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ABSTRACT 

In times of outbreaks, an essential requirement for better monitoring is the evaluation of the 

number of undiagnosed infected individuals. An accurate estimate of this fraction is crucial 

for the assessment of the situation and the establishment of protective measures. In most 

current studies using epidemics models, the total number of infected is either approximated 

by the number of diagnosed individuals or is dependent on the model parameters and 

assumptions, which are often debated. We here study the relationship between the fraction 

of diagnosed infected out of all infected, and the fraction of infected with known 

contaminator out of all diagnosed infected. We show that those two are approximately the 

same in exponential models and across most models currently used in the study of epidemics, 

independently of the model parameters. As an application, we compute an estimate of the 

effective number of infected by the COVID-19 virus in Israel. 

 

Introduction 

In the absence of a vaccine or efficient treatment, the control of social contacts through large-

scale social distancing measures appears to be the most effective means of mitigation in a 

pandemic1—5. Determining the extent of those measures and their stringency requires an 

accurate evaluation of the total number of infected individuals along with the fraction of 

those individuals that have not yet been identified6—8. Many parameters can influence this 

evaluation. For instance, when a disease or a virus has a short incubation period and a 

relatively small spreading rate compared to its detection rate, the fraction of undiagnosed 
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infected is relatively small and the outbreak can be stopped or, at the least, contained, by 

isolating the infected individuals from the population9. In opposite cases, such as in the HIV, 

SARS, EBOV, or COVID-19 outbreaks, the fraction of undiagnosed infected can be substantial, 

and spreading can occur through them10—12. Modeling has emerged as an important tool in 

determining the effectiveness of those measures. It enables to gauge the potential for 

widespread contagion, cope with associated uncertainty, and inform its mitigation13—15.  

To estimate the total number of infected from observed infected, one needs to 

determine the Confirmed Cases Fraction (CCF), defined here as the fraction of confirmed 

(diagnosed) infected out of all infected (both diagnosed and undiagnosed). The reported 

number of carriers is heavily influenced by sampling biases. this number is usually incomplete 

due to the lack of testing capacities, and varying testing protocols16,17. We here propose that 

CCF can be estimated through the Known Source Fraction (KSF), defined as the fraction of 

diagnosed individuals with known contaminators. Epidemiological investigations, even on a 

limited sample of the confirmed infected individuals, can provide the value of KSF and 

therefore an estimation of CCF. In contrast, CCF can only be directly measured through wide 

scales surveys. Moreover, the total fraction of infected is usually low, requiring very large 

surveys to obtain accurate estimates of CCF. 

 

Results 

Two main types of predictive models were proposed for epidemics: macroscopic models, 

using aggregated data at the population scale and microscopic models, incorporating 

distributed information at the individual level18,19. Macroscopic models use stochastic 

processes or ODEs to predict the evolution of the outbreak on a global scale. The simplest and 

most common model is the SIR model20, where the population is divided into three categories: 

Susceptible (S), Infected (I), and Removed (R) (Fig. 1 upper scheme). N is the total population. 

In this model, propagation of the virus depends on the infection rate 𝛽 or the number of 

contacts between susceptible and infected individuals, and the detection rate 𝛾 that 

characterizes the time that infected individuals remain contagious. The Removed category 

can include individuals that survived the virus and are now immune or deceased patients. If 

stringent confinement is applied, this category can also simply be all diagnosed individuals 

since they are now removed from the system and can no longer contaminate other 
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individuals. To model KSF, we add a category to a stochastic realization of SIR and other 

models: Controlled (C) that represents the individuals among the Removed for whom the 

contaminator is known. In practice, each time a Susceptible gets infected, an Infected is 

chosen to be the contaminator and its identity is recorded. When an individual gets 

diagnosed, we check the identity of its contaminator and if this contaminator has already 

been diagnosed, we consider that the newly diagnosed individual is added to the Controlled 

category (see Fig. 1 for a description). We ignored false positives (diagnosed that are not 

infected) in the current analysis, as their number is consistently small in most epidemics21,22. 

