have considered the impact on the COVID-19 pandemic from the perspective of 
natural factors, especially meteorological conditions, but there is no unified answer due to 
different experimental conditions [21-25]. At the same time in China, due to strict social 
interventions, the whole process from a small amount to an outbreak was greatly delayed 
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to 4 weeks in February 2020, which can be a special reference in delaying the surge of 
cases. Based on this, this paper selects the number of daily average cases from different 
countries across the globe for during the 8-day surge period and compare it with the 
4-week data of similar surge period in China to quantitatively evaluate the relationship 
between socioeconomic and natural factors with pandemic spread. Trying to reveal, social, 
natural or both factors play a major role in the global massive transmission and in guiding 
control of COVID-19, and further how to deal with it. 
 
Materials and methods 
Data collection and study plan 

The study assessed the real cause of the Novel Covid-19 spread both in China and 
across the globe. Moreover, the assessment plan is designed to consider both 
environmental and social factors and to draw their nexus with the spread out. Apart from 
that, some considerations how to retain the virus spread from further spreading are also 
taken into considerations. For experimental purpose, 30 cities of the China and 18 
countries across the globe are selected. Those countries and Chinese cities are selected in 
such a way to draw the relationship between environmental factors, i.e. temperature, 
humidity, aerosol level and vegetation, and social factors, i.e. population density, per 
capita income, and people to people contact. Besides, data from some countries out of the 
selected pool are also used for the model validation. Moreover, worldwide daily reported 
cases are also collected which are used for geostatistical analysis.    

As for as the data collection is concerned, various data sources are used to gather the 
relevant data used in the assessment of relevant study, as shown in Table S1. Besides, a 
retrospective population data is collected from the online data repositories for the 2019 
Novel Corona virus Visual Dashboard operated by the Johns Hopkins University Center 
for Systems Science and Engineering (JHU CSSE; 
https://github.com/CSSEGISandData/COVID-19), and worldometer 
https://www.worldometers.info/coronavirus/#countries. These online systems are 
providing real-time coverage of the COVID-19 outbreak all over the world including 
different states in China. The databases have obtained data from numbers of sources 
mentioned in their website. These are publicly available online data without an 
identification of infected patients directly obtained from public health authorities or by 
state media or WHO reports. We collected Chinese statistics concluding daily cases, daily 
death rate, daily recovery rate from DX Doctor COVID-19 Global Pandemic Real-time 
Report https://ncov.dxy.cn/ whose data sources are WHO, CDC and local media reports. 
 
Data compilation 

As the outbreak of the COVID-19 occurred around December 2019 and the first 
confirmed case had been identified in January 2020, and in this regards the Chinese 
authorities — about that unknown pneumonia detected in Wuhan, China—for the first 
time reported to WHO (World Health Organization) on the 31st December, 2019. Adding 
to this, WHO declared the outbreak as Public Health Emergency of International Concerns 
on 30thJanuary[26]. While keeping in view the prevailing situation around China and 
worldwide, the data is compiled in sections. Firstly, the collection of data is mainly 
focused on two different time periods, i.e. from Feb 09-29, 2020 and March 19-26, 2020 
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for both inside China and for the selected 14 countries, e.g. USA, Italy, Germany, France, 
Spain, Iran, Bahrain, Kuwait, Thailand, Malaysia, Singapore, South Korea, Japan, and 
Australia. The reason for selection of two different time periods is that during February 
the outbreak was on its peak around China but its impact was minimal in rest of other 
countries, while in March the case has been reversed. Moreover, during this period, due to 
well management of Chinese authorities and the development of healthcare system the 
spread has control to a large extent, and no such new cases has been recently reported. On 
top of that, globally the number of cases is increasing with each passing day. Secondly, to 
validate the disease spread model, the daily reported cases of countries, i.e. USA, 
Germany, Italy, Spain, UK, France, Switzerland, Belgium, and Netherlands from the date 
of first case till March 26 are collected. Finally, to draw the geographical picture of the 
COVID-19 pandemic, worldwide reported cases on a monthly bases, i.e. from virus 
outbreak till the end of March are also compiled.    

