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Abstract

This paper develops an algorithm to predict the number of Covid-19 patients who
will start to use ventilators tomorrow. This algorithm is intended to be utilized by a
large hospital or a group of coordinated hospitals at the end of each day (e.g. 8pm)
when the current number of non-ventilated Covid-19 patients and the predicated num-
ber of Covid-19 admissions for tomorrow are available. The predicted number of new
admissions can be replaced by the numbers of Covid-19 admissions in the previous d
days (including today) for some integer d ≥ 1 when such data is available. In our
simulation model that is calibrated with New York City’s Covid-19 data, our predic-
tions have consistently provided reliable estimates of the number of the ventilator-
starts next day. This algorithm has been implemented through a web interface at
covidvent.github.io, which is available for public usage.

Utilizing this algorithm, our paper also suggests a ventilator ordering and returning
policy. The policy will dictate at the end of each day how many ventilators should be
ordered tonight from a central stockpile so that they will arrive by tomorrow morn-
ing and how many ventilators should be returned tomorrow morning to the central
stockpile. In 100 runs of operating our ventilator order and return policy, no patients
were denied of ventilation and there was no excessive inventory of ventilators kept at
hospitals.

∗We thank David Shmoys for coordinating Cornell ORIE Covid-19 projects including this one. We thank
Shane Henderson and Gloria Shen for improving the exposition of this paper.
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1 Predicting number of new patients on vents

Throughout this paper, the term “patient” refers to Covid-19 patient and the term “hos-
pital” refers to one large hospital that treats Covid-19 patients or a group of hospitals
in a region that have some central coordination on ventilators. Let S be the number of
new patients who will require ventilator support next day (tomorrow) at this hospital. We
will call these patients “vent-starts” or “vent-start patients”. We provide the estimate of
the number of ‘vent-starts’ at the end of each day when the hospital’s daily numbers of
on-vent and not-on-vent patients become available. We estimate this quantity using the
dynamic data (available today from the hospital) and parameters (available historically,
not necessarily from the hospital) as described below.

Dynamic data

The following dynamic data can be observed or estimated daily.

(D.1) L: the number of hospitalized patients who are not on vents today.

(D.2) A: an estimate of the next day’s number of new hospital admissions. We consider a
time-series method for predicting A in Section 4.4.

Parameters

The following parameters are static and can be estimated from historical data.

(P.1) The probability for a newly admitted patient to belong to one of these types

type 1: never-vent patient; patient will never use a vent.

type 2: vent-cure patient; patent will use a vent and be cured.

type 3: vent-die patient; patient will use a vent and die later.

These probabilities are denoted by

p1, p2, and p3, (1.1)

respectively. We assume that each hospitalized patient belongs to one of the these
three types even though the type is not observable at admission time.

(P.2) The average length-of-stay (LOS)

LOS1, LOS2, and LOS3, (1.2)

for each type of patient. Specifically,
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(a) For type 1 (never-vent), the length-of-stay is equal to the number of days in
hospitalization, from admission to discharge.

(b) For type 2 (vent-cure) and type 3 (vent-die) patients, the length-of-stay is equal
to number of days in hospitalization before ventilation, from admission to ven-
tilation. Therefore, for a type 2 or type 3 patient, the length-of-stay can be
better called time-to-ventilation.

In this paper we argue that the expected number of vent-starts next day can be esti-
mated as

S =
( p2

L̂OS
+

p3

L̂OS

)
L+

( p2
LOS2

+
p3

LOS3

)
A, (1.3)

where

L̂OS = p1LOS1 + p2LOS2 + p3LOS3.

Of course, the number of vent-starts next day S is random. We will argue that S can
be modeled as a random variable that follows Poisson distribution with mean S:

S ∼ Poisson(S). (1.4)

Using this model, one can easily compute an upper confidence interval bound U that
satisfies

P(S > U) < 0.01. (1.5)

In Section 3, we will use the upper confidence bound U to design a policy for ordering and
returning ventilators.

