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ABSTRACT 

Background: One major challenge for detecting the virus that causes COVID-19 is commercial 

SARS-CoV-2 testing kit or reagent availability. To allow every laboratory or hospital access to 

an in-house assay, we developed two low-cost SARS-CoV-2 detection assay protocols using in-

house primers and reagents/equipment on hand in most biology or diagnostic laboratories: a 

SYBR Green–based RT-PCR and PCR assays. RNA extraction has also become a major 

bottleneck due to limited supplies and the required labor. Thus, we validated alternative RNA 

extraction protocols. 

Methods: SARS-CoV-2 genome sequences deposited into the GISAID database were retrieved to 

design and synthesize in-house primers. Forty patient samples were collected by nasopharyngeal 

swab, coded, and used to develop and validate the assay protocols. Both assays used TRIzol and 

heat-processing techniques to extract RNA from patient samples and to inactivate the virus; thus, 

testing was conducted in a conventional biosafety level 2 laboratory. 

Results: The sensitivity and specificity of the primers were evaluated using samples previously 

confirmed positive for SARS-CoV-2. The positive amplicons were sequenced to confirm the 

results. The assay protocols were developed, and the specificity of each PCR product was 

confirmed using melting curve analyses. The most accurate heat-processing technique for 

primers with short amplicon lengths was 95 οC for 15 mins. Of 40 samples, both the SYBR 

Green–based quantitative RT-PCR assay and the PCR assay detected SARS-CoV-2 target genes 

in 28 samples, with no false-positive or false-negative results. These findings were 100% 

concordant with those of the diagnostic laboratory that tested the same samples using a Rotor-

Gene PCR cycler with an Altona Diagnostics SARS-CoV-2 kit (R2=0.889). 

Conclusions: These approaches are reliable, repeatable, specific, sensitive, simple, and low-cost 

tools for the detection of SARS-CoV-2 in a conventional biosafety level 2 laboratory, offering 

alternative approaches when commercial kits are unavailable or cost ineffective.  
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1. Introduction 

In March 2020, the World Health Organization declared a global emergency for a pandemic 

caused by the novel coronavirus SARS-CoV-2. This virus belongs to the Coronaviridae family, 

which commonly infects humans and mammals, and is an enveloped, non-segmented, positive-

sense RNA. This family of viruses has caused two previous epidemics: severe acute respiratory 

syndrome coronavirus and Middle East respiratory syndrome coronavirus infections [1, 2]. 

Although these viruses belong to the same family, they rely on different mechanisms and have 

different manifestations in the human host. The newly emerged virus was first detected in 

Wuhan, China, and as of April 4, 2020, it had infected more than 1 million people worldwide 

and caused the deaths of 58,937 individuals [3]. 

To slow the spread of the virus and to contain the infection, countries across the globe are 

attempting to screen millions of individuals, including all health care personnel and their 

contacts, patients who have symptoms associated with infection by SARS-CoV-2 and their 

contacts, individuals who have come into contact with an infected patient, and asymptomatic 

individuals. People who carry the virus without showing any symptoms pose a major silent threat 

to public health because they are unknowingly spreading the virus. However, not all countries, 

hospitals, or laboratories have access to testing kits or to the reagents and supplies that are 

currently in high demand with which they could make their own kits. In addition, many hospitals 

and diagnostic laboratories are struggling with an overwhelming number of samples that have 

been collected but still require testing. Therefore, the aim of the present study was to develop and 

validate two inexpensive assays to detect SARS-CoV-2 in patient samples in almost any 

laboratory or hospital in a timely manner and without commercial, ready-made extraction or 

detection kits. Both assays can use a TRI reagent-based RNA extraction or heat-processed 

samples for RNA extraction. The RNA extraction procedure is followed by cDNA synthesis then 

a SYBR Green–based RT-PCR or conventional PCR assay that requires only basic science 

techniques and equipment. Here we provide two validated protocols for safely detecting SARS-

CoV-2 in a conventional biosafety level 2 laboratories within a limited budget by using these 

easily performed assays.  
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 2. Materials and Methods 

2.1 Sample collection and ethical considerations 

This study was performed in compliance with all applicable national and international ethical 

guidelines for conducting research on human participants, including in accordance with The 

Code of Ethics of the World Medical Association (Declaration of Helsinki), and was approved 

by the institutional review board at King Faisal Specialist Hospital and Research Centre IRB # 

2200021. This board also granted a waiver for obtaining informed consent owing to the use of 

deidentified samples for this study. 