As for China, daily cases, daily death, daily recovery data of 23 provinces and 4 
municipalities from January 22 to March 31 were collected. The pandemic parameters of 
each capital cities are estimated based on Equation (1-3) for the lack of accurate data in 
each city. Assuming value “a” as the number of cumulative cases of one provincial capital 
city while “b” as that of corresponding province until now, then the time-series Daily 
Cases of each city from January 22 to March 31 can be estimated by multiplying p(case) 
to the time-series daily cases of corresponding province. The calculated dataset is shown 
in Table S5. 
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Statistical analysis 
In order to identify the relationship between selected factors, i.e. both social and 

natural factors with daily recorded infected cases, daily recorded deaths, and daily 
recorded recovery cases, a descriptive analysis was performed. In this regard, relationship 
among the selected factors and variables are drawn via regression analysis. Moreover, due 
to the lack of data for the spread of COVID-19 with respect to people to people contacts, a 
statistical virus infectious model is developed to show how the virus spread among the 
people with respect to time. For this purpose, a relationship is drawn between people 
contacts with respect to time and then taking into consideration the COVID-19 mortality 
rate from an infected patient to healthy people. On top of that, model is validated via 
comparing model results —of the multiplication rate of people contacts with respect to 
time —with the real time COVID-19 spread data for the selected countries as discussed in 
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the previous section.  Besides, that some scenarios are assumed for reducing people to 
people contact and finally its impact on the virus spreading rate.  

 
Assessment of social contacts with respect to COVID-19 

As the COVID-19 virus is very rapidly spreading across the globe in no time. With 
every single day, the number of virus infected patients is increasing, and the challenges for 
the governments to cope with it, are increasing too. Since its eruption from Wuhan China, 
and elsewhere in the world, public health experts are trying to gauge the potential of the 
COVID-19 by calculating the pathogens basic reproduction number. Since its eruption 
from Wuhan China, and elsewhere in the world, public health experts are trying to gauge 
the potential of the covid19 by calculating the pathogens basic reproduction number. In 
this regard, the introduced term RO 1.5 and 3.5 by the MRC Center for Global Infectious 
Disease Analysis at the Imperial College London, which pronounced as “R naught” is an 
estimate of the infection rate that how many healthy people one contagious person will 
infect.  As discussed earlier, from the MRC Center for Global Infectious Disease 
Analysis at the Imperial College London, the virus RO rate of 1.5 means that if an average 
of four people is infected with the COVID-19 virus, they would spread the virus among 6 
more people, and they further would spread among 9 more people. On top of that, with 
RO rate of 3.5, those 4 people on average would infect 14 more people followed by 49 
more people and so on so forth. Until the infection is contained or run its course, the 
disease will exponentially will increase [27]. So, the virus reproduction rate with respect 
to time is of great importance and needs careful considerations. At this point, if it is 
assumed that one infected person is in contact with a healthy person and after getting 
infected healthy person those further get infected other health people which is a continues 
process and make a chain of series in time domain. Keeping in view of that, a virus 
infectious model is developed, with an assumption to assess the virus reproductivity with 
time and how to minimize the reproduction rate.  

For simplicity, a sample case of population density of 512-person km-2 is taken as 
sample data. It is assumed that population is uniformly distributed over the geographical 
area, and each person on the geographical plane occupy the center of its occupied area. 
The distance between two neighboring persons on the geographical plane is the Euclidean 
distance between them, as shown through following formula: 
 
 

 

(4) 
 

