Development and implementation of a customised rapid syndromic diagnostic test for severe pneumonia

Vilas Navapurkar^{§1}, Josefin Bartholdson Scott^{§2}, Mailis Maes², Thomas P Hellyer^{3,4}, Ellen Higginson², Sally Forrest², Joana Pereira-Dias², Surendra Parmar⁵, Emma Heasman-Hunt⁵, Petra Polgarova¹, Jo Brown¹, Lissamma Titti¹, William PW Smith⁶, Jonathan Scott³, Anthony Rostron³, Matthew Routledge^{5,7}, David Sapsford⁸, M.Estée Török^{9,10}, Ronan McMullan¹¹ David A Enoch⁵, Vanessa Wong^{5,7}, The VAPrapid investigators, Martin D Curran⁵, Nicholas M Brown⁵ A John Simpson^{3,4}, Jurgen Herre¹², Gordon Dougan², Andrew Conway Morris^{1,13*}

1. John V Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom

2. Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom

3. Translational and Clinical Research Institute, Newcastle University, United Kingdom

4. Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom

5. Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, United Kingdom

6. Clinical School, University of Cambridge, Cambridge, United Kingdom

7. Infectious Diseases, Addenbrooke's Hospital, Cambridge, United Kingdom

8. Pharmacy Department, Addenbrooke's Hospital, Cambridge, United Kingdom

9. Department of Medicine, University of Cambridge

10. Department of Microbiology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom

11. Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom

12. Respiratory Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom

13. Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom

[§]The identified authors contributed equally to the manuscript.

*Address for correspondence Andrew Conway Morris Division of Anaesthesia Department of Medicine Level 4, Addenbrooke's Hospital Hills Road Cambridge CB2 0QQ Email: ac926@cam.ac.uk Phone: +44 (0)1223 217889

Word count: abstract 257, manuscript 2998

Running title: Rapid molecular diagnostic in severe pneumonia

Declarations

Ethical approval and consent to participate: Written informed consent was obtained from patients or their proxy decision maker for studies where samples were obtained, where participants regained capacity retrospective consent was sought. The samples for the retrospective study were obtained from the VAPrapid study (ref 15) which was approved by the England and Northern Ireland (13/LO/065) and Scotland (13/SS/0074) National Research Ethics Service committees and sponsored by Newcastle upon Tyne Hospitals NHS Foundation Trust.

The prospective study was approved by the Leeds East Research Ethics Committee (17/YH/0286) Cambridge University Hospitals NHS Foundation Trust was the sponsor. The assessment of routinely collected data from the comparator group received a consent waiver and was conducted under a protocol approved by the institutional review board (A095506).

Consent for publication: no individual patient data presented, not required

Availability of data: Microbial sequencing data is available from European Nucleotide Archive (ENA) with study accession numbers ERP111277, ERP111280, ERP112277, and ERP018622. Patient data is not publicly available for confidentiality reasons, but anonymised data can be obtained through contact with the corresponding author, subject to appropriate data sharing agreements being in place.

Competing interests: MDC is the inventor on a patent held by the Secretary of State for Health (UK Government) EP2788503, which covers some of the genetic sequences used in this study. VN is a founder, Director and shareholder in Cambridge Infection Diagnostics Ltd (CID Ltd) which is a commercial company aimed at developing molecular diagnostics in infection and antimicrobial and AMR stewardship. NMB, GD and ACM are members of the Scientific Advisory Board of Cambridge Infection Diagnostics Ltd (CID Ltd). All other authors declare no conflict of interest.

Funding

The study was funded by Addenbrooke's Charitable Trust and the NIHR Cambridge Biomedical Resource Centre (Grant 18135 to Professor Dougan). Dr Török is supported by a Clinician Scientist Fellowship (funded by the Academy of Medical Sciences and the Health Foundation) and by the NIHR Biomedical Research Centre. Dr Conway Morris was supported by a Clinical Research Career Development Fellowship from the Wellcome Trust at the time of the work (WT 2055214/Z/16/Z) and is currently supported by an MRC Clinician Scientist Fellowship (MR/V006118/1). The metagenomic sequencing was funded by the Wellcome Trust. VAPrapid was funded Health Innovation Challenge Fund(HICF-510-078;094949/Z/10/X), a parallel funding partnership between the UK Department of Health and Wellcome Trust. Professor Simpson is a National Institute for Health Research (NIHR) Senior Investigator. The views expressed in this publication are those of the authors and not necessarily those of the UK Department of Health or Wellcome Trust. The funders had no role in the analysis of data or decision to publish. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Acknowledgements

The VAPrapid investigators are Prof DF McAuley, Prof TS Walsh, Dr N Anderson, Dr S Singh, Prof P Dark, Dr A Roy, Prof GD Perkins, Ms L Emerson, Prof B Blackwood, Dr SE Wright, D K Kefala, Prof CM O'Kane, Dr SV Baudouin, Dr RL Patterson, Dr A Agus, Dr J Bannard-Smith, Dr NM Robbin, Prof ID Welters, Dr C Bassford, Dr B Yates, Dr C Spencer, Dr SK Laha, Dr J Hulme, Prof S Bonner, Dr V Linnett, Dr J Sonsken, Dr Van Den Broeck, Dr G Boschman, Mr DWJ Kennan, Dr AJ Allan, Mr G Phair, Ms J Parker and Dr SA Bowett.

The authors thank the consultant intensivists of the John V Farman Intensive Care Unit, Drs P Bradley, P Featherstone, S Ford, M Georgieva, A Johnston, R Mahroof, J Martin, J Preller, K Patel, C Summers, M Trivedi, J Varley, Pharmacist L Radford, the nursing and physiotherapy teams who managed the patients, and the patients and their families who consented to the study. We also thank Torsten Seemann for access to his Kraken database.

Keywords: Antimicrobial stewardship ,Critical Care, Molecular pathology, Pneumonia

VN -Conceptualisation, resources, investigation, writing-review and editing, project administration, funding acquisition, supervision.

JBS -resources, investigation, data curation, formal analysis, writing-original draft.

MM-resources, investigation, writing-review and editing.

TH-resources, investigation, writing-review and editing

EH-investigation, writing-review and editing.

SF-investigation, writing-review and editing.

JD-investigation, writing-review and editing.

SP-investigation, writing-review and editing.

EHH-investigation, writing-review and editing.

