1 Trend analysis, modelling and impact assessment of

2 COVID-19 in Nepal

3	
4	Shital Bhandary ¹ , Srijan Lal Shrestha ² , Ram Prasad Khatiwada ² , Deep Narayan Shah ³ ,
5	Nabin Narayan Munankarmi ^{4¶} , Megha Raj Banjara ⁵ , Resham Thapa-Parajuli ^{6¶} , Krishna Das
6	Manandhar ⁷ , Rameshwar Adhikari ⁸ , Reshma Tuladhar ^{5*¶}
7	
8	^{1.} School of Public Health, Patan Academy of Health Sciences, Lalitpur, Nepal
9	^{2.} Central Department of Statistics, Tribhuvan University, Kathmandu, Nepal
10	^{3.} Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
11	^{4.} Biotechnology Society Nepal (BSN), Bhaktapur, Nepal
12	^{5.} Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
13	^{6.} Central Department of Economics, Tribhuvan University, Kathmandu, Nepal
14	^{7.} Central Department of Biotechnology, Tribhuvan University, Kathmandu, Nepal
15	⁸ .Research Center for Applied Science and Technology, Tribhuvan University, Kathmandu,
16	Nepal
17	
18	*Corresponding author
19	Email: reshma.tuladhar@cdmi.tu.edu.np
20	
21	[¶] These authors contributed equally to this work
22	

23 Abstract

24 With continued global expansion of COVID-19 transmission and mounting threat of the disease, the timely analysis of its trend in Nepal and forecasting the potential situation in the country has 25 26 been deemed necessary. We analyzed the trend, modelling and impact assessment of COVID-19 cases of Nepal from 23rd January 2020 to 30th April 2020 to portray the scenario of COVID-19 27 after the first phase of lockdown. Exponential smoothing state-space and autoregressive 28 integrated moving average (ARIMA) models were constructed to forecast the cases. Susceptible-29 30 infectious-recovered (SIR) model was fit to estimate the basic reproduction number (Ro) of 31 COVID-19 in Nepal. There has been increase in the number of cases but the overall growth in 32 COVID-19 was not high. Statistical modelling has shown that COVID-19 cases may continue to increase exponentially in Nepal. The basic reproduction number in Nepal being maintained at 33 low level of 1.08 for the period of 23rd January to 30th April 2020 is an indication of 34 effectiveness of lockdown in containing the COVID-19 spread. The models further suggest that 35 36 COVID-19 might persist until December 2020 with peak cases in August 2020. On the other hand, basic reproduction number of 1.25 was computed for total cases reported for the 22nd 37 March to 30th April 2020 period implying that COVID-19 may remain for at least for a year in 38 the country. Thus, maintaining social distance and stay home policy with an implementation of 39 strict lockdown in COVID-19 affected district is highly recommended. 40

41

Keywords: Autoregressive integrated moving average, COVID-19, Doubling time, Exponential
 smoothing, Susceptible-infectious-recovered model

44

46 Introduction

47	The ongoing Corona Virus Disease 2019 (COVID-19) caused by novel Severe Acute Respiratory
48	Syndrome Coronavirus 2 (SARS CoV-2) was reported to have emerged from Wuhan, Hubei,
49	China in late December 2019, where people in a seafood-wholesale wet market suffered from a
50	mysterious pneumonia [1]. World Health Organization (WHO) declared the outbreak as public
51	health emergency of international concern on 30 th January 2020, announced a new name for this
52	disease as COVID-19 on 11 th February 2020 and pandemic on 11 th March 2020 [2].
53	
54	With rapid spread in Europe, America and Asia, COVID-19 was confirmed globally in
55	3,090,445 people with 217,769 deaths by 30 th April 2020 [3]. The highest infection and death toll
56	have been recorded in the USA followed by countries in Europe, Eastern Mediterranean, South-
57	East Asia, Western Pacific and least in Africa [4].
58	

The first case of COVID-19 in Nepal reported in a 32 years old Nepalese male who was admitted 59 to hospital upon exhibiting mild symptoms, later discharged on 17th January 2020 after 60 improvement in clinical condition was a returnee from Wuhan City on 9th January 2020 [5]. On 61 24th January 2020 the infection was officially confirmed COVID-19 after reported positive from 62 WHO reference laboratory in Hong Kong [5, 6]. Later the second case was confirmed on 23rd 63 March 2020 in a 19 years old female who returned from France via Doha, Qatar [7]. On 24th 64 March 2020 the Government of Nepal implemented nationwide lockdown advising residents to 65 stay at home. 66

