Abstract
This work quantifies the impact of interventions to curtail mobility and social interactions in order to control the COVID-19 pandemic. We analyze the change in world-wide mobility at multiple spatio-temporal resolutions – county, state, country – using an anonymized aggregate mobility map that captures population flows between geographic cells of size 5 km2. We show that human mobility underwent an abrupt and significant change, partly in response to the interventions, resulting in 87% reduction of international travel and up to 75% reduction of domestic travel. Taking two very different countries sampled from the global spectrum, we observe a maximum reduction of 42% in mobility across different states of the United States (US), and a 68% reduction across the states of India between late March and late April. Since then, there has been an uptick in flows, with the US seeing 53% increase and India up to 38% increase with respect to flows seen during the lockdown. As we overlay this global map with epidemic incidence curves and dates of government interventions, we observe that as case counts rose, mobility fell – often before stay-at-home orders were issued. Further, in order to understand mixing within a region, we propose a new metric to quantify the effect of social distancing on the basis of mobility. We find that population mixing has decreased considerably as the pandemic has progressed and are able to measure this effect across the world. Finally, we carry out a counterfactual analysis of delaying the lockdown and show that a one week delay would have doubled the reported number of cases in the US and India. To our knowledge, this work is the first to model in near real-time, the interplay of human mobility, epidemic dynamics and public policies across multiple spatial resolutions and at a global scale.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was partially supported by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF DIBBS Grant ACI-1443054, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, US Centers for Disease Control and Prevention 75D30119C05935, DTRA subcontract/ARA S-D00189-15-TO-01-UVA, and a collaborative seed grant from the UVA Global Infectious Disease Institute.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Yes, if requested, we would provide the data employed in this manuscript