PP-investigation, data curation writing-review and editing.

JB-investigation, data curation writing-review and editing.

LT-investigation, data curation writing-review and editing.

WS- data curation writing-review and editing

JS- resources, investigation, writing-review and editing

AR- resources, investigation, writing-review and editing

MR-data curation writing-review and editing.

DS-data curation writing-review and editing.

MET-conceptualisation, investigation, data curation writing-review and editing

DE-investigation, writing-review and editing.

VW-formal analysis, investigation, data curation writing-review and editing.

MDC-Conceptualisation, resources, investigation, writing-review and editing, project administration, funding acquisition, supervision.

NB-Conceptualisation, resources, investigation, writing-review and editing, project administration, supervision. AJS- resources, investigation, writing-review and editing

JH-Conceptualisation, resources, investigation, writing-review and editing.

GD-Conceptualisation, resources, investigation, writing-review and editing, project administration, funding acquisition, supervision.

ACM-Conceptualisation, methodology, resources, investigation, writing-original draft, project administration, formal analysis, funding acquisition, supervision.

Contribution (CReDIT)

Abstract

Background

Microbial cultures for the diagnosis of pneumonia take several days to return a result, and are frequently negative, compromising antimicrobial stewardship. The objective of this study was to establish the performance of a syndromic molecular diagnostic approach, using a custom TaqMan array card (TAC) covering 52 respiratory pathogens, and assess its impact on antimicrobial prescribing.

Methods

The TAC was validated against a retrospective multi-centre cohort of broncho-alveolar lavage samples. The TAC was assessed prospectively in patients undergoing investigation for suspected pneumonia, with a comparator cohort formed of patients investigated when the TAC laboratory team were unavailable.

Co-primary outcomes were sensitivity compared to conventional microbiology and, for the prospective study, time to result. Metagenomic sequencing was performed to validate findings in prospective samples. Antibiotic free days (AFD) were compared between the study cohort and comparator group.

Results

128 stored samples were tested, with sensitivity of 97% (95% CI 88-100%). Prospectively 95 patients were tested by TAC, with 71 forming the comparator group. TAC returned results 51 hours (IQR 41-69 hours) faster than culture and with sensitivity of 92% (95% CI 83-98%) compared to conventional microbiology. 94% of organisms identified by sequencing were detected by TAC. There was a significant difference in the distribution of AFDs with more AFDs in the TAC group (p=0.02). TAC group were more likely to experience antimicrobial de-escalation (OR 2.9 (95%1.5-5.5).

Conclusions

Implementation of a syndromic molecular diagnostic approach to pneumonia led to faster results, with high sensitivity and impact on antibiotic prescribing.

Trial registration: The prospective study was registered with clinicaltrials.gov NCT03996330

1 Introduction

2	For many decades the diagnosis of infectious diseases has relied on a combination of clinical
3	assessment and microbiological culture. However, cultures are frequently negative ^{1,2} and
4	can take several days to return a result. ³ Optimising antimicrobial therapy can be challenging,
5	especially in patients who are at risk of multidrug resistant organisms. ² In critically ill
6	patients, this frequently results in the empiric use of broad-spectrum agents, with predictable
7	consequences for antimicrobial resistance and other forms of antimicrobial-related harm. ⁴
8	Conversely, failure to identify the causative organism can lead to inappropriate antimicrobial
9	therapy, which is associated with poor outcomes. ⁵
10	
11	Pneumonia amongst intubated and mechanically ventilated, critically ill patients can be
12	especially difficult to diagnose. ⁶ Most critically ill patients are systemically inflamed, ⁷
13	clinical examination is unreliable ⁸ and there are multiple causes of radiographic lung
14	infiltrates most of which are non-infectious. ^{9,10}
14	
14 15	infiltrates most of which are non-infectious. ^{9,10}
14 15 16	infiltrates most of which are non-infectious. ^{9,10} The development of host-based biomarkers for infection, such as C-reactive protein, ¹¹
14 15 16 17	infiltrates most of which are non-infectious. ^{9,10} The development of host-based biomarkers for infection, such as C-reactive protein, ¹¹ procalcitonin, ¹² and alveolar cytokine concentrations ¹³ have been advanced as useful
14 15 16 17 18	infiltrates most of which are non-infectious. ^{9,10} The development of host-based biomarkers for infection, such as C-reactive protein, ¹¹ procalcitonin, ¹² and alveolar cytokine concentrations ¹³ have been advanced as useful measures to help rationalise antimicrobial use. However, their utility in the diagnosis ^{11,12} and
14 15 16 17 18 19	infiltrates most of which are non-infectious. ^{9,10} The development of host-based biomarkers for infection, such as C-reactive protein, ¹¹ procalcitonin, ¹² and alveolar cytokine concentrations ¹³ have been advanced as useful measures to help rationalise antimicrobial use. However, their utility in the diagnosis ^{11,12} and
14 15 16 17 18 19 20	infiltrates most of which are non-infectious. ^{9,10} The development of host-based biomarkers for infection, such as C-reactive protein, ¹¹ procalcitonin, ¹² and alveolar cytokine concentrations ¹³ have been advanced as useful measures to help rationalise antimicrobial use. However, their utility in the diagnosis ^{11,12} and antimicrobial stewardship ^{14,15} of pneumonia has been challenged.
14 15 16 17 18 19 20 21	 infiltrates most of which are non-infectious.^{9,10} The development of host-based biomarkers for infection, such as C-reactive protein,¹¹ procalcitonin,¹² and alveolar cytokine concentrations¹³ have been advanced as useful measures to help rationalise antimicrobial use. However, their utility in the diagnosis^{11,12} and antimicrobial stewardship^{14,15} of pneumonia has been challenged. There is, therefore, a pressing need for rapid, sensitive, multi-pathogen-focussed diagnostic
14 15 16 17 18 19 20 21 21 22	 infiltrates most of which are non-infectious.^{9,10} The development of host-based biomarkers for infection, such as C-reactive protein,¹¹ procalcitonin,¹² and alveolar cytokine concentrations¹³ have been advanced as useful measures to help rationalise antimicrobial use. However, their utility in the diagnosis^{11,12} and antimicrobial stewardship^{14,15} of pneumonia has been challenged. There is, therefore, a pressing need for rapid, sensitive, multi-pathogen-focussed diagnostic tests for pneumonia¹⁶. TaqMan array cards (TAC) enable the conduct of multiple

- that a TAC with restricted coverage of common respiratory pathogens had a limited impact
- 27 on clinical decision making in critically ill patients.¹⁸ We therefore set out to develop and
- 28 implement a multi-pathogen array that would have broad applicability for severe pneumonia .

