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Abstract 8 

Background: With the SARS-CoV-2 pandemic gripping most of the globe, healthcare and economic 9 

recovery strategies are being explored currently as a matter of urgency.  The underpinning rationale 10 

of this paper is that we believe that health and care services are provided locally, therefore, local 11 

implications of national policy need to be reflected when informing national responses to the SARS-12 

CoV-2 pandemic. 13 

Methods: We adopted the assumptions underlying the United Kingdom government’s national 14 

epidemiological model which influences the national policy response to the SARS-CoV-2 pandemic. 15 

We used these in a local context and show projections in terms of presentations of symptomatic 16 

patients differ in a variety of settings. Setting: North of England, United Kingdom, population modelled 17 

at four local constituent levels which aggregated gives a total population of 3.2m. 18 

Results: We clearly demonstrate that there is significant difference in the way the national modelling 19 

outputs are replicated at local levels. Specifically, in terms of projected increased levels of demand for 20 

services on the local health and care systems.  21 

Conclusions: We present significant evidence of differing timelines specifically in terms of subsequent 22 

projected peak demands. Additionally, it clearly indicates varying levels of such demand throughout 23 

the four modelled localities. These idiosyncrasies are ‘masked’ by both regional and national 24 

approaches to modelling. We urge readers to ensure that any national policy is appropriately adopted 25 

through the use of complementary bottom up approach, to suit local health and care systems. Finally, 26 

we share our methodology to ensure other professionals could replicate this study elsewhere.  27 
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Background 1 

National governments are forced to take urgent action using national policies to restrict social 2 

interactions and temporary business closures which impact significantly on numerous factors of our 3 

lives. In order to fully understand how limited health and care resources could be utilised and 4 

maximised in response to this pandemic, we need to create a thorough understanding of the impact 5 

of national policy on local health and care systems. Our guiding principle and understanding here is 6 

that health and care services are provided locally (effectively at Integrated Care Partnership – ICP 7 

level4) not regionally or nationally, indeed, not in aggregate but to individuals. Therefore, we 8 

conducted a study using well-established model parameters which are used to inform national policy 9 

and adapted these to consider local nuances to see whether any projected model outputs would 10 

behave differently to national projections. We show how projections in terms of presentations of 11 

symptomatic patients in a hospital setting significantly vary between local communities. Indeed, when 12 

aggregated up to regional or national levels, such local idiosyncrasies fade which may have profound 13 

consequences in efforts to coordinating local health and care services in response to SARS-CoV-19. 14 

Methods 15 

 16 

Model design 17 

A System Dynamic Model (SDM) approach is selected and a Susceptible, Exposed, Infectious, 18 

Recovered, (SEIR) stock and flow model designed by the SDM software manufacturer5 is adapted for 19 

the base model. The model is run over a one-year period starting from 1st January 2020 and calculates 20 

one transaction per day using the Euler integration method. SDM offers communities a tool with which 21 

to understand their systems and become ready to influence and engage with real-world actions 22 

(Minyard et al., 2018) whilst avoiding discrete operational level interference. The purpose of the SDM 23 

allows Integrated Care System (ICS) communities to simulate scenarios for non-pharmaceutical 24 

interventions to SARS-CoV-2 and examine care provision away from a national perspective.  Porter 25 

and Oleson discuss limitations in SEIR arising from exponential distribution of latent and infectious 26 

times (Porter & Oleson, 2013) and SDM was selected to allow the dynamic application of stochastic 27 

distribution of infection of the susceptible population over time.  SDM also allows the ability to apply 28 

variables to control the transmission of the virus (social distancing measures) with which to test 29 

interventions (Lopez & Rodo, 2020) (Milne & Xie, 2020).  30 

 
4 Note on geography: The ICS covers the North East and North Cumbria of England. There are four (4) constituent ICPs; 1) 

North (North of Tyne and Gateshead ICP); 2) Central (Durham, South Tyneside and Sunderland ICP); 3) West (North 

Cumbria ICP); 4) South (Tees Valley ICP). Total population ~3.2m. 
5 iSee Systems https://www.iseesystems.com/  
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 1 

The model concept is shown in figure 1 below. 2 

 3 

Figure 1: epidemiological model concept 4 

Data 5 

The SDM is calibrated with data describing the population, virus characteristics and actual 6 

outcomes.  Population data are extracted from the Office for National Statistics (ONS) census 7 

projections by age and Clinical Commissioning Group (CCG) and applied to the ICS or population being 8 

modelled (see Localisation sector for further work). The virus characteristics are taken from the 9 