We further discuss false negatives.  

 

Figure 1.  Models Description. (Upper plot) dynamics of the SIR model. A Susceptible 

individual can get infected with a rate proportional to βIS. An infected can get Removed from 

the system with a rate proportional to γI. (Middle plot) dynamics of the SEIR model. An 
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Exposed category is added. Exposed are not infecting but can become infecting with a 

probability of δ per exposed. (Lower plot) dynamics of the discrete-time simulations: First 

line, each Infected (red) can infect each susceptible (dark). If an infected is detected, it 

becomes quarantined and thus removed (green). Second line, If the contaminator of a 

diagnosed individual was already detected (i.e. it is green by the time the new infected is 

diagnosed), the newly diagnosed is considered controlled (blue) implying that its source of 

contamination is known. We define two ratios. CCF is the fraction of diagnosed individuals 

over the total number of infected (diagnosed and undiagnosed). KSF is the fraction of 

diagnosed individuals with a known source of contamination. 

 

The first order average dynamics of the SIRC model can be approximated by: 

 

= −𝛽𝑆  ,        = 𝛽𝑆 − 𝛾𝐼 ,       = 𝛾𝐼,       = 𝛾𝐼     and      𝑆 + 𝐼 + 𝑅 = 𝑁. 

 

Assuming that initially S = N, R = C = 0, and I is very small, and solving for small variations (see 

Methods for derivations) one gets that CCF = KSF.  

As mentioned above, the evaluation of CCF is most relevant when the incubation period 

is significant. For example, in the current COVID-19 pandemic, a lag of a few days has to be 

considered when observing infection patterns23. Therefore, we also extended the SEIR model 

to a SEIRC model. In this model, an Exposed (E) category is added that represents the infected 

individuals that carry the virus but still do not contaminate others (Fig. 1 middle scheme). 𝛿 

is the rate at which an Exposed becomes infectious and can now contaminate others. The 

dynamics equations are 

 

= −𝛽𝑆  ,  = 𝛽𝑆 − 𝛿𝐸,    = 𝛿𝐸 − 𝛾𝐼, 

= 𝛾𝐼,   = 𝛾𝐼   and   𝑆 + 𝐸 + 𝐼 + 𝑅 = 𝑁. 

 

With the same assumptions, we also get that, up to a short and small transient, CCF = KSF. 

This can be easily derived from the equations since KSF = C / R and CCF = R / (I + R). This 

equality holds for any model producing an exponential growth of I, R, and C. Moreover, in 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.09.20126318doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20126318
http://creativecommons.org/licenses/by-nc/4.0/


exponential growth models14 (as is observed in real-world at the early stage of most 

epidemics), we can add that, not only KSF and CCF are equal but also constant (see Methods). 

While there is a large number of existing epidemiological models for any pandemic, and 

specifically for the current COVID-19 pandemic, most current works are based on different 

versions of either the SIR or SEIR models23. More sophisticated versions of SEIR also 

incorporate migration to assess the efficiency of intercity restrictions24, or other categories 

such as asymptomatic individuals. Finally, models were refined with a time-dependent 

infection rate, age-dependent infection matrices25, or even quarantine.26,27. However, the 

vast majority of these models produce an initial exponential growth, and as such, we expect 

the equivalence between KSF and CCF to hold. 

 To validate this equivalence, we tested multiple models. In most realistic cases, the 

spread dynamics parameters or even the appropriate model are unknown. To show that the 

relationship between KSF and CCF is not model or parameter specific, we tested this 

relationship in multiple versions of SIR and SEIR models and different parameter 

configurations. We implemented SIR and SEIR models with homogenous and heterogeneous 

infection rates to reflect the fact that not all individuals have the same infection probability 

(as a function of age/gender/genetics or other factors). In each configuration, we ran 

simulations with different values of the parameters (Fig. 2c). One can see that, while both 

fractions vary in different models and parameters, however, an approximately linear 

relationship is consistent among all models. Besides, those two fractions rapidly achieve 

equilibrium (Fig. 2a, b). Moreover, in different realizations of the same model, most of the 

trajectory density is centered on a limited range of KSF and CCF values. Different initial 

conditions and stochastic realizations lead to similar solutions (Fig. 2b). As such, one can use 

KSF to estimate CCF without further knowledge of the model or its parameters. 