30 Materials and Methods

31

32 Card development

- 33 Organism selection was informed by review the literature concerning organisms found in
- 34 severe pneumonia ^{1,2,6,13,18,19}. Details of organism selection and the card layout are shown in
- 35 supplemental section (Supplemental Figure S1). The card covers 52 organisms (23 bacteria, 2
- 36 mycobacteria, 6 atypical bacteria, 5 fungi and 16 viruses). The study was undertaken prior to
- the COVID-19 pandemic starting in 2020.
- 38

39 Card validation

40 Technical validation

- 41 The card was initially validated against stored extracts, synthetic control plasmids and all
- 42 available External Quality Assessment (EQA) panels from Quality Control for Molecular
- 43 Diagnostics (<u>www.qcmd.org</u>) (supplemental results).
- 44

45 **Retrospective cohort validation**

- 46 A retrospective cohort validation was conducting using stored bronchoalveolar lavage (BAL)
- 47 samples obtained during the twenty four centre VAPrapid trial of a biomarker for the
- 48 diagnosis of ventilator-associated pneumonia.¹⁵ VAPrapid centres used semi-quantitative
- 49 microbiological culture as the reference standard.

- 51
- 52 **Prospective evaluation**
- 53 Setting

54 Patients were recruited from a 20-bedded teaching hospital Intensive Care Unit (ICU). The 55 unit is a mixed general medical-surgical unit which supports organ and haematology-56 oncology services. 57 58 Recruitment 59 Between February 2018 and August 2019, prospectively identified patients were eligible for 60 inclusion if they were receiving invasive mechanical ventilation, and if the treating intensive 61 care specialist was performing diagnostic bronchoscopy for suspected pneumonia. Written 62 consent was obtained from the patient or a proxy decision maker. The TAC laboratory team 63 were routinely unavailable from Friday 5pm to Monday 8am, and also sporadically 64 unavailable due to leave. Patients who were not included in the study because of a lack of 65 TAC laboratory team availability, and those from the month prior and month following the 66 study, formed the comparator group. 67 68 Sampling procedure 69 Bronchoscopy was undertaken in accordance with existing unit protocols (supplemental 70 methods). 71 TAC testing 72 Nucleic acids were extracted from BAL prior to loading on the TAC. The TAC was run by a 73 dedicated laboratory team who did not undertake the conventional PCR or cultures, with 74 blinding also assured by the results of the TAC being obtained before those from

conventional microbiology. Full details of the TAC process are included in the supplementalsection.

77

79 Conventional microbiological testing

80	BAL samples were processed according to the UK Standards for Microbiology Investigations
81	(SMI), ²⁰ with the results of microbiological semi-quantitative culture and conventional PCR
82	for respiratory viruses, herpesvirade and Pneumocystis jirovecii forming the reference
83	standard for the TAC (supplemental methods). As an experimental assay, the results of the
84	TAC were not included in the laboratory information system, blinding the assessors of the
85	reference standard to the TAC results.
86	
87	Return of results to clinical team
88	Following review by a consultant clinical scientist, results were returned to the ICU team.
89	Clinical microbiology advice was available 24 hours/day, and patients underwent weekday
90	daily combined ICU-Microbiology multi-disciplinary review in keeping with existing unit
91	practice (weekend microbiology input was available on request). The study did not mandate
92	any course of action by the treating clinical team. Conventional microbiology results were
93	returned to clinicians via the electronic health record; however in practice these were returned
94	after the TAC results.

95

96 Outcome measures

97 The co-primary outcome measures were sensitivity, using conventional microbiology as the 98 reference standard and time to result compared to conventional microbial culture. Time to 99 result for microbial culture was taken as time from completion of lavage to first organism 100 identification, or confirmation of negative growth if no organisms were detected. 101

102 Secondary outcome measures were sensitivity compared to metagenomic microbial

sequencing, time to result compared to conventional PCR, days alive and free of antibiotics

104	(antibiotic-free days, AFDs) in seven and twenty-eight days following lavage and change in
105	antibiotic therapy in the seven days following lavage. Qualitative assessment of whether
106	TAC results impacted on antimicrobial change was assessed by clinical notes review by a
107	member of the study team who was not involved in the decision-making process (VW).
108	
109	Statistical analysis
110	The difference in median time to result for conventional culture and TAC was assessed by
111	Wilcoxon's matched-pairs test. Where conventional PCR failed, or where the lab did not test
112	for the organism, the corresponding tests from the TAC were removed from calculation of
113	diagnostic performance. Indeterminate cultures ('mixed upper respiratory tract flora') were
114	considered negative. A sensitivity analysis, coding failed conventional PCR and organisms
115	not tested 'negative' was also undertaken. Comparisons of distribution of antibiotic free days
116	between TAC and comparator groups was by Mann-Whitney U test, differences in
117	proportions of escalation and de-escalation decisions were assessed by Chi ² test. Analyses
118	were conducted using Prism v9.1 (Graphpad Inc, La Jolla, CA).
119	
120	
121	Study size
122	A planned prospective study size of 100 patients evaluated by TAC was selected to balance
123	cost against including sufficient numbers to be able to make a judgement on the card's
124	clinical utility. As the co-primary endpoint was time to result in a real-world setting that had
125	not been previously evaluated, we did not undertake a formal power calculation.
126	
127	
128	

129 Ethical and regulatory approvals and funding

- 130 The prospective study was approved by the Leeds East Research Ethics Committee
- 131 (17/YH/0286) Cambridge University Hospitals NHS Foundation Trust was the sponsor, and
- 132 registered with clinicaltrials.gov (NCT03996330). The assessment of routinely collected data
- 133 from the comparator group received a consent waiver and was conducted under a protocol
- approved by the institutional review board (A095506). VAPrapid¹⁵ was approved by the
- 135 England and Northern Ireland (13/LO/065) and Scotland (13/SS/0074) National Research
- 136 Ethics Service committees and sponsored by Newcastle upon Tyne Hospitals NHS
- 137 Foundation Trust.
- 138