 
It is further assumed that a normal healthy person can cover an average distance of 8km 
hr-1. Further, in the virus infectious model, it is assumed that each person can only move 
either in forward or sideways directions, and at each time step can only approach to a 
single person. Through some basic mathematical calculations, it calculated that an average 
distance between two neighboring people is 44.19 m, whereas the average distance 
covered @ of 8km hr-1 becomes 133m min-1. So, it is also assumed that prior to simulating 
the model, only a single person is COVID-19 contagious patient. All people will be in 
travelling at the same time step, in this way only a single person will come in contact to 
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other. Each person will be in contact with other for some predefined timing, e.g. initially 
for about 5 minutes, which means that after approaching the second person, the first 
person will spend 5 minutes with him then they will see off each other, and will heading 
towards the next geographical locations for another contact person and so on so forth. 
Initially, the modeling period is set for about 70 minutes, which means that people on their 
will can freely meet with each other during the stipulated time by following the set criteria 
as discussed before. At the end of the modeling time, following data is achieved which 
presented in the (Table S2). After successfully developing the virus infectious model, it is 
further analyzed for the virus reproductive rate.   
 
Development of scenarios for minimizing social contacts 

For such purpose, with the help of virus infectious model, different scenarios are 
taken into consideration for minimizing the people to people contact either to increasing 
the travelling time between two predefine people or to confine them at a place for longer 
period of time as per contact. In first scenario, people to people traveling time is increased 
from 30sec to 2 minutes and then to 20 minutes (Table S2), which means to create some 
hurdles against people moments and people to people contacts shouldn’t be as easy as it is 
during the normal social contacts, whereas in the second scenario, some predefine 
restrictions are imposed on the people moments, i.e. 10, 20, 50 and 75 % (Table S3)to 
asses it impact on the people contacts.   

 

Results and discussion 
Effect of socioeconomic factors at very-short explosion period in coping COVID-19 

Amongst the socioeconomic factors, population density and per capita income are 
tested with those selected variables from global countries. For the spread of virus outbreak 
through human contact, geography and population density may be the influencing factors 
for the transmission and, indirectly to human mortality [28], i.e. 1918-19 influenza 
pandemic which was one of the worst pandemics in the history with an estimated global 
mortality between 20 to 100 million [29-30]. While analyzing the spread of COVID-19 
pandemic with respect to population density, it is found that there is no such significant 
relationship with the number of daily cases, death and recovery rates (Fig. 1-a, b, c). Among 
those selected countries, the population density of Singapore and Bahrain are higher, but the 
number of cases being reported from these countries is lower than those with lower 
population densities. The reason may be because of strict government policies for reducing 
the people movements, which is especially taken in Singapore—the country to be approach 
either by airplanes or ships which can be the source of entering of virus into the country, e.g. 
the entry of influenza virus in India during the 1918-19 influenza pandemic through the port 
of Bombay on the west coast [30]. In this regard, Singapore has greatly restricted the 
entrance of foreigners into the country. On top of that, the Singapore government has also 
announced "Satellite City" policy to reduce population pressure to maximize the 
localization, and avoiding long-distance movement and congestion due to shopping, 
medical treatment, schooling, etc. This policy also reduces the spreading of virus among 
people to a large extent [31]. 
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Next, we tried to build the relationship between the economic conditions with virus 
spread. Obviously, economics can play a pivotal role in the burden of infectious diseases. 
Compared to poor countries, rich countries can spend more capital on immunizations, 
control of disease vectors, and treatments following infections, which allow people to live 
for longer period and having healthier lives. As we are living in a complex ecological 
world where we live with animals and other creatures, and nearly two-third of pathogens 
and parasites that infect humans involve interactions with animals as vectors or alternative 
hosts [32]. These include some of the worst chronic diseases, i.e. malaria, cholera, plague, 
etc. In this aspect, for the first time, the pathogen of COVID-19 casing infections in 
humans also spread from bats. Based on the above facts, and to assess the immunity level 
against the COVID-19 amongst the selected countries, we compared its impact between 
economically poor and rich countries, and to draw the relationship through comparing per 
capita income (USD) with number of daily cases, deaths and recoveries from infection. 
The results show (Fig. 1-b) that data points are very scattered, indicating number of daily 
cases has weak relationship with income rate. Even rich counties with better health 
facilities are more prone to get infected from the COVID-19. In the same way, the 
relationship between income rate with daily deaths and recovery (Fig. 2-e, f) is also very 
weak. The same pattern is observed here as in Fig. 1-b. As a whole, the correlation 
between the pandemic parameters and per capital income is weak.  