 At the practical level, since R and C can be obtained from measures of diagnosed 

infected and epidemiological investigations, KSF can be estimated in most cases. Then CCF 

and thus I can be determined from the relationship in Fig. 2c. To check the applicability of our 

methodology and since there is now a large amount of data available, we analyzed the 

number of confirmed cases for the COVID-19 in Israel every day. In parallel, we analyzed from 

the Israeli Ministry of Health the fraction of confirmed cases with a known source (KSF) (Fig. 

2d). We then estimated the total number of infected in Israel (Fig. 2e). 
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Figure 2. Results from simulations. (a) density plot of the two ratios over 1,000 simulations. 

(b) time evolution of the two ratios = 1 +   and = . We observe that not only the 

ratios achieve equilibrium, but they are never very far from it. (c) independently of the model 

used (SIR or SEIR, with homogeneous or heterogeneous infection rate), we observe a linear 

relationship between 1/CCF and 1/KSF. (d) distribution of source of infection per day in Israel. 

Data obtained from the Israeli Ministry of Health with the fraction of confirmed cases with a 

known source. We ignored in this analysis infected coming from abroad (deep gray). (e) the 

number of confirmed cases (Removed) in Israel was obtained from world data (full line)30. We 

used our method to estimate the total number of infected in Israel (Dashed line). 

 

Discussion 

Multiple models have been proposed to evaluate CCF using, for instance, the number of 

deceased patients18, but in all those studies, the results depend on the models used or on 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.06.09.20126318doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20126318
http://creativecommons.org/licenses/by-nc/4.0/


estimates of country-specific parameters, such as the age dependence or the Infection fatality 

rate. We have presented a method to estimate the fraction of undiagnosed infected from the 

fraction of infected with a known contaminator (out of all infected). While the first value is 

hard to measure in realistic situations, the second is often known. The KSF estimate suffers 

from multiple caveats with opposite effects. First, removed individuals are considered 

controlled only if their contaminators were already diagnosed when in fact it could be 

diagnosed even after. Therefore, even already removed individuals could be counted 

eventually as controlled. A second and more complex problem is that reported infected may 

be biased toward people who have been in contact with other reported infected. As such, the 

number of controlled individuals would be overestimated. A direct solution to these 

limitations would be to perform detailed epidemiological investigations on patients with 

clinical complications. Such patients typically do not suffer from sampling bias and detailed 

enough investigations will limit the number of missed controls. Such investigations can be 

performed on a limited sample28. Another limitation of our estimate is that epidemiological 

investigations are not perfect, as such, some controlled individuals might be missed. Similarly, 

some diagnosed may be assumed to be infected from a known source, when in fact they were 

infected by other sources. These limitations can be solved when detailed genetic information 

is available on the virus or disease. Note again that only a small fraction of the diagnosed 

individuals needs to be investigated in detail to obtain KSF. 

Other versions of the SIR models include a transition to a death state or an Asymptomatic 

category29. Since our Removed category includes all individuals that can no longer 

contaminate, it already accounts for the dead and the effect of quarantine. Our Infected 

category includes all undiagnosed individuals that can contaminate others therefore, it 

accounts for all carriers including the asymptomatic individuals. In the current COVID-19 

epidemic, migration has a minor effect on contamination24, so we did not include it. However, 

in the presence of significant migration, the model presented here will not be valid. For the 

sake of simplicity, we presented here a non-spatial model where all infected individuals can 

contaminate others disregarding proximity but, since the similarity between CCF and KSF is 

an inherent property of epidemiological models, we do not expect network and spatial 

features to change our conclusions. 