139 **Results**

140 Technical validation

141 Following initial validation against stored DNA extracts and synthetic plasmids, all

142 microorganisms from the Quality Control for Molecular Diagnostics 2018 Sepsis EQA Pilot

143 Study were successfully detected (supplemental Table S1).

144

145 **Retrospective cohort validation**

146 The card was tested against the stored samples available from the VAPrapid study 15 . 128

samples with semi-quantitative culture results were available for analysis. 57 organisms were

grown at or above 10^4 colony forming units(CFU)/ml^{20,21}, with 55 detected by TAC (Table

149 1). The TAC detected a further 295 organisms, including 64 viruses and one atypical

150 organism which the recruiting centres did not test for. Excluding tests for organisms not

detectable by culture, 3425 tests on TAC were negative. Sensitivity was 97% (95% CI 88-

- 152 100%) and specificity 94% (95% CI 93-95%) (Supplemental Table S2). Organisms detected
- by both TAC and culture had a median cycles to threshold (Ct) value on the TAC of 29 (IQR

154 26-32 range 20-35) whilst those detected by TAC alone had a median Ct value of 33 (IQR

155 30-35 range 20-40) (supplemental Figure S2).

156

157 **Prospective evaluation**

158	Between January	y 2018 and Sep	ptember 2019	166 ventilated	patients were	investigated for

- pneumonia by bronchoscopy, 95 were tested by TAC. Five patients were tested twice by
- 160 TAC, having suffered a subsequent respiratory deterioration, in total 100 TACs were run. 71
- 161 patients formed the comparator group (Figure 1). Although inclusion criteria were pragmatic
- and only required senior clinician suspicion of pneumonia, 92% of cases met full ECDC
- 163 criteria for clinical pneumonia (Supplemental Figure S3). Of the eight cases not meeting full
- 164 ECDC criteria, one lacked a formal radiological report of infiltrates, one had no clinical signs
- 165 of pneumonia, five had no signs of systemic inflammation and one patient lacked both
- 166 radiological and systemic inflammation. Table 2 shows participant characteristics of the study
- 167 population and comparator group.

168

169 Time to result

170 The median difference in time to result between TAC and conventional culture was 51 hours

171 (IQR 41-69 hours p<0.0001 by Wilcoxon matched pairs), the TAC also returned results more

172 rapidly than conventional PCR in almost all cases (Supplemental Figure S4). The minimum

- 173 TAC time to return was 4 hours, with median time to result 22 hours (IQR 7-24 hours), most
- 174 of the delays arose from samples taken outside routine working hours, whilst additional
- delays with conventional PCR results largely reflect laboratory workflow and batching of
- samples.

- 178
- 179
- 180 Comparison of organisms detected by TAC compared to conventional microbiology

181	178 organisms were identified from 100 samples on the TAC (Table 3, Supplemental Table
182	S3). Conventional microbiology detected 66 organisms, with 61 detected by TAC. 27
183	patients had failure of internal control for one or more conventional PCR assays, covering 93
184	organisms. There were no TAC internal control failures and none of the organisms covered
185	by the failed assays were detected on TAC or sequencing (Table 3). Sensitivity and
186	specificity were 92% (95% CI 83-98%) and 97% (95% CI 97-98%) respectively
187	(Supplemental Table S4). Including failed and absent reference standards as 'negative' had
188	minimal effect on diagnostic performance (Supplemental Table S5)
189	
190	Comparison by sequencing
191	98 samples were available for sequencing. Metagenomic sequencing revealed 107 organisms,
192	100 of which were also detected by TAC (Tables 3, S3).
193	
194	Concerning the 10 organisms detected by conventional microbiology or sequencing but
195	missed by TAC, one organism, that was positive by both culture and sequencing albeit in
196	different patients, was Citrobacter freundii, for which we did not have a sequence on the
197	card. A further five pathogens were detected by sequencing (Staphylococcus aureus,
198	Legionella spp., and Staphylococcus epidermidis) or both culture and sequencing (two E.
199	faecium). Although these five were detected by TAC, they did not pass the internal quality
200	control standards required for reporting and were considered 'negative' results. The
201	remaining three organisms, two rhinovirus by conventional PCR and one Staphylococcus spp.
202	by sequencing, were not detected by TAC at all.
203	One case of Aspergillus fumigatus was detected on the TAC, and although no moulds were
204	cultured, the lavage galactomannan antigen test was highly positive (5.92 optical density

205 index (ODI), laboratory reference range <0.5 ODI).

206

207 Quantitation

- 208 Twenty-five organisms were grown on conventional culture at $\geq 10^4$ CFU/ml, the
- 209 conventional cut off for quantitative culture of lavage.^{20, 21} The median cycles to threshold
- 210 (Ct) for these organisms on the TAC was 27 (IQR 24-29, range 20-33). In contrast, culturable
- organisms detected on TAC but not on culture had a median Ct of 32 (IQR 30-34, range 22-
- 212 38) (supplemental Figure S2).

213

214 Antibiotic prescribing

215 Patients in the TAC and comparator cohorts had similar severity of illness, severity of

216 respiratory failure and demographic features (Table 2). Patients managed with the TAC had a

significantly different distribution of AFDs to the comparator group in the 7 days following

bronchoscopy (p=0.02 by Mann-Whitney U-test), with more AFDs in the TAC cohort. This

difference did not retain significance over 28 days (Supplemental Figure S5). Overall 72

220 (76%) of TAC patients had their antibiotics changed in the seven days following

bronchoscopy, with a total of 116 changes made (Table 4). In the comparator group 50

222 (70%) of patients experienced a total of 65 changes. Whilst 63% of decisions in the TAC

223 group led to de-escalation, only 37% of decisions in the comparator group were de-escalation

decisions (OR 2.9 (95% CI 1.5-5.5) p=0.008 by Chi-squared). Decisions which were judged

to be related to the TAC result were weighted further towards de-escalation (73% of all TAC-

related changes, Table 4). 11 (30%) of escalations in the TAC group were judged to have

227 been targeted escalations in response to TAC results. In a further six cases negative TAC

228 results prompted investigation for alternative diagnoses.

- 229
- 230

231 Discussion

We demonstrate that a customised molecular diagnostic, designed to meet the needs of a specific clinical setting produced accurate results in a clinically important time-frame and was associated with an increase in antibiotic-free days relative to the comparator group in the week following investigation. Diagnostic performance was similar when assessed in stored samples from multiple centres, indicating a generalisable result.