Until 13th April 2020, the cases in Nepal were reported from the people who recently returned from abroad, and Indian nationals residing in Nepal where the latter case was in majority. The first case of indigenous transmission confirmed on 4th April 2020 in a 34-year-old woman from Kailali District was a relative of the infected patient travelled from India [7]. By the end of the first phase of lock down of 28th April 2020, 54 cases have been confirmed with documentation of no deaths [6]. COVID-19 has spread in 10 Districts of Nepal with Udayapur reported the maximum number of 25 cases.

75

Considered as the standard laboratory test for the diagnosis of COVID-19 the cases were 76 confirmed by Reverse Transcription Real Time Polymerase Chain Reaction (RT-PCR) [8, 9]. 77 Until 30th April 2020, a total of 12,011 RT-PCR tests and 46860 Rapid Diagnostic Test (RDT) 78 79 were performed in Nepal out of which 57 were tested positive. In consideration of numerous 80 COVID-19 cases being detected in Nepal it has been essential to let the Nepal Government be prepared for the most predictable upcoming situation to tackle the COVID-19 pandemic. This 81 82 paper, therefore, assessed the descriptive and trend analysis on growth of cases, its doubling time, statistical and epidemiological model and impacts. 83

84

Materials and Methods

86 **Data sources**

The secondary data from Ministry of Health and Population (MoHP), Nepal, Health Emergency Operation Centre, and data from relevant websites related to COVID-19 in Nepal were analyzed. Trend analysis was performed from daily compiled data of 102 days from the last week of January 2020 till the end of April 2020. Major variables associated with the disease; such as

demographic variables of the cases, diagnostic tests including RT-PCR and RDT, number of
cumulative and daily cases as well as that of recovered, quarantined and isolated cases were
considered. Additionally, analysis of important variables such as cases as percent of PCR tests,
doubling time of COVID-19 cases for Nepal was weekly assessed and represented graphically.
Finally, different time points were used to develop predication models while impact assessments
have been analyzed using the whole data.

97

98 Statistical analysis: ETS and ARIMA models

The exponential smoothing state-space method (which basically comprises 'Error, Trend, and 99 100 Seasonal' components in smoothing procedure of an event under consideration; hence named 101 ETS model) which takes information into comprehensive consideration and ARIMA model [10] 102 were used to forecast COVID-19 cases for Nepal by fitting in R software using forecast package [11]. We selected the best ETS model and best ARIMA model for 99 days official cumulative 103 COVID-19 cases from 23rd January to 30th April 2020 and forecasted the cases for next 14 days 104 (1st May – 14th May 2020). An attempt has been made in the direction of epidemiological 105 modelling through application of SIR model (see next section for detail) based upon the suitable 106 parameter values for Nepal. 107

108

109 Mathematical analysis: SIR model

110 We used SIR model, a compartmental model where population is divided into three 111 compartments: susceptible, infectious and recovered. We need two types of rates to move from

one compartment to other viz. rate of transmission (β) to move from Susceptible to Infectious

113 compartment and rate of recovery (γ) to move Infectious to Recovered compartment as follows

This type of model is a dynamic model as the population in these three compartments changes with each unit of time and this can be modelled using differential equations. The simple SIR model without vital dynamics i.e. births and deaths are modelled as follows:

Where, S, I, and R were stock of susceptible, infected and recovered population. Change in S, I 119 120 and R with respect to time was computed with initial value of I = 1 and R = 0 to represent the first COVID-19 case of Nepal at 23rd January 2020. S was taken as 29 million, which is the 121 projected population of Nepal for April 2020 [12]. Two SIR models were fitted, first with basic 122 123 reproduction number (Ro) of 2.5 (global average of COVID-19) and 1.0 (to make COVID-19 endemic) in Nepal. To solve differential equations (i), (ii) and (iii), we used the Runge-Kutta 124 method available in the "deSolve" package [13] in R software version 3.5.2. We also fitted SIR 125 model for the official COVID-19 cases between 23rd January and 30th April as well as between 126 22nd March and 30th April 2020 and computed Ro for these periods using Limited Memory-127 Broyden-Fletcher-Goldfarb-Shanno (LM-BFGS) optimization algorithm in the R software. Since 128