To summarize, as is the case for every model, multiple caveats can affect the validity of 

the model, most of those can be avoided in detailed and unbiased investigations on small 
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numbers of diagnosed (even a few tens). Thus, while we do not propose to use the observed 

relationship as is on biased published epidemiological data, the here reported relationship 

between KSF and CCF can be a critical tool to estimate the spread of diseases.

 

Methods 

SIR Model. The equations for the SIR model can be simplified by using 

𝑠 =   ,  𝑖 =  ,  𝑟 =  ,  𝑐 =  ,  𝑠 + 𝑖 + 𝑟 = 1. 

For simplifications, we assume that at inception s = 1, r = c = 0 and compute the first order 

small variations ∆ , ∆ , ∆ . ∆ (0) is the initial number of infected individuals. 
∆

= (𝛽 − 𝛾)∆  ,  ∆
= 𝛾∆  ,  ∆

=
∆

∆ ∆
𝛾∆  , 

∆ (𝑡) = ∆ (0)𝑒( ) , ∆ (𝑡) = ∆ (0)𝑒( )  , ∆ (𝑡) =
( )

∆ (0)𝑒( )  , 

𝐶𝐶𝐹 =  
∆

∆ ∆
= =

∆

∆
= 𝐾𝑆𝐹 . 

SEIR model. Using the same notations and assumptions for the SEIR model, one gets 
∆

= 𝛽∆ − 𝛿∆  , ∆
= 𝛿∆ − 𝛾∆  , ∆

= 𝛾∆  ,  ∆
=

∆

∆ ∆
𝛾∆  , 

∆ (𝑡) = ∆ (0)𝑒 , ∆ (𝑡) = ∆ (0)𝑒  , ∆ (𝑡) = ∆ (0)𝑒  ,  ∆ (𝑡) =

( )
∆ (0)𝑒  , 

𝐶𝐶𝐹 = 𝐾𝑆𝐹 = 1 +   ,  𝜆 =  
( ) ( ) ( ) . 

Simulations. We performed discrete stochastic simulations of both SIR and SEIR models for 

different infectivity distributions, where each event is explicitly modeled. The models studied 

either had an equal probability of getting infected for each susceptible, or a variable 

distribution with a scale-free distribution. We present here results with a slope of -2 in Fig. 2, 

but other slopes had similar results.  

Following is a technical description of the simulation framework. For the sake of 

efficiency, each event (e.g. infection, detection…) is represented as a tree to allow a rapid 

selection of the individual involved in the next event. Each leaf corresponds to an individual. 

The value of each internal node in the tree is the sum of the values in its direct descendants 
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in the tree. The tree root is the total probability of the event. This configuration enables us to 

access each individual in logarithmic time. We also keep track of the identity of the 

contaminator in a repertoire, in case of a contamination event.  

We compute the normalized probabilities of each event (based on the top node of the 

tree of this event) in the appropriate model. At each step, we choose an event based on these 

probabilities. For a contamination event, a Susceptible is chosen based on its (pre-defined) 

infectivity. The probability of such an event is the product of the total number of Infected, the 

total infection probability of Susceptible individuals, and the infection rate β. Following, an 

infection event, a Susceptible becomes Infected, the chosen Susceptible is determined by 

traversing the Susceptible tree. The tree is then updated along the entire path. We also 

randomly choose an Infected as the contaminator and record its leaf number in a repertoire.  

For a detection event, an individual is randomly chosen in the Infected tree with a 

probability proportional to the product of the total number of Infected and the detection rate 

γ. We then check if his/her contaminator has already been detected by observing if the leaf 

of the contaminator was already detected. In such a case, the number of Controlled is 

increased by 1. Once the total number of infected reaches one percent of the total population, 

we stop the simulation. The ratios in Fig. 2a, b are taken along the simulations. The results in 

Fig. 2c are at the last time point of the simulation. Simulations where the total number of 

Infected collapsed before reaching one percent of the total population were not incorporated 

in the results. 
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