Imperial College COVID-19 Response Team (ICCRT) simulation, which informs United Kingdom 10 

government’s national policy on the SARS-CoV-2 pandemic (Ferguson et al., 2020); namely the fatality 11 

and virus transmission rates by age group. Actual outcomes, for daily hospital deaths and admissions 12 

are taken from NHS England daily reports which are consistent with reported hospital length of stay 13 

data are extracted from each acute hospital trust. Generic processed data is available by consulting 14 

(Groen & Turner, 2020).  15 

Validation 16 

To maintain fidelity to the ICCRT simulation, the SDM was initially calibrated with United 17 

Kingdom population data and the outputs from both models matched (Ro = 2.4, the estimated 18 
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reproduction number at the time of validation). Both models temporally match for expected deaths 1 

and critical care bed provision based on proposed intervention efficacy.  2 

Adaptation and Localisation 3 

Using the ICCRT simulation, the SDM categorised the initial susceptible population into age 4 

groupings. To reflect local characteristics, this was augmented to include a risk profile (low, moderate, 5 

and high) using population-based health profiles taken from a separate proprietary model (the Cohort 6 

model). The cohort model uses data extracted from ONS and the Kent Integrated Dataset to create 7 

prevalence and incidence for morbidities (including expected multi-morbidities) adjusted for each 8 

English CCG. Models were calibrated for each ICS in the North East and North Cumbria region of 9 

England, based on its constituent CCGs, and was seeded for initial infections 30 days prior to the first 10 

cluster of deaths on sequential days and validated so that modelled outcomes for ICS hospital bed 11 

occupation and deaths fitted actual situation report results.  An example ICS results are shown in figure 12 

2 and 3. 13 

 14 

Figure 2: Model validation example 1 15 

 16 

Figure 3: Model validation example 2 17 
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Scenarios 1 

We set four scenarios to simulate the demand on healthcare service provision following the 2 

initial intervention to reduce potential virus transmitting contacts introduced by the UK government 3 

during March 2020.   Baseline contacts pre-intervention (before March 2020) were set at a nominal 4 

value of 100 and adjusted for likely reductions from government interventions for the remainder of 5 

2020.  The scenarios tested. The adjusted contact value and timings for these scenarios are 6 

summarised in table 1 below. 7 

              

  Description   

  
Scenario 

1 

The initial impact from the intervention is extended but weakens 
following initial success. Later in the year the impact from the 
intervention increases as a result of effective test, track, and trace.  

  

    

    

  
Scenario 

2 

Gradual, medium to long term relaxation of social distancing from 
May 10th results in a reduction in the effectiveness of social 
distancing. 

  

    

    

  
Scenario 

3 

Cyclical relax/renew - May 10th relaxation with a reduction in the 

effectiveness of social distancing following by subsequent lock down 
and release. 

  

    

    

  
Scenario 

4 
Extended social distancing but weakening of the initial lock down 
followed by effective implementation of track and trace. 

  

    

    

              
Table 1: Summary of scenarios modelled. 8 

9 

Table 2: Model scenarios for contact adjustments during 2020. 10 

Results 11 

The scenarios were run for four local communities in the North East of England and North 12 

Cumbria.  All calibration data were assumed the same except for population health needs and the 13 

seeding date required for timing in order to fit the model outcomes to actual.  Modelled Outcomes 14 

from the scenarios were analysed for hospital deaths, acute hospital bed occupancy split between bed 15 
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capacity requiring ventilation, continuous positive airway pressure (oxygen plus) and oxygen.  1 

Epidemiological progression was also analysed using: 2 

• the effective reproduction number - Re (the proportion of overall population remaining 3 

susceptible to the virus). Re = Ro x (population susceptible / total population) 4 

• the effective reproduction number over time - Rt (representing the average new infections 5 

arising from active infections at time).   6 

Epidemiology 7 

The differences in susceptible population resulting from the pre-intervention viral spread can 8 

be seen in the results in figure 4.  The efficacy of the changing contact rate arising from the scenarios 9 

creates dynamics in viral progression, for example West (i.e. North Cumbria) recorded earlier cases in 10 

larger quantities than the other areas within the ICS and the effect can be seen in Re lowering at a 11 

more rapid rate in the period to April 2020.   12 

 13 

 14 

Figure 4:  Differences in effective reproduction number Re under scenario 3 15 

The dynamic of viral progression can be seen in the demand for acute hospital beds and deaths 16 

in the following sections, modelled outputs for all four scenarios are fitted to actual performance from 17 

the model inception until the data of simulation in mid-May 2020. 18 

  19 
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Bed Occupation 1 

 2 

Figure 5: Showing scenario 1 results for the entire ICS then split by ICPs clearly showing variation between local communities. 3 