second COVID-19 case was reported on 23rd March 2020, we also used period between 22nd
March and 30th April 2020 to check the effectiveness of the lockdown started from 24th March
2020 in Nepal. We created the change in the infected compartment for Nepal using these Ro
values and derived the time-based effect of COVID-19 cases for Nepal.
Further the aggregate macroeconomic policy responses adopted by Nepal [14], tourism related

employment data [15] and possible scenarios on tourism [16] was reviewed for assessing the

136 impact of COVID-19 created disaster on economics

137

138 **Results**

139 **Trend of the cases**

From 21st January 2020 till 30th of April 2020, a total of 57 COVID-19 cases have been 140 confirmed in Nepal. The increase in case was slow with only ten cases recorded between 21st 141 March and 10th April, 2020, but due to sudden sharp rise in new cases in some days, the trend of 142 daily new cases was found erratic and inconsistent (S1 File). The growth curve of the total cases 143 in Nepal resembles a logistic curve where the total number of cases and the curve for active 144 COVID-19 persons have also risen in similar manner but a dip in active cases have been 145 observed lately (S2 File). The number of recoveries has also risen significantly in the recent past 146 two weeks which is a positive sign. 147

148

149 In Nepal, male with age between 21- 30 years are found more infected. Highest number of 150 infected male populations may be related to the cases dominated from the male who lived in

Bhulke, Triyuga Municipality, Udayapur district and the person who came in contact with them. Majority of infected belong to the people who entered Nepal from India while some of the infected had a history of travel from other countries such as China, France, UAE, Belgium, UK and Saudi Arabia [7].

155

From the trend graph of RT-PCR tests (S3 File) the percent of cases have rapidly decreased as the number of tests increased in the month of February and has remained consistently low between 0.2 to 0.5 % thereafter.

159

160 **Doubling time of COVID-19 cases in weekly data analysis**

161 Examination of doubling time of the COVID-19 cases in Nepal based upon weekly data analysis 162 showed that there has been an increase in doubling time steadily starting around third week of March till second week of April from 3.5 to 14 days with a long span of time for doubling 163 duration initially from one reported case to two. Thereafter, it dropped sharply followed by 164 165 unexpected sudden rise in the cases during the third week of April. After that, it has again increased to around 11 days showing a slowing down of trend of the infected persons. The 166 overall picture shows that there have been ups and downs in the doubling time of the COVID-19 167 168 cases in Nepal and is currently around 11 days (Fig 1)

169

Fig 1. Doubling time of COVID-19 cases in Nepal (Based upon weekly data analysis from
 22nd January 2020 to end of April 2020

172

173 Statistical Modelling of COVID-19 Cases of Nepal

174	The best ETS state-space model was found to be ETS (M, A, N) for the data i.e. exponential
175	smoothing with Multiplicative Error, Additive Trend and No Seasonality model. This is
176	equivalent to Holt's linear additive model (Hyndman and Athanasopolus 2018).
177	

178 Fig 2. ETS decomposition of cumulative COVID-19 cases of Nepal (23rd Jan. – 17th April

179 **2020).**

180

Forcased cumulative COVID-19 cases using ETS (M,A,N) model revealed that COVID-19 cases were increasing at the rate of 2 cases per day in Nepal (Table 1). The 95% confidence interval of the forecasts were very wide, which means that starndard errors are high and precision of the estimation is low. Thus, forecasted values may not coincide with the official reported values.