237

238 Molecular diagnostic platforms for respiratory infection syndromes have, until recently, largely focussed on viral pathogens.¹⁶ However, the need to optimise antimicrobial therapy 239 240 whilst limiting the over-use of these drugs has led to repeated calls for bacterial-focussed diagnostics.^{16,22} TACs have been previously reported for use in pneumonia.^{18,23, 24} However, 241 apart from our previous report¹⁸ that demonstrated limited clinical impact due to restricted 242 243 organism coverage, none of the other reports have included ventilated patients and were 244 restricted to retrospective analysis of stored samples. Commercial multiple-pathogen arrays 245 that include respiratory bacteria have recently become available. However, most of reports of 246 their use in ventilated patients remain limited to describing diagnostic performance, 247 reporting 'potential' to change antimicrobial therapy rather than impact on clinical practice^{3,25,26}. Concerns have been raised about the risks of over-treatment from molecular 248 249 diagnostics^{16,27,28}, whilst conversely promising tests with the potential to change therapy have not always proven this in clinical practice^{15,18}. These commercially available assays lack the 250 251 broad coverage and customisability of the TAC, with consistent concerns raised around limited organism coverage adversely impacting treatment decisions.^{3,18,25,26} 252 253 254 Although there is now widespread acceptance of the presence of a respiratory

255 microbiome,^{29,30} the lungs of ventilated patients present a challenge to highly sensitive

256	molecular diagnostics ¹⁶ . The proximal respiratory tract of ventilated patients becomes rapidly
257	colonised with predominantly Gram negative organisms. ^{31,32} This can occur in the absence of
258	infection, and there is a risk that highly sensitive techniques will detect colonising organisms,
259	driving unintended increases in antimicrobial use. ¹⁶ The use of protected lower airway
260	specimens, with growth $\geq 10^4$ CFU/ml for BAL have been used to distinguish infection from
261	colonisation. ^{21,33} We adapted this approach in this study, using the quasi-quantitative Ct
262	value provided by RT-PCR and testing protected bronchoalveolar samples. Using the
263	comparison of the Ct values of organisms detected by culture and those detected by TAC
264	without culture, we suggest that a Ct threshold of 32 be used to identify infecting rather than
265	colonising organism (supplemental Figures S2, S6).
266	
267	One of the problems that has beset bacterial diagnostics studies has been the absence of a
268	'gold standard' against which the candidate can be assessed, ^{16,22,34} as conventional culture is
269	imperfect. For this study we used a combination of conventional microbiology (culture and
270	viral PCR) and metagenomic sequencing. 10 organisms identified by conventional
271	microbiology or sequencing were not `detected by the TAC. Overall the TAC detected more
272	organisms than either culture or sequencing, reflecting the higher sensitivity of qPCR.
273	However, without a perfect validation method we cannot be certain these were not 'false
274	positives' and have counted them as such for the calculation of specificity. The sequencing
275	and culture results give clinicians considerable confidence in the results provided.
276	
277	The selection of organisms targeted on the card was crucial, and informed by our previous
278	experience where omission of key organisms significantly limited the impact of a similar
279	card. ¹⁸ Given the case mix of our unit, with a high proportion of immunosuppressed patients,
280	we opted to include a number of low pathogenicity organisms, (i.e. coagulase-negative

281	Staphylococci(CNS), Enterococci and Candida albicans), as well as Herpesviridae, which
282	we routinely tested for. The detection of these organisms can be challenging to interpret ³⁵ ,
283	given that many critically ill patients have a degree of immunoparesis, even if not classically
284	immunosuppressed, ^{6,36} their significance remains uncertain. As our laboratory routinely
285	reported these organisms on conventional microbiology the clinical team were already
286	confronted with this issue. The inclusion of CNS also aids with the interpretation of the
287	detection of the mecA gene, which is commonly carried by these organisms, thus helping
288	identify MRSA. The lack of CNS on commercial cards has been noted to impair
289	interpretation of mecA in clinical samples ^{25,37} . However the ready customisability of the
290	TAC would allow units to remove such organisms, as well as add other organisms of local
291	significance as we have done subsequently during the COVID-19 pandemic ^{38} .
292	
293	The use of a contemporaneous comparator cohort allowed for comparisons of antibiotic
294	prescribing within the context of the implementation of the TAC and any heightened
295	awareness of antimicrobial stewardship it may have engendered. Despite this, the comparator
296	cohort saw a greater proportion of escalation decisions in the week following lavage, and had
297	fewer antibiotic-free days. The lack of difference in AFDs at day 28 is unsurprising, as
298	suspected pneumonia is only one of multiple drivers of antibiotic use. Although the
299	comparator and TAC groups had similar characteristics, our observational design means that
300	we cannot be certain that unmeasured confounders did not contribute to the effects seen.
301	
302	This study established a molecular diagnostic test to meet the needs of a particular intensive
303	care unit, and implemented it in the context of a well-established antimicrobial stewardship
304	program. Although the demonstration of similar performance on stored samples from
305	multiple centres is reassuring, the impact on antimicrobial stewardship is likely to be context-

