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Abstract

We develop a generalized SEIRD model considering social distancing measures to describe the spread of COVID-19 with
applications in Brazil. We assume uncertain scenarios with limited testing capacity, lack of reliable data, under-reporting
of cases, and restricted testing policy. We developed a Bayesian framework for the identification of model parameters
and uncertainty quantification of the model outcomes. A sensitivity analysis is performed to identify the most significant
parameters on either the cumulative numbers of confirmed and death, or the effective reproduction number. We show
the model parameter related to social distancing measures is one of the most influential. Different relaxation strategies
of social distancing measures are then investigated to determine which strategies are viable and less hazardous to the
population. The considered scenario of abrupt social distancing relaxation implemented after the occurrence of the peak
of positively diagnosed cases can prolong the epidemic, with a significant increase of the projected numbers of confirmed
and death cases. A worse scenario occur if the social distancing relaxation policy is implemented before evidence of
the epidemiological control, indicating the importance of the proper choice of when to start relaxing social distancing
measures. The employed approach and subsequent analysis applied over the Brazilian scenarios may be used to other
locations.
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1. Introduction1

At the end of 2019, the world was taken by the news about the outbreak in China of a new coronavirus called SARS-2

CoV-2, which stands for Severe Acute Respiratory Syndrome Coronavirus 2. The associated disease, called COVID-193

by the World Health Organization (WHO), rapidly spread around the world and is currently considered a pandemic.4

As of September 30, 2020 there have been 235 countries and territories affected, with around 33.8 million confirmed5

cases and 1 million confirmed deaths [1]. Coronavirus belongs to a group of viruses that are common in humans and6

are responsible for 15% to 30% of cases of common cold [2]. The SARS-CoV-2 has spread rapidly and has already7

affected a significant part of the world’s population [3]. The within-host dynamics seem to be very heterogeneous and8

the severity of the disease varies widely. Based on currently available information, elderly people and people of any age9

with comorbidities, such as hypertension, cardiovascular disease, and diabetes, are among those at most risk of severe10

illness from COVID-19. In most locations, the burden of COVID-19 cases requiring medical intensive care exceeds the11

available medical resources, worsening the situation. A great effort has been made worldwide to better understand the12

disease and possible mechanisms to control it. Measures such as widespread testing, and reducing social contacts for some13

age segments, or for the wider population, are known to decrease the speed of the disease spread and the case fatality [4].14

However, countries often have to deal with limitation of testing capacity for COVID-19 which increases the uncertainty15

associated with how the disease behaves and is likely to complicate the management of the policies to mitigate and16

control it. One form to deal with this lack of information is through mathematical modeling, using diversified modeling17

techniques (see [5] for a review). This type of modeling also has some limitations, because it intrinsically relies on a18

simplification of reality. One example of such simplification is the usual assumption of constant parameters values (see19

[6] for an overview of applications and limitations of mathematical modeling for COVID-19). Population-based models20

that split individuals into classes are widely used, and is the approach followed in this work.21

WHO has already recognized that testing for COVID-19 is a key way to know how the virus spread and to provide22

insights on how to respond to it, although widespread testing is low in most countries in the world. In Brazil (BR),23

for example, the initial testing policy included only severely ill and healthcare practitioners people. The sub-notifi-24

cation of infected cases was, and still is, a major problem, coupled with incomplete and inconsistent overall data as25

well as the lack of complete knowledge on the prevalence and progression of the disease [7]. Likewise, the number26

of deaths may be underestimated for the same reason. Overall, one of the main difficulties in developing predictive27

compartmental models of the COVID-19 is the lack of reliable data to support parameter choices. In the face of the28

current scenario, we developed a seven-compartment model that implicitly considers the social distancing policy that29

isolates individuals from the infection for a period of time. This modeling strategy to consider social distancing is also30

employed in [8] using a generalization of the standard SIR model. Here we focus on understanding the model response to31

perturbations/uncertainties. We perform sensitivity analysis and quantify the uncertainties in model outcomes, mainly32

the cumulative numbers of confirmed and death cases, and the effective reproduction number. We also investigate33

hypothetical scenarios on how to obtain a desired effect/control via a modification to the system subject to uncertainties.34

Our studied cases include the whole Brazilian scenario (BR) and the state of Rio de Janeiro (RJ), which was one of the35

first states in BR to recommend and implement social distancing measures, beginning on March 17, 2020 [9]. However,36

they have not last much longer and RJ has started a progressive social distancing flexibilization, as the whole country37