186 Table 1. Forecasted cumulative COVID-19 cases using ETS (M,A,N) model, Nepal

187	Date	Day	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
188	1-May	100	58.81742	47.318412	70.31643	41.231205	76.40364
189	2-May	101	60.24833	44.396137	76.10053	36.00449	84.49218
190	3-May	102	61.67925	40.245795	83.1127	28.89961	94.45889
191	4-May	103	63.11016	35.07717	91.14316	20.2374	105.98293
192	5-May	104	64.54108	28.996946	100.08521	10.181018	118.90114
193	6-May	105	65.97199	22.051937	109.89205	-1.197936	133.14192
194	7-May	106	67.40291	14.253802	120.55201	-13.881634	148.68745
195	8-May	107	68.83382	5.591121	132.07652	-27.887543	165.55519
196	9-May	108	70.26474	-3.964673	144.49415	-43.259349	183.78882
197	10-May	109	71.69565	-14.456318	157.84762	-60.062415	203.45372
198	11-May	110	73.12657	-25.93925	172.19238	-78.381525	224.63466
199	12-May	111	74.55748	-38.480945	187.5959	-98.319873	247.43483
200	13-May	112	75.98839	-52.160735	204.13752	-119.998786	271.97557

14-May	113	77.41931	-67.069942	221.90856	-143.557931	298.39655
Note: The ne	egative va	lues in the table	e means zero case	es.		
The cumul	ative CO	VID cases in	Nepal revealed	the increasing	trend of COV	D-19 cases with
vide variat	ion (Fig 3	3).				
Fig 3. Cu	mulative	COVID-19	cases of Nepal	: Jan23 – 1 I	May 2020 usin	g ETS (M,A,N)
model shov	wing inci	easing trend				
The best A	RIMA m	odel for this 9	9-day data of N	Vepal is ARIM	A (3,2,1). This 1	means it required
two times	differenc	e of the serie	es first to mak	e the data sta	tionary followe	d by third order
autoregress	ive filter	and first or	der moving av	erage filter to	correct the aut	ocorrelation and
forecasting	error in	the data. Fo	recasted cumul	ative COVID-	19 cases using	ARIMA (3,2,1)
model show	vs the for	ecasts obtaine	d from this mod	lel for the next	14-day for Nepa	al (Table 2).
COVID-19	cases inc	creasing at 2 c	ases per day in	Nepal (Table 2). The 95% conf	idence intervals
were found	realistic.	However. the	e forecasts may	not coincide w	ith the official re	eported cases.
, ere round	1041150101	110 e , e , e , e , e , e , e , e , e ,	iorecusts may			
Table 2 F					[A (2 2 1) J	-1 N1
1 able 2. F	brecasted		COVID-19 cas	es using ARIN	1A (3,2,1) mode	ei, mepai
Date	Day	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
01-May	100	58.13008	55.92091	60.33926	54.75144	61.50873
02-May	101	59.77956	56.73407	62.82506	55.12188	64.43725
03-May	102	61.90513	58.17988	65.63039	56.20784	67.60242
04-May	103	62.92401	58.52157	67.32645	56.19105	69.65697
05-May	104	64.09565	58.49546	69.69583	55.53091	72.66038

226	06 Mar						
220	00-Way	105	65.56641	58.75999	72.37282	55.15689	75.97592
227	07-May	106	67.29525	59.33921	75.25128	55.12754	79.46296
228	08-May	107	68.63131	59.52688	77.73574	54.70728	82.55534
229	09-May	108	69.91791	59.47234	80.36349	53.94279	85.89304
230	10-May	109	71.3307	59.46664	83.19476	53.18619	89.47521
231	11-May	110	72.88073	59.58482	86.17663	52.5464	93.21505
232	12-May	111	74.3018	59.55531	89.0483	51.74899	96.85462
233	13-May	112	75.66426	59.37703	91.95149	50.75509	100.57344
234	14-May	113	77.06874	59.17249	94.96499	49.69879	104.43869

- 235
- 236

Forecast from ARIMA (3,2,1) model were lower than the official COVID-19 cases of Nepal between 1st and 14th May 2020 (Fig 4). This means we need other approaches for modelling COVID-19 cases in Nepal.

240

Figure 4. Cumulative COVID-19 cases of Nepal: 23rd Jan. – 1st May 2020 using ARIMA
(3,2,1) model showing increasing trend

243

244 Mathematical Modelling of COVID-19 cases of Nepal

245 Scenario 1

246 Beta = 1/2 = 0.5 per person; Beta = $0.5/29,000,000 = 1.72 \times 10^{-8}$ for Nepal and Gamma = 1/5 = 1000

- 247 0.2 (reciprocal of average incubation period of COVID-19 cases) (Fig 5). This gave basic
- reproduction number (Ro) as 0.5/0.2 = 2.5, which is the average Ro around the world [17].