Samples were collected from each patient using a nasopharyngeal swab and then coded by the 

Microbiology Section of the Pathology and Laboratory Medicine Department at King Faisal 

Specialist Hospital and Research Centre (KFSHRC). Of these deidentified samples, those from 

40 patients who were tested for SARS-CoV-2 infection were included in the present study.  

2.2 RNA extraction 

Three alternative protocols for RNA extraction were validated to accommodate the needs and 

available resources of various laboratories. 

2.2.1 TRI Reagent-based RNA extraction (manual) 

To inactivate the virus, 300 μL from the patient sample was added to 700 μL of TRI reagent 

(Sigma-Aldrich, USA) and mixed in a biosafety cabinet in a negative pressure room. The tube was 

inverted 10 times and kept at room temperature for 5 min. Because this step inactivates the virus, 

it was safe to continue the extraction process in a biosafety level 2 laboratory. Next, 200 μL of 

chloroform was added, and the tube was inverted five times and then incubated for 3 min at room 

temperature. The sample was centrifuged at 12,000 × g for 10 min at 4 °C. The aqueous layer, 

which contains RNA (approximately 500 µL), was transferred to a new 1.5-mL tube, and 500 μL 

of isopropanol was added. The tube was inverted five times and then centrifuged at 12,000 × g for 

10 min at 4 °C. The supernatant was removed, and 1 mL of 75% ethanol was added. The sample 

was centrifuged at 7500 × g for 5 min at 4 °C. The supernatant was removed, 1 mL of 75% ethanol 

was added to wash the sample, and was again centrifuged at 7500 × g for 5 min at 4 °C. The 

supernatant was discarded and the pellet was air-dried. Next, 15 μL of AVE (elution) buffer was 

added to re-suspend the RNA. However, RNase-free water can be used instead of AVE buffer. We 
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then added 1 μL of RNaseOut (Invitrogen, USA) to inhibit RNases and to protect the RNA from 

degradation. The RNA concentration and purity were determined with a NanoDrop 

spectrophotometer (Thermo Fisher Scientific, USA).  

2.2.2 TRI Reagent-based RNA extraction (automated protocol) 

To establish a high-throughput RNA extraction technique for mass testing, we modified the TRI 

reagent-based extraction for use on a Hamilton Microlab STAR Liquid Handling System. Magnet 

beads (ChargeSwitch; Invitrogen) were used for purifying the total RNA from the TRI reagent 

lysis step. To obtain high-quality total RNA, 300 μL from the patient sample was added to 700 μL 

of TRI reagent (Sigma-Aldrich, USA) and mixed in biosafety cabinet in a negative pressure room 

using a 96-well plate. The plate was placed on a shaker for 1 min to homogenize the solution. 

Next, 200 μL of chloroform was added, and the plate was placed on a shaker for 1 min to again 

homogenize the solution and then incubated for 3 min at room temperature. The plate was 

centrifuged at 12,000 × g for 10 min at 4 °C. The automation process started at this step, in which 

the plate was placed in the Microlab STAR Liquid Handling System. Because obtaining the 

aqueous layer, which contains RNA (approximately 500 µL), is the most critical step in the 

extraction process, using an automated and robust robot improves accuracy by eliminating errors 

that can occur during manual processing and can extract pure RNA from a 96-well plate in less 

than 15 min. 

2.2.3 Extraction-free protocol (heat-processed samples) 

From the nasopharyngeal swab (stored in Viral Transport Medium), 300 µL of the sample was 

placed in a separate tube. Samples were heated at 95 οC for 15 min. The reaction tubes were placed 

on ice to cool before proceeding. Samples were centrifuged at 7500 × g for 5 min to remove any 

debris. The supernatant was then transferred using a pipette into a new tube to be used for cDNA 

synthesis and the subsequent PCR reactions. The RNA concentration and purity were determined 

with a NanoDrop spectrophotometer (Thermo Fisher Scientific).  