2 Methodologies to justify (1.4)

Suppose that we are at the end of day t. We identify two groups of patients who potentially
can become vent-start patients on day t+ 1: hospitalized patients who are not on the vent
support (not-on-vent patients) on day t and new patients who will be admitted on day
t+ 1.

We denote Lt as the number of non-ventilated patients at the end of day t who might
need the vent support in the future. (We assume Lt does not include non-ventilated patients
who have previously been on vent support.) On day t, there are Lt not-on-vent patients in
hospitals; a fraction of them, SLt+1, will turn into vent-patients on day t+ 1.

We assume that the number of vent-start patients SLt+1 should be proportional to the
number of non-vent patients Lt. We model vent-starts SLt+1 as a random variable that
follows binomial distribution with parameters Lt and pL:

SLt+1 ∼ Binom(Lt, pL), (2.1)

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.18.20105783doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.18.20105783
http://creativecommons.org/licenses/by/4.0/


where pL is a fixed probability that does not change over time. We discuss how to compute
probability pL in Section 2.2.

In addition, on day t+1, there will be At+1 new hospital admissions, and some number
of them, SAt+1, will turn into vent-patients on the same day t+ 1.

Similarly we assume SAt+1 is an independent binomial random variable with parameters
At+1 and pA:

SAt+1 ∼ Binom(At+1, pA),

where pA is a fixed probability that does not change over time. We discuss how to compute
parameter pA in Section 2.3.

Then we estimate the number patients who start the ventilator support on day t+ 1 as

St+1 = SLt+1 + SAt+1.

A binomial distribution Binom(n, p) can be approximated by Poisson distribution with
mean np when n is large and np is moderate. We use this fact to approximate the distribu-
tion of the number of vent-start patients as Poisson distribution with mean pLLt+pAAt+1:

St+1 ∼ Poisson(pLLt + pAAt+1) (2.2)

In the following sections we propose a method of estimating parameters pL and pA.

2.1 Patient types

Each patient is assigned to one of the three patient types: never-vent patient (type 1),
vent-cure patient (type 2), and vent-die patient (type 3). The type of a patient is not
observable, but does not change over time.

We assume that the probability distribution (p1, p2, p3) for a patient to belong to one
of these types is known (exogenously, meaning that they do not depend on the congestion
levels in hospitals; of course, overly congested hospitals increase death rate.)

We assume that the probability of a type 2 patient becoming a ventilated patient tonight
is q2. Similarly, we use q3 to denote the probability for a type 3 patient to become a ditto
patient tonight. To estimate qi for i = 2, 3, we note that

1

qi
= mean time-to-vent for type i patients = LOSk, i = 2, 3. (2.3)

A patient cannot change type; a unknown type will eventually be revealed.

2.2 Conversion from Lt

Among Lt patients who are not on vent yet on day t, we need to separate them into three
types: L1

t , L
2
t , and L3

t .
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Motivated by Theorem 1 of [3] in the setting of Mt/G/∞ queues, one expects that
Lk(t) is “close” to a Poisson random variable with mean that is proportional to

pkLOSk, for k = 1, 2, 3,

where LOS1 is the average length-of-stay for those patients (type 1) who never need a vent,
LOS2 = 1/q2 and LOS3 = 1/q3 are average time-to-vent for type 2 and type 3 patients,
respectively. Thus, we propose

Lkt ≈ p̃kLt, for k = 1, 2, 3, (2.4)

where

p̃k =
pkLOSk

p1LOS1 + p2LOS2 + p3LOS3
. (2.5)

Now we can estimate parameter pL in (2.2) as

pL = p̃2q2 + p̃3q3. (2.6)

We expect (2.4) can be properly formulated as a functional strong-law-of-large-numbers:
for any t ≥ 0,