250	Fig 5. SIR model with $\beta = 0.5$ and $\gamma = 0.2$ for N=29,000,000 of Nepal which gave basic
251	reproduction number Ro=2.5
252	
253	This SIR model shows that 6770893 persons will be infected around 60 days whereas 38,560
254	persons will be infected at 100 day since the first case appeared in Nepal.
255	
256	Scenario 2
257	Beta = $1/5 = 0.2$ per person; Beta = $0.2/29,000,000 = 6.689 \times 10^{-9}$ for Nepal and Gamma = $1/5 = 0.2$
258	0.2 (reciprocal of average incubation period of COVID-19 cases) (Fig 6). This gives basic
259	reproduction number (Ro) as $0.2/0.2=1$.
260	
261	Fig 6. SIR model with β = 0.5 and γ = 0.5 for N=29,000,000 of Nepal giving basic
262	reproduction number Ro=1
263	
264	This SIR model shows that only 1 persons will be infected each day as the basic reproduction
265	number is 1.
266	Companie 2
	Scenario 5
267	Scenario 3 We used estimated $\beta = 0.5197019$ and $\gamma = 0.4802873$ obtained for official cases between 23 rd
267 268	Scenario 3 We used estimated $\beta = 0.5197019$ and $\gamma = 0.4802873$ obtained for official cases between 23 rd January and 30 th April 2020 using LM-BFGS optimization in R software giving Ro = $\beta/\gamma = 1.08$.
267 268 269	Scenario 3 We used estimated $\beta = 0.5197019$ and $\gamma = 0.4802873$ obtained for official cases between 23 rd January and 30 th April 2020 using LM-BFGS optimization in R software giving Ro = $\beta/\gamma = 1.08$. This SIR model revealed that there will be maximum of 532,627 cases if it continues with this
267 268 269 270	Scenario 3 We used estimated $\beta = 0.5197019$ and $\gamma = 0.4802873$ obtained for official cases between 23 rd January and 30 th April 2020 using LM-BFGS optimization in R software giving Ro = $\beta/\gamma = 1.08$. This SIR model revealed that there will be maximum of 532,627 cases if it continues with this Ro. (Fig 7).

272	Estimated β and γ obtained using LM-BFGS optimization in R software for official cases
273	reported between 22 nd March and 30 th April 2020 were 0.5553948 and 0.4446052 respectively
274	giving Ro = beta/gamma = 1.25. This SIR model revealed that there will be maximum of
275	6197014 if it continues with this Ro.
276	
277	Fig 7. SIR model with official cumulative COVID-19 cases of Nepal if Ro=1.25
278	
279	When Ro=1 was considered for the official data on 30 th April 2020 then maximum cases will be
280	58.5462 and COVID-19 epidemic will be over by June 2020 at this Ro in Nepal (Fig 8).
281	
282	Fig 8. Data driven SIR model fit with three Ro values (1, 1.08 and 1.25) for Nepal
283	SIR model based on official data revealed that COVID-19 cases will increase in Nepal with Ro
284	of 1.08 and the epidemic will be over only by December 2020 with peak of cases on August
285	2020 for this Ro. On the other hand, COVID-19 epidemic will only be over around one year time
286	if Ro continues as 1.25.
287	
288	Impact

Tourism associated employment loss and its impact on livelihood is an external sector shock in the Nepalese economy owing to COVID-19. Among the top 10 international tourist arrival in Nepal: India, Germany, France, UK, and USA have profoundly affected economies due to COVID-19 while Australia, South Korea, China and Thailand are already on the verge of flattening the curve [18]. It indicates the decaying demand for international tourism in Nepal. The "International-Tourism-Arrival elasticities to Employment" in the case of Nepalese tourism

295 are 0.54 for direct employment and 0.57 for the total-employment that includes indirect 296 employment also [19]. If the restrictions on global tourism remain till end of July, international tourism arrival in Nepal will shrink by 58%. As the elasticity coefficient is 0.54, the direct 297 298 tourism-related jobs will reduce by 31%. It means the tourism sector will directly result in loss of 156,000 jobs. If the COVID-19 related restriction be extended till December, international 299 tourism will shrink by 78% and the direct tourism-related employment will reduce by 42%, 300 which totals 210,000 jobs loss. Similarly, out of 700,000 total tourism-related jobs, 231,000 to 301 311,000 jobs will disapper for several months which is a scary situation for a developing 302 303 economy like Nepal.