 
As for as the transmission route of infectious diseases are concerned, social contact 

pattern among individuals is a key ingredient in the realistic characterization and modeling 
of pandemics [33-35]. Since social networks are typically seen as a medium for the spread 
of disease and disease risk factors, but social relationships can also reduce the chance of 
chronic and potential infectious diseases [36]. On top of that, modeling of infectious 
diseases transmitted by the respirator or close-contact route such as, pandemic influenza is 
increasingly used to determine the impact of possible interventions [37].Quantification of 
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Fig.1. Effect of Socio-economic factors on the COVID-19 parameters, i.e. relationship between (a, b, c) 

population density, (d, e, f) per capita income vs. daily cases, death rate and recovery rate, respectively. 

Correlation accuracy evaluation is listed in Table S5. 
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human interactions relevant to the disease transmission, i.e. virus spread through social 
contacts is central to predict disease dynamics [38]. Yet the data, in this regard, for 
quantifying the social contact patterns relevant to the worldwide spread of COVID-19 
available. Keeping in view, we developed a simple modeling approach to draw people to 
people contacts and then the virus reproduction rate—with some predefined rates, i.e. RO 
1.5 and 3.5 (Table S3)— among those contacted people in time domain. From graphical 
results (Fig. 2-a), it shows an exponential behavior in the time domain. The time is divided 
in to four quarters. The graph behavior during the first two quarters is statically increasing, 
while in the third quarter the graph trend drastically changes which indicates in the 
increasingly replication of people contacts. Onward, considering the people to people 
contact model as virus infectious model (Fig. 2-b), both RO rates are smoothly increasing 
with the number of people contacts with time, but at the end of third quarter of the 
stipulated time, the RO rates started to replicate rapidly and the gap between all three lines 
is so obvious. That means, the third quarter is very crucial stage for starting the 
multiplication of the virus spreading within the community on a massive scale. Further, 
this graphical output is compared with the real time data collected from different countries 
for the validation procedure. From comparison between the modeling results and real time 
data (Fig. 2-c), it is obvious that virus spread is showing more or less the same pattern 
with respect to time. The time to multiplication on a massive rate, from real time data, 
starts in the end of third quarter of time for all countries except China, South Korea, and 
Iran, where the virus multiplied massively even before that period—third quarter of time. 
The reason for outbreak on such a massive scale in China and South Korea at such an 
early stage is due to the extensive people moment on the eve of New Year (lunar calendar) 
across the country. As for the Iran is concerned, the massive spread at such early stage is 
due to large gatherings of people for religious actives across the country, i.e. the Kum city 
which became the second epicenter after Wuhan China. 

So far, the fact is established that virus’s multiplication on a large scale starts 
during the third quarter of time, but here the most import concern is that how to reduce 
severity of the outbreak and to normalize the graph trend on a smooth path rather than 
rapid inclination. For such purpose, with the help of virus infectious model, different 
scenarios are taken into consideration for minimizing the people to people contact either to 
increasing the travelling time between the contact of two predefine people or to confine 
them at a place for a longer period of time as per contact.  
Scenario 1: In the first scenario, increasing the people to people traveling time from 30 
sec (the normal set time for modeling purpose) to 2 minutes and then to 20 minutes (Fig. 
2-d), it shows that from start till the 50th minute, the number of people to people contacts 
are the same, onward that exponential multiplication per unit time starts. On top of that, it 
is quite obvious that the delay in people contacts from 30 sec to 2 minutes and from 2 to 
20 minutes, the multiplication rate delays for about 10 and 150 minutes (in the beginning), 
and about 20 and 200 minutes (end), respectively. Which shows that with no restrictions 
on the people movements and social gatherings, virus spreading is exponentially increase 
in no time, whereas during the restrictions it takes more time to reach the same level of 
severity. The delay in timing will reduce pressure on the medical care facilities being 
available for people treatment, and infected people can be treated with some ease. This 
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method can greatly be applied to reduce the people physical contacts which eventually 
will have the impact on the number of viruses infected people.   
Scenario 2: In the second scenario, it is observed that restriction imposition reduces 
people to people contacts to a large extant. From Fig. 2-e, during normal conditions, 
people to people contacts multiplication starts onward 50th minute at rate of about 1000 
people per contact, whereas during 10, 20, 50 and 75% restrictions it is recorded as 880, 
781, 488 and 244 people contacts, respectively. Moreover, the reduction in people 
contacts increasing with respect to time, obvious gap between lines of the graph can be 
observed. The maximum number of reductions at the end of simulation observed for 75, 
50, 20, 10 and 0 % reduction in people contacts are about 3900, 12493, 14056, 7808, 
15600 people contacts (Table S4), respectively. Beyond this condition is the complete 
lockdown of masses, i.e. 100% restrictions mean complete ban on people to people contacts 
and travelling is minimized to zero level. Moreover, this condition has been seen in many 
cities of China including the Wuhan City (Fig. S2) soon after the outbreak of COVID-19, 
and China successful controlled over the situation. The outcome of those complete 
restriction in China with respect to no restriction or partial restrictions in various countries is 
shown in the (Fig. 2-f). 