306	dependent. Replication in additional settings with distinct approaches to stewardship is
307	required before we can be certain of its external generalisability, whilst evaluation in a
308	randomised, controlled trial would help reduce any bias that may have arisen from our
309	observational study design. We believe this approach represents a promising new approach to
310	the management of severe pneumonia.
311 312 313 314	References 1. Cilloniz C, Ewig S, Polverino E, et al. Microbial aetiology of community- acquired pneumonia and its relation to severity. <i>Thorax</i> . 2011;66(4):340-346.
315 316	2. Vincent J-L, Sakr Y, Singer M, et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. <i>JAMA</i> . 2020;323(15):1478–10.
317 318 319 320	3. Gadsby NJ, McHugh MP, Forbes C, et al. Comparison of Unyvero P55 Pneumonia Cartridge, in-house PCR and culture for the identification of respiratory pathogens and antibiotic resistance in bronchoalveolar lavage fluids in the critical care setting. <i>Eur J Clin Microbiol Infect Dis</i> . 2019;38(6):1171 178.
321 322 323	4. Arulkumaran N, Routledge M, Schlebusch S, Lipman J, Morris AC. Antimicrobial-associated harm in critical care: a narrative review. <i>Intensive Care Med</i> . January 2020:1-11.
324 325 326	5. Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical Importance of Delays in the Initiation of Appropriate Antibiotic Treatment for Ventilator-Associated Pneumonia. <i>Chest</i> 2002;122(1):262-268.
327 328	6. Morris AC. Management of pneumonia in intensive care. <i>J Emerg Crit Care Med</i> . 2018;2:101-101.
329 330 331	7. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The Natural History of the Systemic Inflammatory Response Syndrome (SIRS). <i>JAMA</i> . 1995;273(2):117–5.
332 333 334 335	8. Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby J-J. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. <i>Anesthesiology</i> . 2004;100(1):9-15.
336 337 338	9. Meduri GU, Mauldin GL, Wunderink RG, et al. Causes of fever and pulmonary densities in patients with clinical manifestations of ventilator-associated pneumonia. <i>Chest.</i> 1994;106(1):221-235.
339 340 341	10. Conway Morris A, Kefala K, Wilkinson TS, et al. Diagnostic importance of pulmonary interleukin-1{beta} and interleukin-8 in ventilator-associated pneumonia. <i>Thorax.</i> 2010;65(3):201-207.

342 343 344	11. Povoa P, Coelho L, Almeida E, et al. C-reactive protein as a marker of ventilator-associated pneumonia resolution: a pilot study. <i>Eur Resp J</i> . 2005;25(5):804-812.
345 346 347 348	12. Pfister R, Kochanek M, Leygeber T, et al. Procalcitonin for diagnosis of bacterial pneumonia in critically ill patients during 2009 H1N1 influenza pandemic: a prospective cohort study, systematic review and individual patient data meta-analysis. <i>Critical Care</i> . 2014;18(2):1-11.
349 350 351	13. Hellyer TP, Morris AC, Mcauley DF, et al. Diagnostic accuracy of pulmonary host inflammatory mediators in the exclusion of ventilator-acquired pneumonia. <i>Thorax.</i> 2015;70(1):41-47.
352 353 354	14. Huang DT, Yealy DM, Filbin MR, et al. Procalcitonin-Guided Use of Antibiotics for Lower Respiratory Tract Infection. <i>N Engl J Med.</i> 2018;379(3):236-249.
355 356 357	15. Hellyer TP, McAuley DF, Walsh TS, et al. Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2): a randomised controlled trial and process evaluation. <i>Lancet Resp Med.</i> December 2019:1-10.
358 359 360	16. Hanson KE, Azar MM, Banerjee R, et al. Molecular Testing for Acute Respiratory Tract Infections: Clinical and Diagnostic Recommendations From the IDSA's Diagnostics Committee. <i>Clin Infect Dis</i> . 2020;5:401-408.
361 362 363	17. Steensels D, Reynders M, Descheemaeker P, et al. Clinical evaluation of a multi-parameter customized respiratory TaqMan® array card compared to conventional methods in immunocompromised patients. <i>J Clin Virol</i> . 2015;72:36-41.
364 365 366	18. Jones N, Conway Morris A, Curran MD et al. Evaluating the use of a 22- pathogen TaqMan array card for rapid diagnosis of respiratory pathogens in Intensive Care. <i>J Med Microbiol</i> . 2020; 69: 971-978.
367 368 369	19. Gadsby NJ, Russell CD, McHugh MP, et al. Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia. <i>Clin Infect Dis</i> . 2016;62(7):817-823.
370 371 372 373	20. Public Health England. Investigation of bronchoalveolar lavage, sputum and associated specimens UK SMI B 57 issue 3.5 (May 2019) (available from https://www.gov.uk/government/publications/smi-b-57-investigation-of-bronchoalveolar-lavage-sputum-and-associated-specimens) accessed 29/4/2021
374 375 376	21. Plachouras D, Lepape A, Suetens C. ECDC definitions and methods for the surveillance of healthcare-associated infections in intensive care units. <i>Intensive Care Med.</i> October 2018:1-3.
377 378	22. The Lancet Respiratory Medicine. Pneumonia research: time to fill in the gaps. <i>Lancet Resp Med.</i> 2019;7(12):993.
379 380 381	23 Wolff BJ, Bramley AM, Thurman KA, et al. Improved Detection of Respiratory Pathogens by Use of High-Quality Sputum with TaqMan Array Card Technology. Onderdonk AB, ed. <i>J Clin Microbiol</i> . 2017;55(1):110-121.

382 383 384	Hercik C, Cosmas L, Mogeni OD, et al. A diagnostic and epidemiologic investigation of acute febrile illness (AFI) in Kilombero, Tanzania. Schildgen O, ed. <i>PLoS ONE</i> . 2017;12(12):e0189712-e0189720.
385 386 387 388	25 Peiffer-Smadja N, Bouadma L, Mathy V, et al. Performance and impact of a multiplex PCR in ICU patients with ventilator-associated pneumonia or ventilated hospital-acquired pneumonia. <i>Crit Care</i> . 2020;24:366
389 390 391 392	Monard C, Pehlivan J, Auger G, et al. Multicenter evaluation of a syndromic rapid multiplex PCR test for early adaptation of antimicrobial therapy in adult patients with pneumonia. <i>Crit Care</i> . 2020;24:434
393 394 395 396 397	27. Houben RMGJ, Lalli M, Kranzer K, Menzies NA, Schumacher SG, Dowdy DW. What if They Don't Have Tuberculosis? The Consequences and Trade-offs Involved in False-positive Diagnoses of Tuberculosis. <i>Clin Infect Dis.</i> 2019;68:150-156
398 399 400	28. Weinrib DA, Capraro GA. The Uncertain Clinical Benefit of the T2Bacteria Panel. <i>Ann Intern Med.</i> 2019;170:888-889
400 401 402 403	29. Nolan TJ, Gadsby NJ, Hellyer TP, et al. Low-pathogenicity Mycoplasma spp. alter human monocyte and macrophage function and are highly prevalent among patients with ventilator-acquired pneumonia. <i>Thorax.</i> 2016;71(7):594-600.
404 405 406	30. Zakharkina T, Martin-Loeches I, Matamoros S, et al. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. <i>Thorax.</i> 2017;72(9):803-810.
407 408 409 410	31. Ewig S, Torres A, El-Ebiary M, et al. Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury. Incidence, risk factors, and association with ventilator-associated pneumonia. <i>Am J Respir Crit Care Med.</i> 1999;159(1):188-198.
411 412 413	32. Roquilly A, Torres A, Villadangos JA, et al. Pathophysiological role of respiratory dysbiosis in hospital-acquired pneumonia. <i>Lancet Resp Med.</i> 2019;7(8):710-720.
414 415 416	33. Morris AC, Kefala K, Simpson AJ, et al. Evaluation of the effect of diagnostic methodology on the reported incidence of ventilator-associated pneumonia. <i>Thorax</i> . 2009;64(6):516-522.
417 418 419	34. Bhat N, O'Brien KL, Karron RA, Driscoll AJ, Murdoch DR, the Pneumonia Methods Working Group. Use and Evaluation of Molecular Diagnostics for Pneumonia Etiology Studies. <i>Clin Infect Dis.</i> 2012;54(suppl 2):S153-S158.
420 421 422 423	35. Hagel S, Scherag A, Schuierer L, et al. Effect of antiviral therapy on the outcomes of mechanically ventilated patients with herpes simplex virus detected in the respiratory tract: a systematic review and meta-analysis. <i>Crit Care</i> . 2020;24(1):584–10.