304

305 **Discussion**

The analysis of COVID-19 cases in Nepal provides an insight into situation till implementation 306 of first phase of lockdown and prediction of expected scenario thereafter. The data of the cases 307 308 were based on the results of test confirmed by RT-PCR. From the trend graph of cases as percent of RT-PCR tests the percent of cases have rapidly decreased as the number of tests increased in 309 the month of February and has remained more or less constant between 0.2 to 0.5 % thereafter. 310 311 This is an indication of absence of significant rise in COVID-19 cases despite increase in the tests substantially in the months of March-April in Nepal, although the number of tests may still 312 not be sufficient to cover large proportion of population in Nepal. The overall growth of COVID-313 19 cases in Nepal is not high, which can be taken positively and credited to the lockdown 314 implemented by Nepal Government and awareness of the diseases through media along with the 315 316 preventive measures. Doubling time of COVID-19 cases along with incubation period of the

coronavirus are important variables in the spread of the epidemic. The incubation period of the
virus has been reported with certain amount of variability (2-14 days) with the median average
hovering around 5 days with possible outliers up to 27 days [20].

320

The overall picture shows that there has been ups and downs in the doubling time of the COVID-19 cases in Nepal and is currently around 11 days (Fig 1) which is just above 10 days doubling time of COVID-19 cases in India as reported by different news channels of India though the total cases in Nepal are still negligible compared to that of India. Bhandary (2020) has stated that with implementation of lockdown the doubling time increased from 5 days to 15 days [21].

326

Statistical modelling showed that COVID-19 cases may continue to increase exponentially in 327 Nepal. Forecasts from best ARIMA model (MAPE = 4.18) are found to be more precise than the 328 ETS exponential smoothing model (MAPE = 4.55). Forecasts from best ARIMA model will be a 329 valid estimate if clusters with more than 10 cases will be found there in the future too. This has 330 already happened once between 18th April and 1st May 2020 in Nepal and thus requires particular 331 attention of the concerned administrators and policy makers. However, it will not be valid if the 332 cases will be increased in higher rates in the country. ETS and ARIMA models produced 333 estimated values of COVID-19 cases for Nepal based upon the currently available official data. 334 Despite the possibility of questions on whether sufficient tests have been conducted for such 335 modelling, COVID-19 cases in Nepal has not risen sharply in high numbers and the total cases in 336 337 Nepal are still below 100 but expected to rise in coming days.

338

Compartmental SIR model on the other hand reveals that nearly seven million Nepali population might be infected with average global basic reproduction number of 2.5 for COVID-19 cases and maximum cases would have reached within 60 days of the first case, which fortunately did not happen in the country. The total number of cases would have been only 1 if the basic reproduction number remained at one in Nepal, which also did not happen as 30 cases were reported by 17th April 2020 and 58 in 30th April 2020.

345

Basic reproduction number of Nepal was computed as 1.08 for 23^{rd} Jan -30^{th} April 2020 period. 346 which means lockdown was working well to maintain low level of basic reproduction number in 347 the country. Further, it also revealed that COVID-19 will only be over by December 2020 with 348 peak cases in August 2020 with Ro of 1.08. On the other hand, basic reproduction number of 349 1.25 was computed for total cases reported from 22nd March to 30th April 2020 period, which 350 351 means that COVID-19 did not increase exponentially but it will remain for at least a year in the country. Thus, these results clearly suggests to continue the lockdown in the hotspots (heavily 352 353 affected areas) and slowly open the lockdown on least affected areas with social/physical 354 distancing and personal hygiene maintenance in Nepal.

355

This analysis we performed have been restricted to the lockdown implemented from 24th March 2020 till the end of April 2020 and not a final assessment yet considering that the spread of disease could still be at the early stage in Nepal and calls for re-assessments periodically in future as well till the pandemic phases out.