Effect of natural factors at very-short explosion period in coping COVID-19 
Apart from socioeconomic factors, we also analyzed the relationship between 

natural factors, i.e. temperature; relative humidity, aerosol and vegetation cover with those 
selected variables globally.  

As for the impact of temperature is concerned, it shows (Fig. 3-a, e, i) significant 
negative correlation between daily cases, death and recovery rates, respectively. 
Moreover,  
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Fig. 2. Assessment of virus infection rate through people to people contact model (a) number of people contacts 
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temperature during the selected period amongst the selected countries varies between 5 to 
35 °C, and on contrary, countries with temperature above 15 °C having is no severe 
pandemic situation, indicating lower temperatures are more conducive for the survival and 
transmission of virus, which is consistent with the findings of Sajadi [39]. With the 
increase in temperatures in the northern hemisphere and with the implementation of 
control measures, the spread of the pandemic is expected to be controlled to a large extent. 
In contrast, in the southern hemisphere, more care needs to be taken in further spread of 
pandemic [40].  

Researches confirmed that respiratory infection increases during unusually cold 
and humid conditions [41]. Graphically, result (Fig.3-b) indicates no-significant 
relationship between daily cases and increasing humidity. Despite of having same relative 
humidity, USA, Iran, South Korea and Bahrain showing varied number of daily cases. 
Also, Thailand, Japan, Singapore, Malaysia (Asia), and Italy, Spain, Germany and France 
(Europe) with same relative humidity having different number of daily cases. In addition, 
similar trend (Fig. 3-f, j) between relative humidity with death and recovery rates are 
observed. Therefore, low humidity can play important role in suppressing the infection, 
but it doesn't necessarily mean that countries with high humidity have severe outbreaks.  
 

first case till March 27th, 2020.    
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Some people show symptoms of COVID-19 without any direct contact in 
COVID-19 infective which some scholars concluded for inseparable nature of virus spread 
from aerosol [42]. However, Fig. 3-c shows weak correlation between aerosol and daily 
cases. Singapore with low aerosol level (approaching 0 mm) shows the higher number of 
daily cases as compared to Bahrain (about 0.48 mm). Besides, Australia along-with most of 
the Asian countries except Iran shows low daily cases as compared to European countries 
including USA. In addition, similar relationships (Fig. 3-g, k) between aerosol and death 
and recovery rates are observed.  

On the part of vegetation cover, it shows non-significant relationships those 
comparing variables (Fig. 3-d, h, l). Except Japan, countries with higher vegetation cover 
showing higher number of cases, death and recover rates, and also with low to moderate 
vegetation cover, countries show varying response to those variables. 