424 425 426	36. Morris AC, Datta D, Shankar-Hari M, et al. Cell-surface signatures of immune dysfunction risk-stratify critically ill patients: INFECT study. <i>Intensive Care Med</i> . 2018;44(5):627-635.
427	37. Webber DM, Wallace MA, Burnham CA, Anderson NW. Evaluation of the
428	BioFire FilmArray Pneumonia Panel for Detection of Viral and Bacterial Pathogens in
429	Lower Respiratory Tract Specimens in the Setting of a Tertiary Care Academic
430	Medical Center. J Clin Microbiol. 2020;58:e00343-20
431	
432	38. Maes M, Higginson E, Pereira-Dias J, et al. Ventilator-associated pneumonia
433	in critically ill patients with COVID-19. Crit Care. 2021;25(1):25–11.
434	
435	
436	

Tables

Organism detected	Frequency of growth (≥10^4 CFU/ml) on conventional culture	Frequency by TAC (numbers detected at Ct≤32 shown in brackets)
Gram negative		
Acinetobacter baumannii complex	2	4 (3)
Enterobacter aerogenes	1	0*
Enterobacter cloacae	2	7 (5)
Enterococcus faecalis	0	2 (1)
Enterococcus faecium	2	15 (9)
Escherichia coli	6	44 (16)
Enterobacteriaceae (not further specified)	0	7 (3)
Haemophilus influenzae	3	23 (19)
Haemophilus haemolyticus	1	0*
Klebsiella pneumoniae	2	13 (6)
<i>Legionella</i> spp. (non-pneumophilia)	0	1 (1)
Morexella catharralis	1	5 (4)
Morganella morganii	0	1 (1)
Mycoplasma pneumoniae	0	1 (1)
Neisseria meningitidis	0	1 (1)
Proteus spp. [#]	2	7 (5)
Pseudomonas aeruginosa	5	10 (9)
Serratia marcescens	1	5 (3)
Gram positive		
Staphylococcus aureus	21	32 (28)
Staphylococcus epidermidis	0	12 (3)
Other coagulase negative Staphylococcus	0	9 (1)
Stenotrophomonas maltophilia	2	11 (5)
Streptococcus pneumoniae	0	15 (10)
Streptococcus pyogenes	0	1 (1)
Streptococcus spp. (not further specified)	0	37 (25)
Fungi		
Aspergillus fumigatus.	0	1 (1)
Candida albicans	4	17 (7)
Candida spp.	2	5 (3)
Viruses (not tested for by conventional microbiology)		
Coronavirus OC43		1 (1)
Cytomegalovirus		6 (1)
Epstein-Barr Virus		15 (3)
Herpes simplex virus		34 (26)
Influenza A		3 (3)
Parainfluenza virus		1 (1)
Rhinovirus		4 (4)

Table 1:culture of microorganisms from 128 stored samples from the VAPrapid clinical trial¹⁵ and results from the TAC. CFU- colony forming units/ml, Ct -cycles to crossing

threshold.

- *not on card
- [#] culture reported as *Proteus mirabilus*, on TAC reported as genus-level *Proteus spp*.

Parameter	TAC patients (95 patients)	Comparator group (71 patients)
Median age (range)	60 (21-86)	62 (18-83)
n (%) female	41 (43 %)	27 (38 %)
Median (IQR) functional comorbidity index	1 (2)	1 (2)
n (%) with community- acquired pneumonia	34 (36%)	20 (28%)
n (%) hospital-acquired pneumonia	61 (64%)	51 (72%)
of HAP n (%) ventilator- associated	24 (39%)	27 (52%)
Median (IQR) APACHE II score on admission	16 (10)	16 (9)
% receiving antibiotics at time of lavage	82%	96%
Median (IQR) FiO ₂ prior to bronchoscopy	0.5 (0.25)	0.5 (0.30)
Median (IQR) white cell count $(x10^{9}/L)$	10.5 (12.4)	10.7 (9.5)
Median (IQR) neutrophil count $(x10^{9}/L)$	8.6 (11.5)	8.8 (8.63)
Median (IQR) C-reactive protein concentration (mg/L)	198 (153)	146 (154)
28-day mortality n (%)	30 (32%)	21 (30%)

Table 2: Baseline characteristics of study population. APACHE II, acute physiology and
 chronic health evaluation II, FiO₂, fraction of inspired oxygen.