360

361 Considering the containment of outbreak lockdown is necesary, it will have huge impact in the 362 country's economy and the possible scenario of easing international travel has been contemplated. Based on the [22], the best-case scenario assumes a gradual opening of 363 364 international borders and easing of travel restrictions in early July. It will witness reduction in global tourism arrival likely by 58 per cent. The second scenario assuming the international 365 tourism arrival shrinkage by 70 per cent points is due to the restriction in situations goes until 366 early September. Relatively uncomfortable third scenario explains the easing of the restriction 367 sustains till December with arrival number reduction by 78 per cent. Considering these three 368 369 optimistic scenarios, we relate the international tourism arrival and employment plausibility in Nepal. 370

371

The tourism sector faced a sharp downswing since the COVID-19 outbreak and with uncertainty continued to dominate. The tourism sector will loose about US\$ 910 billion to US\$ 1.2 trillion in export revenues from tourists. Most importantly, about 100 to 120 million direct tourism related jobs are at stake.

376

The tourism sector contributes about 2% of the GDP and some 15-20% of the foreign reserve. Furthermore, this sector is generating a significant volume of employment in Nepal. In Nepal, there are about 500,000 direct and 700,000 total jobs in the tourism sector. Nepalese tourism sector is one of the livelihood options to many marginal people. When the lockdown struk the tourism sector, the livelihood issues arose that informal or unorganized job holders will experience hardest hit.

383

The unprecedented lockdown also makes domestic tourism very unlikely, which means that slowdown of global tourism is going to be the decisive factor influencing employment in the tourism sector in Nepal.

387

388 **Conclusions**

389 The data based trends for COVID-19 epidemic in Nepal have been analyzed followed by

assessment of the outbreak impacts in comparison with existing models. The outcomes of the

391 research can be summarized as follows:

The total COVID-19 cases are increasing by following the logistic curve. However, there
 has been a variation in the doubling time during the analysis period, which can be
 attributed to the effect of lockdown imposed by the Government. The forecasts from best
 ARIMA model may provide more precise and valid estimates if clusters with more than
 10 cases are found in future.

As in compartmental SIR model, nearly 7 million people might get infected. With an average global basic reproduction number of 2.5 for COVID-19 cases, maximum cases would have reached within 65 days, which fortunately did not happen in the country. The basic reproduction number in Nepal being maintained at low level of 1.08 for the period between 23rd January and 30th April, 2020 is an indication of effectiveness of the lockdown in containing the COVID-19 spread.

Further, the model has suggested that the COVID-19 will only be over by December
2020 with the peak cases in August 2020. On the other hand, basic reproduction number
of 1.25 was computed for total cases reported for 22nd March – 30th April 2020 period,
which implies that COVID-19 may persist at least for a year in the country.

407	Thus, the results so far obtained clearly recommend continuing the lockdown in the
408	hotspots (heavily affected areas) and gradually easing the lockdown in the least affected
409	areas with strict social/physical distancing and personal hygiene maintenance.

- 4. Since the COVID-19 is expected to destroy the Nepalese economy on many fronts a
 robust impact study on economic impact of COVID-19 in Nepalese economy is
 suggested.
- 413

414 Acknowledgements

We are thankful to Prof Dr. Dinesh Raj Bhuju, Academician, Nepal Academy of Science and
Technology for his encourgament. We acknowledge Ministry of Health and Population, Nepal
Government for the data on COVID-19.

418

419 **References**

420	1.	Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An overview. J Chin Med
421		Assoc. 2020; 83(3):217-220.

422 2. WHO. Naming the coronavirus disease (COVID-19) and the virus that causes it. 2020.

423 Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-

- 424 2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-
- 425 that-causes-it
- 426 3. WHO. Coronavirus disease 2019 (COVID-19), Situation Report-101. 2020. Available
- 427 from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200430-