China’s longer explosion period in coping COVID-19 

The COVID-19 explosion period comprises 8-days as compared to China of 
4-weeks. The pandemic growth in China is showing a linear trend as compared to globally. 
In contrast to global situation, the surge period hit China in February, whereas the situation 
is normalized to much extent in March. For comparison between surge periods in China and 
globally, February data is considered. From data, it shows that per capita income & 
population density have positive correlation with daily cases (Fig.4-a, d), negative & no 
correlation with death rate (Fig.4-b, e), and weak correlation with recovery rate (Fig.4-c, f), 
respectively. Moreover, about 80% and 90% cities with low per capita income (<10000 
USD) and low population density (< 1000 people/km2) showing better situation, i.e. average 
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Fig.3. Effect of Natural factors on the selected COVID-19 parameters, i.e. relationship between (a, e, i) 

temperature, (b, f, j) relative humidity, (c, g, k) aerosol, (d, h, l) vegetation vs. daily cases, death rate and 

recovery rate, respectively. Correlation accuracy evaluation is listed in Table S5. 
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daily cases < 2 (Fig.4-a, d), respectively. So, high per capita income doesn’t have any 
advantageous reflections. More gathering and less isolation offset the advantage of high 
medical level. Lack of awareness about isolation is attributed to culture and customs, but at 
present it is effectively adopted to minimize the pandemic and to reduce pressure on 
existing medical conditions. Besides, big cities with high population density had high 
mobility before enforcement of lockdown, especially on the eve of Spring Festival (Chinese 
New Year). In contrast, about 57% and 70 % cities with per capita income (<10000 
&>10000 USD) showing the average death rate of >0.05 and < 0.05% % (Fig.4-b), 
respectively. Similarly, about 67% and 60% cities with population density (<1000 &>1000 
people/km2) showing the average death rate of < 0.05 % (Fig.4-e), respectively. Lastly, each 
half cities with per capita income (<10000 &>10000 USD) showing average recovery rate > 
3.1% (Fig.4-c), respectively. Similarly, 55% and 70% cities with less population density 
(<1000 &>1000 people/km2) showing average recovery rate > 3.1 and < 3.1% (Fig.4-f), 
respectively.   

In addition, to compare the nexus between natural factors with those variables, it 
shows (Fig. 5-a) positive correlation with daily cases. The temperature of the selected 
cities during the selected period varies between -13 to 22 °C, but most of cities 
concentrated in between 1-15 °C. For the daily cases, about 56 % cities reporting less than 
2 cases whereas the remaining 46 % are between 2 to 12 cases per day. Therefore, the 
temperature effect on Corona virus cannot be ignored. Moreover, on the part of humidity, 
it shows strong positive correlation with the daily cases, but the number of daily cases 
with respect to humidity is not uniform, e.g. cities which are having the same relative 
humidity (such as 78%) conditions, having the varied spread rate. On the whole, China's 
increased pandemic amongst the selected cities is mainly concentrated with relative 
humidity of 57% to 78% (Fig.5-b).  
 
a 

 

b 

 

c 

 

d 

 

e 

 

f 

 
Fig.4. Effect of Socio-economic factors on the COVID-19 parameters, i.e. relationship between (a, b, c) 

population density, (d, e, f) per capita income vs. daily cases, death rate and recovery rate, respectively. 
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However, under the same conditions, there are some cities where the pandemic 

situation is growing slowly, so other natural factors also have to be considered, i.e. aerosol 
and vegetation cover. In February, the most severely affected citers are concentrated with 
the aerosol optical thickness of 0.2 to 0.4 mm (Fig.5-c), but there are no distinct 
relationships indicating that the virus could spread by aerosol. Moreover, the vegetation 
cover of a city affects the local temperature, which directly or indirectly affects the spread 
rate of the virus. The growth trend of the pandemic is mainly distributed between 1 to 30% 
& over 90% (Fig.5-d). Too high or too low vegetation coverage maybe inhibits the growth 
rate of the pandemic. 