[10].38

2. Mathematical Modeling and Methods39

2.1. The SEAIRPD-Q Model40

We develop a generalized Susceptible–Exposed–Infected–Removed–Dead (SEIRD) model that includes protective social41

distancing measures based on the following assumptions: (i) the analysis time is small enough such that natural birth42

and death are disregarded; (ii) all positively diagnosed individuals, who are severely ill, are hospitalized; (iii) only43

symptomatic infected and positively tested (diagnosed/hospitalized) individuals may die due to complications from the44

disease; (iv) the hospitalized individuals are under treatment and remain isolated, so that they are considered not45

infectious; (v) social distancing measures are restrictive so that isolated individuals are not likely to be infected, and (vi)46

the recovered/removed individuals acquire immunity. Our SEAIRPD-Q model has seven compartments, including the47

population of positively diagnosed (P ) individuals who are under medical treatment, and the infected class that is modeled48

as two separate compartments encompassing individuals with and without symptoms, denoted by I and A, respectively.49

The removed compartment (R) includes the recovered individuals as well as those under social distancing measures. The50

mathematical description (differential equations) of the SEAIRPD-Q model and its schematic representation are shown51

in Fig. 1 while model parameters and related meanings are exhibited in Tables 1 and SM-A.1 (see the Supplementary52

Material (SM) for more details).53
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İ = ρσE − γII − dII − ωI − εII
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Figure 1: Mathematical formulation and schematic description of SEAIRPD-Q model.

Susceptible individuals become exposed to COVID-19 when in contact with infected people. The rate at which this
happens may vary depending on whether the infected individual has symptoms or not, denoted by β or µ, respectively.
After an incubation period (1/σ), exposed individuals become infected. The fraction ρ of infected people who present
symptoms can vary widely. Due to the assumption of reduced testing capacity, asymptomatic individuals, as well
as symptomatic infected individuals with mild symptoms, are not likely to be hospitalized and therefore will not be
diagnosed. Those who present symptoms are either isolated or hospitalized. We assume that only symptomatic infected
individuals with stronger symptoms are diagnosed quickly, at a rate of εI , and require hospitalization. This assumption
better reflects the policy on only testing severely ill individuals. Following the WHO guideline on social distancing,
most countries around the world are adopting social distancing policies at some extent. An interesting feature of our
model is the assumption that susceptible, exposed, and infected individuals can be kept isolated at a removal rate of ω,
an assumption also taken by [8]. Thus, the removed individuals’ compartment includes individuals who have recovered
from the disease as well as those subjected to social isolation. Asymptomatic and symptomatic individuals can recover
without medical treatment at rates of γA and γI , respectively, and hospitalized individuals recover at a rate of γP . The
cumulative numbers of confirmed and death cases are obtained, respectively, from simulation day zero (t0) to a desired
time t as:

C(t) =
∫ t

t0

εII(t)dt and D(t) =
∫ t

t0

[dII(t) + dPP (t)] dt . (1)

2.2. Evaluation of the Reproduction Number 54

Following the ideas introduced in [11], we apply the Next Generation Matrix method to obtain R0 for the SEAIRPD-Q
model. Firstly, we use a reduction process to arrive at a linearized infection model, under the disease-free steady state.
The identification of the infected variables (E, A, and I) allows defining the vector xT = [E, I,A], where the superscript
T stands for the transposition of a matrix. Thus, we consider that S, R, P , and D individuals are not able to transmit
the disease. Denoting by T and Σ the transmission and transition matrices, respectively, the three-dimensional linearized

3
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infection sub-system is given by:
dx
dt

= (T + Σ)x, (2)

where55

T =

 0 βS µS
0 0 0
0 0 0

 and −Σ =

 σ + ω 0 0
−σρ γI + dI + ω + εI 0

−σ(1− ρ) 0 γA + ω

 . (3)

The reproduction number R0 is the dominant eigenvalue of the next generation matrix K = −TΣ−1 [11], which yields:

R0 =
(

σ(1− ρ)µ
(σ + ω)(γA + ω) + βσρ

(σ + ω)(γI + dI + ω + εI)

)
S(0). (4)

The corresponding effective reproduction number is:

R(t) =
(

σ(1− ρ)µ
(σ + ω)(γA + ω) + βσρ

(σ + ω)(γI + dI + ω + εI)

)
S(t). (5)

2.3. Bayesian Calibration56

Model calibration is performed using a Bayesian approach to make results consistent with available observations on
cumulative confirmed and death cases. With Bayesian calibration, we are capable of determining the most likely uncer-
tainties for input parameters as well as their maximum a posteriori (MAP) estimates of marginal distributions described
by the a posteriori probability distribution πpost. Considering that our aim is to adjust a set of parameters θ given y
observations, Bayes’ theorem states:

πpost(θ|y) = πlike(y|θ)πprior(θ)
πevid(y) , (6)

where πprior is the a priori probability distribution that represents the initial (a priori) knowledge over θ, πlike is
the likelihood function, and πevid is the evidence (information) encompassed in the data (see [12] for a more detailed
description). We assume a Gaussian likelihood function in the form:

πlike(y|θ) =
∏

j∈{C,D}

1
σj
√

2π
exp

−1
2

n∑
i=1

(
y(j)(ti)− y(j)

model(ti)
σj

)2
 , (7)

where y(C)(t) and y(D)(t) are the observable quantities of cumulative numbers of confirmed and death cases, respectively,57

and their corresponding simulated outcomes are y(C)
model(t) = C(t) and y

(D)
model(t) = D(t). Gaussian noise is associated58

with each observable quantity with variances σ2
C and σ2

D, which are considered hyperparameters to be determined in the59

Bayesian calibration procedure.60

Due to paucity data and possible model identifiability issues, we calibrate the following model parameters: β = µ, ω,61

dI , and dP . All other parameters are gathered from the available literature and listed in Table SM-A.1 (see SM for more62

details).63

The code implementation is written in Python language (version 3.7), using PyMC3 as a Probabilistic Programming64

framework [13]. Due to the intensive computational burden, we choose as calibration method the Cascading Adaptive65

Transitional Metropolis in Parallel [14], a Transitional Markov chain Monte Carlo available in PyMC3. For the sake66

of reproducibility, code and scripts are publicly provided at [15]. Of note, the SEAIRPD-Q system of seven ordinary67

differential equations is solved using the LSODA method [16] from SciPy [17]. This package provides an interface for68

such routine from ODEPACK [18].69

2.4. Data70

We investigate the model behavior for BR and RJ. We gathered data for C and D from [19]. Since Brazilian policy for71

testing in COVID-19 is still mostly restricted to severe cases, model calibration aims at matching C and D, without72

accounting the recovered outflow from P . We assessed the epidemiological data of 198 days for BR, ranging from March73

5, 2020, to September 18, 2020, and 193 days for RJ, ranging from March 10, 2020, to September 18, 2020. The initial74

dates were chosen considering a minimal requirement of at least five diagnosed individuals at the pandemic initial date.75

For completeness, all used data are listed in [15].76
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2.5. Sensitivity Analysis 77

In order to quantify how changes in the model parameters and some initial conditions (ICs) affect the quantities of
interest (QoI), we apply the Elementary Effects method [20] present in the SALib library [21]. In contrast to local
sensitivity methods, which evaluate how small changes around a singular point affect a QoI [22], the Elementary Effects
method is a global sensitivity method. Here we analyze QoI1(t) = R(t) and the normalized sum of the squares of C
and D, QoI2(t) =

√
C(t)2 +D(t)2. Considering θ ∈ Rk as the set of analyzed parameters, we construct a sample of m

initial points θ(1), . . . ,θ(m) from a k-dimensional p-level grid. Afterwards, a metric defined as an elementary effect EEi,
i = 1, . . . , k, is computed for every parameter:

EEi(θ) = QoI(θ1, . . . , θi−1, θi + ∆, θi+1, . . . , θk)−QoI(θ)
∆ . (8)

where ∆ ∈ { 1
p−1 , . . . , 1−

1
p−1} is the magnitude of change in the ith parameter in the k-dimensional p-level grid. Values

of p as an even number and ∆ = p
2(p−1) are usual suggested choices to ensure an equal sampling probability in the

parametric space, and are the default option in the SALib library [21]. After computing the elementary effects, the
process ends by calculating the global sensitivity indexes for each parameter. Our work dedicates the analysis only to
the first order sensitivity index:

si = 1
m

m∑
j=1

EEi(θ(j)). (9)

Parameters with high scores are the most influential to the QoI. In turn, the first order sensitivity index values allow 78

ranking the parameters with respect to their order of importance. 79

2.6. Time Dependent Social Distancing Policy Modeling 80

To represent and understand social distancing policy effects on COVID-19 epidemic, we propose a time-dependent
removal rate, which we denote by ωr. Considering that td is the time at which the relaxation policy is implemented, ωr
is defined as the following continuous function:

ωr =
{
ω if t < td

ωe−λ(t−td) if t ≥ td
, (10)

in which λ = ln 2(t1/2)−1 is the decay constant, with t1/2 being the half-life time for the social distancing release policy. 81

In this way, ωr is a smooth decreasing function after t = td for which λ regulates the decay speed. 82

3. Results 83

To properly perform projections and further study different social distancing scenarios of interest, we calibrated the 84

SEAIRPD-Q model to the data of BR and RJ (separately). We employed a Bayesian calibration of some model parameter 85

values, with remaining parameter values gathered from the literature. Model parameters are shown in Table 1, while 86

the frequency histograms for the calibrated parameter posterior marginals and other model factors are presented in the 87

SM. 88

Table 1: Model parameters: fixed and MAP estimates for BR and RJ (in appropriate units). A more detailed description of all variables,
parameters, and ICs are shown in the SM.