Organism detected	Frequency (by conventional microbiology)	Frequency (by TAC)	Frequency (by sequencing)	
Bacteria				
Citrobacter freundii	1*	0	1*	
Enterobacter cloacae	2	8	3	
Enterococcus faecalis	0	3	0	
Enterococcus faecium	3	7	7	
Escherichia coli	6	14	6	
Klebsiella pneumoniae	3	5	3	
Enterobacteriaceae (not further specified)	0	1	2	
Haemophilus influenzae	0	3	2	
Legionella pneumophilia	1**	1	1	
Legionella spp. (non-pneumophilia)	0	2	2 2	
Morexella catharralis	0	1	0	
Mycoplasma pneumoniae	0	1	1	
Proteus spp.	0	2	0	
Pseudomonas aeruginosa	2	5	4	
Serratia marcescens	1	3	0	
Staphylococcus aureus	2	8	8	
Staphylococcus epidermidis	0	9	2	
Other coagulase negative Staphylococcus	0	1	2	
Other <i>Staphylococcus</i> spp. (not further specified)	0	0	1	
Stenotrophomonas maltophilia	2	4	2	
Streptococcus pneumoniae	1	9	6	
Streptococcus pyogenes	0	1	0	
Streptococcus spp. (not further specified)	0	23 10		
Mixed upper respiratory tract flora	1	N/A	N/A	
Fungi				
Aspergillus spp.	0***	1	0	
Candida albicans	1	12	10	
Candida spp.	0	1	1	
Pneumocystis jirovecii	4	4	3	
Viruses	-	-		
Coronavirus [#]	0	3	1	
Cytomegalovirus	5	7	4	
Epstein-Barr Virus	1	6	1	
Herpes simplex virus	7	11	7	
Human metapneumovirus	1	1	1	
Influenza A	7	7	5	
Influenza B	3	3	2	
Parainfluenza virus	4	4	4	
Rhinovirus	8	8	7	

460

461 Table 3: Summary of organisms detected by conventional microbiological testing (left

462 hand column), by TAC (middle column), and by microbial sequencing (right hand

463 **column).** * One hit not found in same patient; not on card. **Legionella urinary antigen test

464 positive. *** Positive BAL galactomannan enzyme immunoassay (>0.5 units) with CT

465 consistent with fungal pneumonia and known risk factors but fungal cultures were not

466 positive. # refers to human coronavirade OC43, 229E and NL63, no tests were undertaken for
 467 SARS-CoV2 and final testing occurred in August 2019.

468

469

470

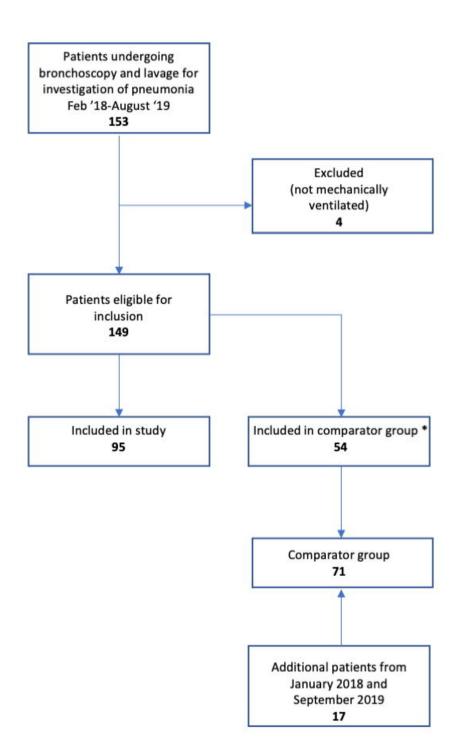
471

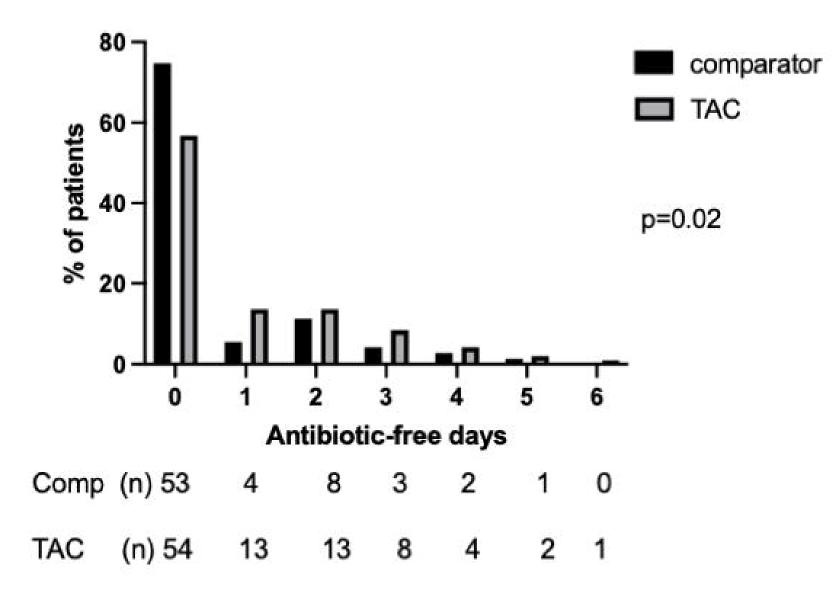
Antibiotic change	Details of change	TAC cohort		Comparator cohort
-		TAC-related	TAC-unrelated	
De-	Stopping macrolides	14	3	6
escalation	Stopping carbapenem or anti-pseudomonal penicillin	10	14	10
	Narrowing from carbapenem/antipseudomonal penicillin to narrower spectrum penicillin	7	0	1
	Stopping cotrimoxazole	6*	1	0
	Stopping antivirals	3	0	0
	Stopping aminoglycosides	2	3	0
	Stopping other agents	6	4	7
Escalation	Start antivirals	7	0	1
	Start or broaden antifungals cover	3	7**	6
	Broadened Gram negative cover (add anti-	3	16	28
	pseudomonal penicillin, aminoglycoside or carbapenem)			
	Add glycopeptide	4	1	5
	Add cover for atypical organism	1	1	1

473

474 Table 4: Detail of changes in antibiotic therapy in the seven days following lavage in the

475 TAC and comparator cohorts. Changes judged to be TAC-related are shown in the left-


476 hand sub-column for the TAC group. Several patients had more than one change in antibiotic


therapy. *includes two de-escalations to prophylactic dose, ** includes two escalations from

478 prophylactic to therapeutic dose.

479

481	Figure legends
482	
483	
484	
485	Figure 1: Study flow diagram
486	*included in comparator group as TAC laboratory team not available to process samples
487	
488	
489	
490	
491	Figure 2: Distribution of days alive and free of antibiotics in the seven days following
492	bronchoscopy and lavage in the TAC and comparator cohorts. Following first lavage
493	only for patients who had more than one BAL during ICU admission. Numbers in each
494	category and percentage shown below graph, p value by Mann-Whitney U test.
495	