 4 

Figure 6: Showing scenario 1 results demand for oxygen beds by individual ICP, clearly showing local idiosyncrasies in terms 5 
of demand. 6 

Results above are split by locality in figure 6 modelling demand for oxygen beds. This 7 

illustrates overall demand for this type of bed, however, we have modelled this for each type of SARS-8 

CoV-19 demand a more detailed analysis and anonymised data can be accessed at (Groen & Turner, 9 

2020). Generally speaking, the demand of beds is based on the infection rate amongst the constituent 10 

population remaining susceptible to the virus, which accounts for the higher number of total demand 11 

for such bed types. However, it is important to note that patients admitted to this type of beds tend 12 

to have a shorter length of stay and tend to be clinically less complicated to manage operationally.  13 

  14 
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Hospital Deaths  1 

 2 

 3 

Figure 7: Deaths in hospitals modelled  4 

The model is indicating a higher first peak in terms of hospital deaths, owing to the fact that 5 

the cohort approach considers the remaining susceptibility amongst the uninfected population and 6 

stratifies this by category of cohort.    7 

Discussion 8 

With regards to contact rate and seeding of the model – we have subjected our approach to 9 

numerous tests to demonstrate that the overall outcomes from the pandemic, for example in terms 10 

of deaths, are highly sensitive to the timing of initial seeding and the subsequent lock-down. We 11 

applied the national model on a single data file on the 23rd March 2020.  In areas of high initial seeding 12 

of the virus the additional days of spread may result in differences in the overall number of deaths 13 

expected and in the subsequent size of any second wave of the pandemic. This will rely on different 14 

levels of the remaining susceptible populations after the observed initial peak and potential projected 15 

ones, see (Biskup & Prewitt, 2020) for a further discussion.  We certainly believe that this strengthens 16 

the case for scenario planning of subsequent easing or resumption of any lock-down measures on the 17 

basis our locally focused approach to modelling this pandemic.  18 

The model is sensitive to two major variables outside of the virus characteristic, these are 19 

seeding volume/date and the contact reduction. Model seeding assumes a certain number of 20 

infections entering the region to create the virus uptake prior to the first peak, however it does not 21 

currently assume any new cases coming from out of region after that time.  This seems an unlikely 22 

scenario and future version of the model will address this issue as more evidence on travel following 23 

easing of government policy is made we aim to refine this using intelligence and conceptual 24 

approaches such as outlined in (China CDC, 2020).  This will be important as the current 25 

epidemiological element of the model is one of self-perpetuating transmission – the current infected 26 
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population are the only ones who will contribute to new infections.  Social distancing contacts also 1 

depend on a less aggregated view.  Local characteristics for potentially virus transmitting contacts can 2 

be estimated through data including urban / rural or population density measures  (Leung et al., 2020; 3 

Li et al., 2020), household density, vulnerability indices and movement/transport (Kraemer et al., 4 

2020) see (Prem et al., 2020) for how these factors played a role in China’s approach to social isolation. 5 

This would allow greater understanding of influences on clinical demand through more sophisticated 6 

scenario building. 7 

As per well-established literature, the model concurs on recent peer-reviewed publications 8 

and popular media outlet coverage which draw attention to a ‘second wave’ scenario, see (World 9 

Health Organization, 2020) and (Xu & Li, 2020) for example. Indeed, it is within that context that we 10 

stress the importance of locally defined modelling approach (effectively; bottom up) which reflects 11 

local population needs, which, when aggregated will comprise a more insightful and nuanced 12 

approach to inform national approaches to this global challenge. We call on researchers to adopt our 13 

approach within their own local context to ensure health and care demands are met locally within the 14 

inevitable constraints that comes with national policy. 15 

 16 

Notes on Limitations 17 

Contact too sensitive – developed into multidimensional transmission by place, movement 18 

vulnerability, social/domestic contact which will be applied to the age-based population health needs. 19 

Questions over the small number needed for seeding compared to local estimates (may mean 20 

infection rate is higher as per other papers). Model fitted to recorded hospital admissions and deaths 21 

(although COVID deaths outside of hospital are modelled.  22 

• Contact rate and seeding – highly sensitive independent factors 23 

• Deaths peak in first wave – more high risk / vulnerable (from cohort model) 24 

• Beds have generally higher demand in second (subsequent waves, depending on relaxation in 25 

scenario) 26 

• Time of initial infections important in epidemiology. 27 

• The capacity numbers used in the reports remain high as they are in use nationally at this level 28 

but we will look to work with providers to add more ‘accurate’ numbers in the coming week, 29 

alongside those currently in use. 30 

  31 
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