Parameter Value/MAP (BR) Value/MAP (RJ) Priori Distribution Data Source
β = µ 3.925773× 10−9 4.276614× 10−8 U(0, 1× 10−5) MCMC
σ 1/5 1/5 – [23]
ρ 0.85 0.85 – [24]
εI 1/3 1/3 – –
γA, γI , γP 1/14 1/14 – [25]
dI 9.972041× 10−3 2.588098× 10−2 U(0, 0.1) MCMC
dP 2.793901× 10−4 1.371215× 10−5 U(0, 0.1) MCMC
ω 8.017946× 10−3 9.121030× 10−3 U(0, 1) MCMC
σC 114763 12855 U(1, 5× 106) MCMC
σD 9968 668 U(1, 5× 106) MCMC

5
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Taking into account the maintenance of the social distancing policies during the time of the analysis, Fig. 2 exhibits the89

fitting and predictions for the COVID-19 pandemic in BR. Fig. 2a shows that the peak of P individuals occurred on the90

simulation day 145 (95% CI: 143–146) with around 638.8 thousand (95% CI: 630.6–647.1) people simultaneously infected91

(denoted “active cases”, hereinafter). By the end of the simulation time, the model predicts around 149.3 thousand (95%92

CI: 145.1–153.6) of deaths and 4.392 million (95% CI: 4.306–4.482) of cumulative cases. The R0 calculated by means of93

MAP for BR is 3.09, and the time evolution of R(t) is displayed in Fig. 2b (black line). Notice that R(t) < 1 occurred94

around the simulation day 135 (95% CI: 133–136), which indicates that the disease is controlled [26].95

We also fitted the model with the available data for RJ. Considering again the maintenance of the social distancing96

policy, the projections for COVID-19 infection in RJ are shown in Fig. 3. Of note, model fitting for RJ is much worse97

than in the BR scenario, probably driven by highly noisy data. Nevertheless, the model could capture correctly the98

peak of active cases, that occurred on the simulation day 115 (95% CI: 114–116) with around 32.2 thousand (95% CI:99

31.7–32.7) active cases. Also, around 16.6 thousand (95% CI: 16.3–17.0) of deaths and 212.5 thousand (95% CI: 207.6–100

217.7) of cumulative cases are expected on day 225, when these numbers stabilized. The R0 is 2.68 for RJ, and the time101

evolution of R(t) is displayed in Fig. 3b (black line). Similarly as for the broader scale of the Brazilian scenario, if the102

social distancing measures are maintained in RJ, the disease was under control around the simulation day 105 (95% CI:103

103–107), when the effective reproduction number becomes less than one.104

We address the sensitivity for both C and D (QoI2(t)), as well for R(t) (QoI1(t)). Sensitivity analysis is performed105

for both scenarios (BR and RJ) considering all parameters and the initial conditions E(0), A(0), and I(0). The settings106

p = 4 and m = 40 are used for all experiments. A 50% variation around the fixed and MAP values in Table 1 is107

considered to construct parameter ranges.108

The sensitivity analysis results for BR are depicted in Fig. 4. The sensitivity indexes for the cumulative C and D109

(QoI2(t)) are heavily influenced by the initial conditions in the early stages of the disease propagation, although their110

influence decreases as time evolves. In contrast, they are not influential for R(t) (QoI1(t)) along all the simulation111

time. The influence of the parameter related to social distancing (ω) on both QoIs is remarkable. More importantly, its112

influence increases with the evolution of time, which emphasizes the need for care when establishing social distancing113

relaxation measures. On the other hand, the proportion of infected individuals who have symptoms is also one of the114

most influential parameters on both QoIs, although it is more relevant considering C and D. This points out the need of115

having a more widespread testing policy. Regarding the RJ scenario, Fig. 5 reveals very similar scores. One noteworthy116

distinction is the rank of influence of E(0) and I(0) associated with QoI2(t). The former is more influential in the117

BR scenario (Fig. 4b), while the latter has a higher score for RJ (Fig. 5b). Overall, the most influential parameter is118

the removal rate (ω), and its impact increases as the dynamics evolves. The second most influential parameter is the119

(a) Prediction of P , I, A, D, and C (right y-axis) in BR. The vertical line
indicates the curve peak, and the dashed lines display the corresponding
95% CI.

(b) Time evolution of R(t) in BR. Dashed lines indicate 95% CI around
R(t) = 1. The black curve refers to the simulation shown in Fig. 2a, and
others to simulations with different distancing measures.

Figure 2: Dynamics of the COVID-19 in BR modeled with the available data. The lines indicate the simulation with the MAP estimates,
with the shaded colors indicating the 95% credible interval (CI). Simulation days 0 and 145 (peak day of active cases) corresponds to March
5, 2020 and July 28, 2020, respectively.
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proportion of I with symptoms (ρ). We remark that the latter parameter is fixed due to the limited testing capacity in 120

BR. 121

3.1. A study case: How would different social distancing measures affect the disease spread? 122

We have shown that the rate at which S, E, A, and I are removed due to social distancing measures significantly affect 123

R(t), C(t), and D(t). Such average values under the actual social distancing policy are an idealization of reality since 124

actual values are dynamic and spatially heterogeneous. However, such idealization is useful to qualitatively analyze 125

the effect of different disease control mechanisms. Thus, in order to study the qualitative effects of changes in social 126

distancing policies, we propose to model ω as defined in (10), which can represent different social distancing relaxation 127

scenarios. We consider three cases: (i) a sudden release from social distancing, which is modeled as a decay with half-life 128

as t1/2 = 0.1 days; (ii) a gradual release, with half-life as t1/2 = 15 days, and (iii) the current social distancing policy, with 129

constant removal rate. The latter represents the original study case, which can also be obtained by setting td > 400 days. 130