 

2.3 cDNA Synthesis  

The synthesis of cDNA is required to prepare patient samples for subsequent PCR reactions. 

Total RNA extract (8 μL of approximately 50 ng/µL) was added to 1 μL of random hexamer 

primers and 1 μl of 10 mM dNTP Mix (Thermo Fisher Scientific). The mixture was incubated at 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.18.20105510doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.18.20105510
http://creativecommons.org/licenses/by-nd/4.0/


65 °C for 5 min and then placed on ice. Next, a master mix was prepared that consisted of 2 μL 

of 10× Reverse Transcriptase (RT) buffer, 4 μL of 25 mM MgCl2, 2 μL of 0.1 M 

dichlorodiphenyltrichloroethane (DDT), 1 μL of RNaseOut, and 1 μL of the reverse transcriptase 

enzyme (SuperScriptIII RT; 200 U/μL; Thermo Fisher Scientific). The master mix (10 µL) was 

added to the RNA extraction mix (10 μL) and mixed by manually tapping and pulse-spinning. 

Samples were incubated at room temperature (approximately 25 °C) for 10 mins and then 

incubated at 50 °C for 50 min. The reaction was terminated at 85 °C for 5 min and then placed 

on ice. After pulse-spinning the sample, 1 μL of RNase H (to remove the RNA template from 

RNA-cDNA hybrid) was added, and the sample was incubated at 37 °C for 20 min. The quality 

and the quantity of the cDNA samples were determined using a NanoDrop spectrophotometer.  

2.4 Nucleic acid purity assessment  

The quality and the quantity of the RNA and cDNA samples were also determined using a 

NanoDrop spectrophotometer. The ratio of sample absorbance at wavelengths of 260 and 280 nm 

were obtained to assess the nucleic acid purity (approximately 2.0 for RNA and approximately 

1.8 for cDNA).  

2.5 Designing primer sets specific for SARS-CoV-2 

More than 150 complete SARS-CoV-2 genome sequences were retrieved from the GISAID 

database (https://www.epicov.org/epi3/cfrontend#lightbox-814829872) and were aligned using 

the Clustal W algorithm of the MegAlign module to identify the conserved regions using 

DNAStar software (DNASTAR; Madison, WI). Genes for the major structural proteins of 

SARS-CoV-2, such as S, E, M, ORF1a and N, were targeted. Oligonucleotide primers were 

designed for the SARS-CoV-2 S genes to ensure maximal efficiency and sensitivity. The desired 

primers were designed using the consensus sequences from different SARS-CoV-2 isolates from 

around the world, and the Wuhan first genome sequence was used as a reference (Accession No. 

MN908947).  

Because a successful PCR assay requires efficient and specific amplification, the primers were 

assessed for several properties, including melting temperature, secondary structure, and 

complementarity. Primers need to have a GC content of 50%-60%, a melting temperature 

between 50 °C and 65 °C, 50 mM salt concentration, and 300 nM oligonucleotide 

concentrations. The specificity of the primers and final sequences were verified using in silico 
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prediction analyses with the online Basic Local Alignment Search Tool (BLAST) 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). None of our designed primers showed genomic cross-

reactivity with other viruses, the human genome, or other probable interfering genomes in the 

BLAST database analysis. Primers were synthesized in-house at the Oligonucleotide Synthesis 

Unit of the Genetics Department at KFSHRC. 

 

2.6 SYBR Green RT-PCR assay 

The ∆∆Ct method of relative quantification using RT-PCR with SYBR Green detection was used 

for this study. To detect SARS-CoV-2 target genes, comparative quantitative RT-PCR was 

performed using SYBR Green fluorescent dye, which binds double-stranded DNA by 

intercalating between the DNA bases. The 7500 Fast Real-Time PCR system and software 

(Applied Biosystems, California, USA) were used.  