P
{

lim
λ→∞

1

λ
sup
0≤s≤t

|Lk,λs − p̃kL(λ)
s |
}

= 1, (2.7)

where λ > 0 is a scaling parameter representing the “size” of the hospital. Limits in (2.7)
is also known as fluid limits as the “market size” λ goes to infinite. See, for example
[4, 5], for a discussion of “large-capacity” scaling. The limit in (2.7) exhibits one form of
“state space collapse”, a term coined by [7], meaning that the three-dimensional process{(
L1(t), L2(t), L3(t)

)
, t ≥ 0

}
is a deterministic multiple of the one-dimensional process{

L(t), t ≥ 0
}

when the “market size” λ is large.

2.3 Conversion from At+1

We classify the At+1 admissions on day t+ 1 by patient type. Thus,

A1
t+1, A2

t+1, A3
t+1

are the number of admitted type 1, 2, and 3 patients on day t+ 1, respectively. Following
our assumption,

Akt+1 = Binom(At+1, pk), k = 1, 2, 3. (2.8)
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where p1, p2, p3 are given in (1.1). Among Akt+1 type k patients admitted on day t+ 1,

Binom(Akt+1, qk)

will turn into type k vent-patient by the end of day t + 1, k = 2, 3. Thus, among At+1

admissions on day t+ 1,

Binom(Akt+1, pkqk)

will turn into type k vent-patient by the end of day t + 1, k = 2, 3. Therefore, we can
estimate parameter pA in (2.2) as

pA = p2q2 + p3q3. (2.9)

3 Ordering and returning ventilators

As before, we assume we are at the end of day t. In this section we propose a method
that provides the recommended number of ventilators Vt+1 to order or return. This tool
is intended to ensure that the medical facilities have enough ventilators on day t+ 1. The
tool can also be used to detect surplus of ventilators on day t + 1, so that they can be
returned to a stockpile or be transported to other locations that require them.

The number of free and ready-to-use ventilators on day t+1 has to to meet the demand
of vent-start patients with probability close to 1. According to equation (1.4), number of
vent-starts St+1 follows Poisson distribution with mean St+1. We denote Ut+1 the upper
confidence bound on the vent-starts on day t+ 1 as defined in (1.5).

We also recommend to have a safety-stock pile with G ventilators on the spot that
might be used in emergency, unforeseen situations. The size of the safety-stock pile is a
hyperparameter and should be determined by a hospital manager who takes into account
availability of vent storage facilities, vents delivery speed, etc.

Let Rt be the number of free and ready-to-use ventilators on day t at 8pm. Then we
recommend to order

Vt+1 = Ut+1 +G−Rt (3.1)

ventilators.
If number Vt+1 is negative the hospital can return |Vt+1| ventilators back to the federal

stockpile.

4 Appendix

In this appendix, we test the accuracy of our predictions of vent-starts: mean in (1.3) and
upper confidence level U in (1.5). We could not find data that included the daily statistics
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for vent-start patients. In order to test accuracy of vent-starts prediction and efficacy of
the proposed ordering policy, we use the simulation model described in Section 4.1. We
also test the effectiveness of the policy for ordering and returning ventilators.

4.1 Simulation model

To verify the effectiveness of our proposed prediction model for vent-starts in a real hospital
setting, we need to know the number of new patients on vents each day. We could not
get access to this information even though many cities including New York City (NYC)
publicize some related hospitalization data for Covid-19 patients. Therefore, we created a
simulation model that would generate the number of daily vent-starts and daily hospital
census numbers. Our simulation model uses actual NYC daily admissions and is calibrated
so that it matches the NYC daily hospital census. We demonstrate that our predicted
vent-starts, using (1.3) and (1.5), matches the vent-starts outputted from the simulation
model.