For cases (i) and (ii), we selected td = 165 days, time for which the peak of active cases has already passed. Fig. 6 131

shows the consequences of relaxing social distance measures in terms of the model distributions of C and D for BR at 132

t = 397 days. Additional results are displayed in the SM for both BR and RJ scenarios. Remarkably, a sudden release 133

can induce an increase in C and D, and their uncertainties, extending the crisis duration due to a slower decrease in the 134

active cases (see the SM for more details). This effect can also be noted in Figs. 2b and 3b, where we show the time 135

evolution of R(t) for cases (i) and (ii) in comparison with the original scenario. Social distancing release policies make 136

the decrease of R(t) far slower, implying in a slow control of the disease. Thus, determining an appropriate moment 137

to begin a social distancing release policy demands special care, since applying such policies in inappropriate times can 138

maintain a crisis status for a longer-term. Moreover, due to the small changes in R(t) for a longer time, more cases of 139

C and D will occur, worsening the health damage in the total population. 140

We also remark the importance of the release date of social distancing measures in the following less favorable scenario. 141

Considering that social distancing is released 20 days before the peak of the active cases for BR (td = 125 days), disease 142

spreading can yield a critical scenario even when a smooth and gradual release strategy (half-life as t1/2 = 20 days) is 143

adopted, causing an increase in C and D, and a drastically longer pandemic period, as shown in Fig. 7. In this case, 144

the peak of active cases would occur on the simulation day 154 (95% CI: 152–158) with around 664.6 thousand (95% 145

CI: 651.5–680.8) active cases, and D is expected to be around 270.7 thousand (95% CI: 255.1–288.9) at the end of the 146

simulation, with C around 7.976 million (95% CI: 7.542–8.473). Note, however, that the dynamics of C and D did not 147

reach the stabilization level, reflecting the more critical scenario mentioned earlier. 148

(a) Prediction of P , I, A, D, and C (right y-axis) in RJ. The vertical line
indicates the curve peak, and the dashed lines display the corresponding
95% CI.

(b) Time evolution of R(t) in RJ. Dashed lines indicate 95% CI around
R(t) = 1. The black curve refers to the simulation shown in Fig. 3a, and
others to simulations with different distancing measures.

Figure 3: Dynamics of the COVID-19 in RJ modeled with the available data. The lines indicate the simulation with the MAP estimates,
with the shaded colors indicating the 95% CI. Simulation days 0 and 115 (peak day of active cases) corresponds to March 10, 2020 and July
3, 2020, respectively.
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(a) Sensitivity analysis for R(t), QoI1(t).
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Figure 4: Temporal changes of the first order sensitivity index of model factors for the BR scenario.
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Figure 5: Temporal changes of the first order sensitivity index of model factors for the RJ scenario.

4. Discussion and Conclusions149

The present paper contributes to the development of a model framework to investigate the expansion of COVID-19 and150

the impacts of different measures of social distancing in the presence of uncertainties. We apply the developed approach151

to model the COVID-19 dynamics in BR and RJ. This high populated Brazilian state was one of the first states to152

adopt mitigation actions, such as the suspension of classes, cancellation of events, and home isolation [27, 10] (but has153

not implemented a population quarantine [10]). According to the current data released by the Brazilian Ministry of154

Health, RJ is one of the most affected states, both in the number of registered cases of COVID-19 and in the number155

of deaths. For this reason, the present study analyzes the spread in this state, as well as in the country as a whole, in156

order to assess the particular characteristics of the pandemic at those different spatial scales. Extensive research for the157

spread of COVID-19 in BR with multiple perspectives has been reported, e.g.,[28, 27, 29, 30, 31, 32]. The present work158

takes into account factors that are predominant in many underdeveloped countries, such as the current limited testing159
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(a) Posterior distributions of the maximum number of confirmed cases. (b) Posterior distributions of the maximum number of dead cases.

Figure 6: Comparison of the posterior distributions of the maximum numbers of confirmed (a) and dead (b) cases for different social distancing
scenarios in BR. The original scenario corresponds to keeping ω fixed at its MAP estimate. Analysis is done on the last simulation day (397).