Moreover, temperature shows relatively negative correlation with death rate, and 
the temperature of cities with high death rate (> 0.05%) is mainly concentrated between 
1-10 °C(Fig.2-e). However, the death rate keeps a positive correlation with humidity, and 
cities having high death rate (> 0.05%) are mainly concentrated between 57% to 78% 
relative humidity conditions (Fig.2-f). The aerosol optical thickness of cities with high 
death rate (> 0.05%) is mainly concentrated between 0.3 to 0.4 mm (Fig.2-g). The 
vegetation cover of cities with high death rate is mainly concentrated between 0-30 
(Fig.2-h). There is non-significant correlation between recovery rate and natural factors 
(Fig.2-i, j, k, l).  

 

Correlation accuracy evaluation is listed in Table S6. 
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Wuhan as special case in coping COVID-19 
Apart from analyzing countrywide spatial distribution, in depth assessment of the 

Wuhan also took place Fig. S2. The average daily cases reported from January 22 to 
March 31 are 723, with 501 prior to government control (January), 1524 during the surge 
period (February) and 22 in March. To slow down the pace of COVID-19 across the 
China is mainly attributed to large scale vaccination, testing, quarantine, lockdowns, 
stay-at-home policy and wearing masks for all people. However, our research findings 
show the temperature nexus with the development of outbreak. Generally, the increase in 
temperature in Wuhan shows inverse relationships with daily cases between February 
(2-10 �) and March (14 � and above) (Fig. S2a). Though temperature in not the main 
contributing factor to the pandemic, on the contrary, it will slow down the pace of rapid 
spread. However, the humid environment may help the pandemic spread. For example, 
during the surge period with average relative humidity (75% -90%) (Fig.S2b), Wuhan 
even reported low cases days, indicating that virus spread resulted to combined 
environmental factors. Also, during the surge period, visibility (0-10 km) shows the same 
impact as that of temperature, and with exceeding 12 km reported lesser number of cases 
(Fig. S2c). Finally, the atmospheric pressure exceeding 1020 hPa has exacerbated the 
virus spread, and about 92% of days in March had atmospheric pressure below 1020hpa 
(Fig. S2d). Therefore, the data of Wuhan (Jan. 22 to Mar. 31) shows high temperature, dry 
and good air quality, and low atmospheric pressure may helped to slow down the 
pandemic spread. 

 

As whole, our findings reveal that selected socioeconomic and natural factors are 
less influencing on the spread of COVID-19 pandemic. Although, comparing with global, 

   

d

 

h

 

l

 

Fig.5. Effect of Natural factors on the selected COVID-19 parameters, i.e. relationship between (a, e, i) 

temperature, (b, f, j) relative humidity, (c, g, k) aerosol, (d, h, l) vegetation vs. daily cases, death rate and 

recovery rate, respectively. Correlation accuracy evaluation is listed in Table S6. 
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these factors show stronger correlations (R2) with selected pandemic variables in China 
(Table 1). But still strict government interventions of social distancing and isolation policy 
in China has delayed the surge period for about 4-weeks as compared to 8-days global 
surge, and which could serve as example the world in coping COVID-19 successfully.  

 

Tab.1. Comparison of the correlation between pandemic variables with socioeconomic and natural factors for 

Global, Chinese cities, and Wuhan, respectively. 

 R2 Daily Cases (%) Death Rate (%) Recovery Rate (%) 

Global China Wuhan Global China Wuhan Global China Wuhan 

 

Social 

Per Capita Income 2.62 96 *** 3.45 88.60 *** 16.89 15.34 *** 

Population 

Density 

27.72 95 *** 37.30 88.58 *** 8.77 3.22 *** 

Time 96.89 

 

 

 

Natural 

Temperature 39.60 89 95 38.84 88.60 96 56.59 12 1.19 

Humidity 13.51 90 89 4.47 89.32 95 8.56 25 5.58 

Aerosol  0.01 88 *** 0.87 88.63 95 0.03 23 0.28 

Vegetation Cover 29.10 88 *** 27.31 88.64 95 39.86 6 0.24 

Visibility *** 29 95 *** *** *** *** *** *** 

Barometric 

Pressure 

*** 90 95 *** *** *** *** *** *** 

*** showing no data or analysis 
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