The simulation model takes 3 inputs:

1. Number of hospitalized patients who are not on ventilators on day t = 1.

2. Number of hospitalized patients who are on ventilators on day t = 1.

3. New admissions per day (series) for each day.

Every new patient is independently sampled as type 1, 2 or 3 with probability p1, p2, and
p3 respectively, see (1.1). Then, their patient journey (days in hospital, days-to-vent, and
days on a ventilator) is independently sampled from the following distributions depending
on their type:

• Geom(LOS1), LOS for never-vent patients,

• Geom(LOS2) and Geom(LOS3) days-to-vent for type 2 and 3 patients,

• Geom(LOSsurvive
vent ) and Geom(LOSdie

vent) days-on-vent for type 2 and 3 patients,

where LOS1, LOS2, LOS3 are defined in Section 1, LOSsurvive
vent is the average time on

ventilator support for type 2 patients before recovery, LOSdie
vent is the average time on

ventilator support for type 3 patients before passing away.
We assume that it is impossible to separate type 2 and type 3 patients based on the

time from hospitalization to the vent support. Therefore, we assume that ‘time-to-vent’
follows the same distribution for both types of patients:

LOSpre-vent := LOS2 = LOS3.

For patients that are already in hospital at the beginning of the simulation, either on
ventilators or not, we make the following assumptions. If they are in the hospital but not
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on ventilators, they are of type k with probability p̂k, k = 1, 2, 3, and their patient journey
is sampled from the same distribution as a new patient, where

p̂1 =
p1 · LOS1

p1 · LOS1 + p2 · LOSpre-vent + p3 · LOSpre-vent

p̂2 = p̂3 =
p1 · LOSpre-vent

p1 · LOS1 + p2 · LOSpre-vent + p3 · LOSpre-vent

are the same one in (2.5). For patients that are already on ventilators when the simulation
begins, we use a formula similar to (2.5) to determine their patient type. Specifically, they
are a patient of type k with probability p̄k, k = 2, 3, where

p̄2 =
p2 · LOSsurvive

vent

p2 · LOSsurvive
vent + p3 · LOSdie

vent

,

p̄3 =
p3 · LOSdie

vent

p2 · LOSsurvive
vent + p3 · LOSdie

vent

.

Their length of stay is a geometric random variable with mean LOSsurvive
vent if they are type 2

or LOSdie
vent if they are type 3. We also assume they are immediately discharged after their

duration on a ventilator ends.
Our simulation model demonstrates high accuracy when predicting the number of pa-

tients on ventilators in New York City using the parameters listed in Section 4.2. Figure
1 shows the expected number of patients on ventilators (red dots) and the expected range
according to our simulation model (red bars). The range is the maximum and minimum
number of ventilators required on a specific day across 100 runs of the simulation. The
green triangles represent the real number of patients on ventilators.

Figure 1: Comparison of the number of patients on ventilators. NYC data is missing on many
days.
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4.2 Simulation Parameters

The parameters for patient type used in the simulation are p1 = 0.7, p2 = 0.06, p3 = 0.24.
These numbers are from the CDC website [6] and news reports which said that 80% of
all ventilator patients in NYC died [2]. The parameters for length-of-stay used in the
simulation are LOS1 = 10, LOSpre-vent = 4.8, LOSsurvive

vent = 11.9, LOSdie
vent = 6.1. The LOS1

parameter is from the CDC website for Covid-19 [6] while the other 3 parameters were
tuned using the total number of people on ventilators in NYC between March 16th - 21st
and March 24th - 30th. The parameters were tuned using Bayesian optimization and the
loss function was mean square error over 50 scenarios.

4.3 Numerical experiments

As an input to the simulation model we use real daily admissions of hospitalized patients
with COVID-19 at New York City from March 3 to April 14. We assume that there
were no hospitalized patients with COVID-19 before March 3 and we set initial number
of hospitalized patients to zero for the simulation model run. The model parameters are
specified in Section 4.2. In Figure 2 we show the number of on-vent and not-on-vent
patients that stay in the hospital according to a simulation run.