Figure 7: Prediction of P , I, A, D, and C (right y-axis) in BR, considering t1/2 = 20 days. Social distancing is released 20 days before the
peak of active cases (td = 125 days).

capacity and the policy to test only severely ill hospitalized individuals. We hope that the present modeling framework 160

brings some insights or guidelines for public health and policy-makers. 161

Due to data paucity, parameter identifiability is a major difficulty. To overcome this issue, only four model parameters 162

(and two hyperparameters) were calibrated using a Bayesian approach. Other parameters, as well as model initial 163

conditions, were set based on available information on COVID-19 (see the SM for more details). Our simulation forecasts 164

that the peak of active cases occurred on July 28, 2020 (95% CI: 26–29) and July 3, 2020 (95% CI: 2–4) for BR and 165

RJ, respectively. This difference can be explained due to the discrepancy of the spatial scale, and the way the disease 166

has spread along with the different Brazilian locations, considering, for instance, different political measures taken and 167

the social and demographic structure of each Brazilian locality [33]. The social measures implemented in RJ at the 168

beginning of the pandemic seemed to be able to flatten the epidemic curve and postpone the peak of active cases [27, 30]. 169

However, as happened to the whole country [10], these initial social distancing measures were not kept on through the 170

progression of the disease, and that could explain the high number of cases (around 270 thousand confirmed cases and 171

18 thousand death cases in RJ [34]). 172
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Aiming to evaluate the influence of uncertainties in hard-to-track populations such as undiagnosed infected individuals173

(I and A), as well those who carry the disease and are unable to transmit (E), we performed a sensitivity analysis to174

understand which model factors (parameters and initial conditions) play important roles at the various stages of the175

epidemic for both BR and RJ. The analysis confirms that a proper understanding of how the disease spreads can provide176

insights and aids to elaborate containment decisions in order to reduce R(t). In this sense, considering both BR and RJ,177

sensitivity analysis suggests that the most influential parameter for a long term perspective is the removal rate parameter178

(ω).179

We have shown that the rate at which S, E, I and A individuals are removed due to social distancing measures180

significantly affects R(t), C(t) and D(t). Such average values under the actual social distancing policy are an idealization181

since actual values are dynamic and spatially heterogeneous, as mentioned in the last paragraph. In order to study the182

qualitative effects of changes in social distancing policies, we propose to model ω as an exponential decay function,183

which can represent different social distancing relaxation scenarios. When more abrupt social distancing relaxation is184

implemented after the occurrence of the peak of active cases, it accompanies a longer extension of the duration of the185

disease, with approximately 29% increase and much higher uncertainty in the projected numbers of C and D at the end186

of the simulation. If implemented before the peak, the consequences can be devastating, as indicated by our results.187

The hypothetical scenario built by considering a slow and gradual release implemented 20 days before the original peak188

indicates a delay of 9 days in the occurrence of the peak of the active cases, with more than 7.9 million C and about 271189

thousand D accumulated over less than thirteen months of the presence of the disease in BR. Our simulations highlight190

the importance of relaxing social distancing measures only under a very careful follow-up.191

We note that the analysis performed in this paper should be viewed from a qualitative perspective. The conclusions192

for the considered hypothetical scenarios (with and without social distancing relaxation) are based on model predictions193

and current employed policies. Model simplifications and the calibration procedure of model parameters can explain194

potential quantitative discrepancies between our predictions and data. Such simplifications include: (i) homogenization195

of age, social, and spatial structure, (ii) some model parameters are fixed, with values obtained from the literature, and196

(iii) model parameters are constant along time (except ω, when investigating the impacts of relaxing social distancing197

measures). Moreover, data have limited information due to sub-notification, since mostly hospitalized cases are tested in198

BR. These simplifications are inherent of the modeling procedure, and should be viewed as part of the scientific process199

of the understanding of the natural phenomena.200

The present paper can be extended in forthcoming studies, for example, by considering models with spatial hetero-201

geneity, parameter dependence in time and space, and also analyzing data considering sub-notification. Data considering202

other BR states could also be analyzed employing the same procedure adopted in the present paper. Another possible203

extension could be related to the determination of limit thresholds in the number of P cases under different relaxation204

social distancing measures.205

It is important to highlight the impacts of social distancing relaxation in order to control the COVID-19 pandemic.206

The adoption of this type of measure directly affects the evolution of R(t), as shown in our results. For both BR and207

RJ, it implies a much slower stagnation or decrease in R(t) from the time the measures are implemented. Since R(t) is208

in a controlled situation for both scenarios, i.e. R(t) < 1, a direct consequence is that the disease would need more time209

to be eradicated. Our analyses suggest that policies based on short-term social distancing are not enough to control210

the evolution of the pandemic. If social distancing policy measures are released before the “optimal time”, a second211

peak should be experienced [28]. Some authors argue that longer or even intermittent social distancing will be necessary212

to avoid recurrent outbreaks. Specifically, [35] examined a range of likely virus transmission scenarios until 2025 and213

assessed non-pharmaceutical interventions to mitigate the outbreak. They concluded that if the new coronavirus behaves214

in the same matter to similar viruses we can expect the disease to return in the coming years, depending on the level215

and duration of immunity, an aspect that remains to be clarified in the future. The discovery of a vaccine, or new216

treatments, coupled with the testing of the population could alleviate the need for severe social distancing measures217

to control the disease. Until then, the need to maintain social distancing measures, even if intermittently, must be218

carefully addressed. Concerning the actual stage of development of vaccines for COVID-19, there are already strategies219

for the future administration of such vaccines. As an extension of the present paper using our proposed model, one could220

employ the protocol developed in [36] for the search of the best strategies of vaccine administration. Another potential221

extension of the present paper is to consider the economic impact of the pandemic in terms of different social distancing222

strategies adopted by different countries. Our proposed model could be extended in a way to couple the epidemiological223

and economic aspects, and in this way to be able to have a more complete perspective of the effects of the COVID-19224

pandemic [6].225
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Supplementary Material1