428 sitrep-101-covid-19.pdf?sfvrsn=2ba4e093_2

429	4.	WHO. Rolling updates on coronavirus disease (COVID-19). 2020. Available from:
430		https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-
431		happen
432	5.	Bastola A, Sah R, Rodriguez-Morales AJ, Lal BK, Jha R, Ojha HC, et al. The first 2019
433		novel coronavirus case in Nepal. Lancet Infect Dis. 2020; 20(3):279-280.
434	6.	MoHP. Coronoavirus disease (COVID-19) outbreak updates and resource material.
435		Health Emergency and Disaster Management Unit, Health Emergency Operation Center
436		2020. Available from: https://heoc.mohp.gov.np/update-on-novel-corona-virus-COVID-
437		19
438	7.	Pun SB, Mandal S, Bhandari L, Jha S, Rajbhandari S, Mishra AK, et al. Understanding
439		COVID-19 in Nepal. J Nepal Health Res Counc. 2020; 18(1):126-127.
440	8.	Paudel S, Dangal G, Chalise A, Bhandari TR, Dangal O. The Coronavirus Pandemic:
441		What Does the Evidence Show? J Nepal Health Res Counc. 2020; 18(1):1-9.
442	9.	Yip CC, Ho CC, Chan JF, To KK, Chan HS, Wong SC, et al. Development of a Novel,
443		Genome Subtraction-Derived, SARS-CoV-2-Specific COVID-19-nsp2 Real-Time RT-
444		PCR Assay and Its Evaluation Using Clinical Specimens. Int J Mol Sci. 2020;
445		21(7):e2574. http://doi:2510.3390/ijms21072574.
446	10.	Hyndman R, Athanasopoulos G: Forecasting: principles and practice. In: OTexts. 2nd
447		edition edn: Melbourne, Australia; 2018.
448	11.	Hyndman R, Athanasopoulos G, Caceres G, Chhay L, O'Hara-Wild M, Petropoulos F, et
449		al. Package forecast: Forecasting functions for time series and linear models. 2020.
450		Avaiable from: https://github.com/robjhyndman/forecast
451	12.	WPP. World Population Prospects. 2020. Avaiable from: https://population.un.org/wpp/

- 452 13. Soetaert K, Petzoldt T, Setzer RW. Solving differential equations in R:package deSolve.
 453 Journal of Statistical Software. 2010; 33(9):1-25.
- 454 14. IMF. Policy Response to COVID-19. Policy Tracker. 2020. Available from:
 455 https://www.imf.org/en/Topics/imf-and-COVID19/Policy-Responses-to-COVID-
- 456 19?fbclid=IwAR3nM0PE75qzr-WajzLLLddfm9dSSYIYJ_lfzbObGLqJILZdfmhhsb-
- 457 QIkI#N
- 458 15. WTTC. Economic impact of tourisms. World travel and tourism corporation. 2020.
 459 Available from: https://wttc.org/Research/Economic-Impact
- 460 16. UNWTO Report: International tourist number could fall. 2020. Available from:
 461 https://www.unwto.org/news/COVID-19-international-tourist-numbers-could-fall-60-80462 in 2020
- Liu Y, Gayle AA, Wilder-Smith A, Rocklov J. The reproductive number of COVID-19 is
 higher compared to SARS coronavirus. J Travel Med. 2020; 27(2):taaa021. doi:
- 465 10.1093/jtm/taaa021.
- 466 18. Roser M, Ritchie H. Our World in Data: Coronavirus Pandemic (COVID-19). 2020.
 467 Available from: https://ourworldindata.org/the-covid-19-pandemic-slide-deck
- 468 19. Thapa-Parajuli R, Paudel R. Tourism Sector Employment Elasticity in Nepal: An
 469 Analysis. 2020.
- 470 20. Worldometer. 2020. Available from

:

- 471 https://www.worldometers.info/coronavirus/coronavirus-incubation-period/
- 472 21. Bhandary S. Effectiveness of lockdown as COVID-19 intervention: official and
 473 computed cases in Nepal. Journal of Patan Academy of Health Sciences. 2020; 7(1):37474 41.

475	22.	UNWTO Report. International Tourist Number Could Fall. 2020. Available from:
476		https://www.unwto.org/news/covid-19-international-tourist-numbers-could-fall-60-80-in-
477		2020
478		
479		Supporting information
479 480		Supporting information S1 Fig. Trend of daily new cases and recovered cases of COVID-19 in Nepal

- 482 S3 Fig. Number of cases as percentage of total PCR tests conducted on the samples
- 483 from COVID-19 suspected

Decomposition by ETS(M,A,N) method

Forecasts from ETS(M,A,N)

Forecasts from ARIMA(3,2,1)

Days

Days

Infected in Nepal (SIR Model Fit)

Infected in Nepal (Data driven SIR Fit for Ro Values)