Figure 2: The number of on-vent patients and the number of not-on-vent-patents from the simu-
lation model. The simulation output is from one simulation run.

From the same simulated trajectory we can get daily information about vent-starts.
In Figure 3 we plot these vent-starts in green triangles. We use these green triangles as
benchmarks to test the accuracy of our prediction formulas (1.3) and (1.5). To recapitulate
the prediction procedure described in Section 1, at the end of day t we observe the number
of hospitalized patients Lt and the historical admissions including At, the admission on
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day t. Using the historial admissions, one can predict the number of new admissions At+1

on day t + 1 using a time series model described in Section 4.4. Given Lt and At+1, one
predicts St+1 the number of vent-start patient for the next day via Poisson model (1.4). In
Figure 3 red circles show the expected number of vent-starts, St+1, computed by equation
(1.3) on each day t+ 1, t = 0, ..., 42. The top of the red bars correspond to Ut, the upper
confidence bound on the vent-starts computed from (1.5).

Figure 3: Prediction accuracy of the number of vent-start patients. The green triangles shows
the number of vent-start patients according to the simulated trajectory, the red circles – expected
number of the vent-starts according to (1.3), the top of the red error bar – upper confidence bound
on the vent-starts according to (1.5).

Next we test the ordering policy proposed in Section 3. Using the prediction of the
vent-starts Ut+1 on day t+ 1, we either order Vt+1 ventilators from a central stockpile that
need to be delivered by day t+ 1 when Vt+1 > 0 or return |Vt+1| ventilators to the central
stockpile when Vt+1 < 0, where Vt+1 is computed according to formula (3.1). We assume
that if Vt+1 < 0, the hospital sends back |Vt+1| ventilators in the morning of day t+ 1. In
Figure 4a we provide the number of ordered/returned ventilators on each day. We set the
safety stock level to be equal to G = 10.

In Figure 4b we show the number of unused ventilators at the end of each day that are
possessed by the hospital. We note that the plot demonstrates that the hospital always
has enough ventilators to satisfy the demand from patients who need ventilator support.
On the other hand, the hospital is not oversupplied from the central stockpile.
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(a) (b)

Figure 4: Efficiency of the recommend policy. (a) The daily number of ventilators or-
dered/returned according to the policy, (b) surplus of ventilators at the end of each day.

We run 100 independent simulations runs to test the robustness of the proposed policy.
In Figure 5 we show minimum, average and maximum number of free (ready-to-use) ven-
tilators observed during each independent simulation run. We observe that the hospital
could satisfy the demand of ventilators from vent-start patients and, at the same time, did
not accumulate too many free ventilators by the end of each day.

Figure 5: Robustness of the policy for ordering and returning ventilators. No patients were denied
of ventilation, no excessive inventory of ventilators kept at the hospital.

4.4 Predicting the number of admissions next day

Since we make a short term prediction (tomorrow) of the number of hospital admissions,
we use a standard time series algorithm to make this prediction, assuming historical daily
admission numbers are available. We adopt the algorithm ARIMA(p, d, q) in [1], where
parameters p, d, q are tuned based on the input of historical data. It has been well developed
in many library packages. For example, Python has a library function that implements this
algorithm with automatic tuning. We set the algorithm to be adaptive, meaning that every

11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.18.20105783doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.18.20105783
http://creativecommons.org/licenses/by/4.0/


day, as a new data point becomes available, the parameters p, d, q are re-tuned and the
algorithm gives a new prediction for the next day. After fitting the ARIMA model on
the historical admission data, the prediction for the next day’s hospital admissions closely
matches the observed value. This suggests that prediction of the ARIMA model could be
a reliable input for anticipated hospital daily admission next day. Figure 6 is an example
of a 3-day prediction of NYC hospital daily admissions, with 95% confidence interval.

Figure 6: New York City Hospitalized Daily New Admission
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