A generalized SEIRD model with implicit social distancing mechanism: a Bayesian approach2

for the identification of the spread of COVID-19 with applications in Brazil and Rio de Janeiro3

state4

Authors: DT Volpatto1, ACM Resende, L dos Anjos, JVO Silva, CM Dias, RC Almeida, and SMC Malta5

SM A. Supplementary Material Information6

This Supplementary Material (SM) is organized as follows. Sections SM A.1 and SM A.2 expand the Results7

section of the main document with additional figures for the BR and RJ scenarios, respectively. The last8

part of the document shows additional model setting information and the calibration data used in this work.9

SM A.1. BR: Additional Results10

Fig. A.2a shows the prediction of P , I, A, D, and C in BR. A total of 638.8 thousand (95% CI: 630.6–647.1)11

active cases are expected on the simulation day 145 (95% CI: 143–146), with D and C expected to be around12

149.3 thousand (95% CI: 145.1–153.6) and 4.392 million (95% CI: 4.306–4.482), respectively. The posterior13

distribution of the peak position is displayed in Fig. A.2b, with the vertical dashed lines corresponding to14

those displayed in Fig. A.2a. Fig. A.2c depicts the time evolution of R(t) and displays two vertical lines15

identifying the credible interval (95% CI: 133–136) of the time above which R(t) ≤ 1. The same lines are16

depicted in Fig. A.2d that shows the uncertainty associated with that time value.17

Fig. A.3 provides the model forecasts for the considered hypothetical scenarios of social distancing relaxation.18

Fig. A.3a shows what to expect in case of a sudden release from social distancing after the simulation day19

165 (t1/2 = 0.1 days as half-life decay). In this case, C reaches 5.656 million (95% CI: 5.426–5.930) and20

D 192.2 thousand (95% CI: 183.4–202.4) at the end of the simulation (day 397), which corresponds to an21

increase of approximately 29% in both values when compared to the original scenario with ω fixed at its22

MAP estimate. For a gradual release after the simulation day 165 (t1/2 = 15 days as half-life decay), the23

numbers of C and D at the end of simulation are 4.790 million (95% CI: 4.660–4.941) and 162.8 thousand24

(95% CI: 157.3–169.0), respectively, as shown in Fig. A.3b. Figs. A.3c and A.3d compare the variability of25

C and D at the end of simulation in the form of box plots for all scenarios considered. Outliers appear as26

individual points and the samples medians are depicted in red.27

SM A.2. RJ: Additional Results28

Fig. A.5a shows the prediction of P , I, A, D, and C in RJ. A total of 32.2 thousand (95% CI: 31.7–32.7)29

active cases are expected on the simulation day 115 (95% CI: 114–116), with D and C expected to be around30

16.6 thousand (95% CI: 16.3–17.0) and 212.5 thousand (95% CI: 207.6–217.7), respectively. The posterior31

distribution of the peak position is displayed in Fig. A.5b, with the vertical dashed lines corresponding to32

those displayed in Fig. A.5a. Fig. A.5c depicts the time evolution of R(t) and displays two vertical lines33

identifying the credible interval (95% CI: 103–107) of the time above which R(t) ≤ 1. The same lines are34

depicted in Fig. A.5d that shows the uncertainty associated with that time value.35

Fig. A.6 provides the model forecasts for the considered hypothetical scenarios of social distancing relaxation.36

Fig. A.6a shows what to expect in case of a sudden release from social distancing after the simulation day37

165 (t1/2 = 0.1 days as half-life decay). In this case, C reaches 220.5 thousand (95% CI: 214.4–227.7)38

and D 17.3 thousand (95% CI: 16.9–17.8) at the end of the simulation (day 392), which corresponds to an39

increase of approximately 4% in both values when compared to the original scenario with ω fixed at its MAP40

estimate. For a gradual release after the simulation day 165 (t1/2 = 15 days as half-life decay), the numbers41

of C and D at the end of simulation are 215.2 thousand (95% CI: 210.0–221.1) and 16.8 thousand (95% CI:42

16.5–17.2), respectively, as shown in Fig. A.6b. Figs. A.6c and A.6d compare the variability of C and D43

at the end of simulation in the form of box plots for all scenarios considered. Outliers appear as individual44

points and the samples medians are depicted in red.45
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(a) Calibrated parameter: β. (b) Calibrated parameter: ω.

(c) Calibrated parameter: dI . (d) Calibrated parameter: dP .

Figure A.1: Frequency histograms for the calibrated parameters (BR).
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(a) Prediction of P , I, A, D, and C (right y-axis) in BR. The
vertical line indicates the curve peak, and the dashed lines display
the corresponding 95% CI.

(b) Frequency histogram for the peak day of P .

(c) R(t) of the COVID-19 in BR. (d) Frequency histogram for the day at which R(t) ≤ 1.

Figure A.2: Dynamics of the COVID-19 in BR modeled with the available data (Mathematical Modeling and Methods).
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(a) Prediction of P , I, A, D, and C (right y-axis) in BR consid-
ering a sudden release from social distancing (td = 165 days and
t1/2 = 0.1 days). The vertical line indicates the curve peak, and
the dashed lines display the corresponding 95% CI.

(b) Prediction of P , I, A, D, and C (right y-axis) in BR consid-
ering a gradual release from social distancing (td = 165 days and
t1/2 = 15 days). The vertical line indicates the curve peak, and
the dashed lines display the corresponding 95% CI.

(c) Box plot for C in BR at the end of the simulation. (d) Box plot for D in BR at the end of the simulation.

Figure A.3: Model forecasts in BR considering sudden and gradual releases from social distancing (td = 165 days and t1/2 = 0.1
and 15 days). The original (baseline) scenario of the main text is also presented to ease comparison.
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(a) Calibrated parameter: β. (b) Calibrated parameter: ω.

(c) Calibrated parameter: dI . (d) Calibrated parameter: dP .

Figure A.4: Frequency histograms for the calibrated parameters (RJ).
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(a) Prediction of P , I, A, D, and C (right y-axis) in RJ. The
vertical line indicates the curve peak, and the dashed lines display
the corresponding 95% CI.

(b) Frequency histogram for the peak day of P .

(c) R(t) of the COVID-19 in RJ. (d) Frequency histogram for the day at which R(t) ≤ 1.

Figure A.5: Dynamics of the COVID-19 in RJ modeled with the available data (Mathematical Modeling and Methods).
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(a) Prediction of P , I, A, D, and C (right y-axis) in RJ consid-
ering a sudden release from social distancing (td = 165 days and
t1/2 = 0.1 days). The vertical line indicates the curve peak, and
the dashed lines display the corresponding 95% CI.

(b) Prediction of P , I, A, D, and C (right y-axis) in RJ consid-
ering a gradual release from social distancing (td = 165 days and
t1/2 = 15 days). The vertical line indicates the curve peak, and
the dashed lines display the corresponding 95% CI.

(c) Box plot for C in RJ at the end of simulation. (d) Box plot for D in RJ at the end of simulation.

Figure A.6: Model forecasts in RJ considering sudden and gradual releases from social distancing (td = 165 days and t1/2 = 0.1
and 15 days). The original (baseline) scenario of the main text is also presented to ease comparison.

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.05.30.20117283doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20117283
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table A.1: Model parameters.

Parameter Meaning
β Rate of transmission per contact with symptomatic infected individual
µ Rate of transmission per contact with asymptomatic infected individual
σ Transition rate from exposed to infected individuals
ρ Proportion of infected individuals who have symptoms
εI Diagnosis rate of hospitalized individuals
γA Recovery rate of asymptomatic infected individuals
γI Recovery rate of symptomatic infected individuals
γP Recovery rate of hospitalized individuals
dI Death rate of hospitalized individuals
dP Death rate of symptomatic infected individuals
ω The rate at which susceptible, exposed, and infected individuals are removed due

to social distancing measures

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.05.30.20117283doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20117283
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table A.2: Fixed values for estimated parameters and ICs.

Parameter Average Value Hypothesis
ρ 0.85 The estimated asymptomatic proportion was 15% [1]
σ 1/5 day−1 Estimated incubation (or latent) period based on [2]
εI 1/3 day−1 We adopt that only severely ill individuals are diagnosed in BR, which takes about 3 days
γA 1/14 day−1 It takes around 14 days for recovering from COVID-19 [3]
γI 1/14 day−1

γP 1/14 day−1

Class Initial Population (Ind.) Hypothesis/Source
N(0) 210147125 (BR), 17264943 (RJ) IBGE 2019
P(0) 7 (BR), 8 (RJ) Data at day 2020-03-05 (BR), 2020-03-10 (RJ)
E(0) 10 · P(0) The number of exposed individuals is about 10 times the positively confirmed ones
I(0) 5 · P(0) The number of symptomatic infected individuals is about 5 times the positively confirmed

ones
A(0) P(0) The number of asymptomatic infected individuals is about the same of the positively con-

firmed ones
D(0) 0 Data at day 2020-03-05 (BR), 2020-03-10 (RJ)
R(0) 0 Data at day 2020-03-05 (BR), 2020-03-10 (RJ)
S(0) 210147006 (BR), 17264837 (RJ) S(0) = N(0) - {E(0) + A(0) + I(0) + P(0) + R(0) + D(0)}
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