The target SARS-CoV-2 genes included N, S, E, and RdRp. In addition, RNase P, which is a 

housekeeping gene, was used as an internal positive control. Primers targeting the N, S, E, RdRp 

and RNase P genes were designed and synthesized in-house by the Oligonucleotide Unit of 

KFSHRC (Table 1). SYBR Green RT-PCR assays using these primers generated in-house were 

conducted for all patient samples that were included in this study. To amplify cDNA in the 

patient samples, a master mix was prepared with 12.5 μL of SYBR Green master mix, 0.5 μL of 

forward primer (20 μM), 0.5 μL of reverse primers (20 μM), 2 μL of cDNA, and 4.5 μL of water 

(for a total of 20 μL). The amplification conditions were 50 °C for 20 secs and 95 °C for 10 mins 

followed by 45 cycles of 95 °C for 3 s with 55 °C for 30 s. At the end of each reaction, the cycle 

threshold (Ct) was acquired at the level that reflected the best kinetic PCR parameters. 
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Table 1. Real-Time–PCR primer sets for SARS-CoV-2 detection using the SYBR Green-based 

assay 

Target gene Forward Sequence 5′-3′ Reverse Sequence 5′-3′ 

RdRp_KFSHRC 
GGCCTCACTTGTTCTTGCTC GTTGTGGCATCTCCTGATGA 

RdRp_KFSHRC CATGCTTAGAATTATGGCCTCA 
GGTTCCACCTGGTTTAACATATAG 

E_KFSHRC 
GAGCCTGAAGAACATGTCCAA CCTGTCTCTTCCGAAACGAA 

E_KFSHRC 
CGGTTCATCCGGAGTTGTTA TTCGTACTCATCAGCTTGTGC 

CDC N1 GACCCCAAAATCAGCGAAAT TCTGGTTACTGCCAGTTGAATCTG 

CDC N3 GGGAGCCTTGAATACACCAAAA TGTAGCACGATTGCAGCATTG 

RNase P (IPC)* AGATTTGGACCTGCGAGCG GAGCGGCTGTCTCCACAAGT 

*IPC: internal positive control. 

 

2.6.1 Melting curve analysis 

SYBR Green is released when a PCR product is denatured, which results in a rapid increase in 

absorbance intensity (fluorescence signal) followed by a decrease in the signal. When an 

amplified PCR product is specific, a melting curve generated using that product should provide a 

single peak that corresponds to that PCR product. Thus, to check the specificity of each PCR 

product, we conducted a melting curve analysis at the end of each PCR assay. Each product 

sample was analyzed once. For the melting curve, the fluorescence signal of each PCR product 

was monitored continuously as the temperature was increased to 95 °C for 15 s, decreased to 60 

°C for 1 min and then increased again to 95 °C for 30 s and 60 °C for 15 s.   

 

2.7 PCR 

The PCR primer sets for SARS-CoV-2 detection were designed and synthesized at KFSHRC. 

The primer sets used are listed in Table 2. For a total reaction volume of 30 μL was prepared that 

included 3 μL of the SARS-CoV-2 cDNA, first round primers (0.5 μL each/20 μM), 15 μL of 

GoTaq Green Master Mix (Promega; Madison, WI, USA), and 11 μL of DNase/RNase-free 
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water. The PCR cycle was performed as follows: 95 °C for 5 min; then 40 cycles of 95 °C for 30 

s, 58° C for 30 s, and 72 °C for 45 s; followed by 72 °C for 5 min. Controls (positive and 

negative) were used. The products from the PCR were separated using 2% agarose gel 

electrophoresis and visualized using ultraviolet light (Gel Doc EZ Gel; Bio-Rad). The remaining 

PCR products were purified using AMpure XP and then sent for Sanger sequencing to the Core 

Facility of the Genetics Department at KFSHRC. The analyzed sequences matched the WH-

human1 SARS-CoV-2 sequence (MN908947).  

Table 2. PCR primer sets for SARS-CoV-2 detection  

Target 

gene 
Forward sequence 5′-3′ Reverse sequence 5′-3′ 

Size 

(bp) 
Reference 

ORF1a_1 

 

TTTGTTGACAGGCAAACAGC CCAGTGGTGTGTACCCTTGA 405 KFSHRC 

ORF1a_2 

 

GCCTCTAAAAGCCCCAAAAG CACAACACAGGCGAACTCAT 433 KFSHRC 

ORF1a 

 
TTCGGATGCTCGAACTGCACC CTTTACCAGCACGTGCTAGAAGG 413 [4] 

S 

 
TTGGCAAAATTCAAGACTCACTTT TGTGGTTCATAAAAATTCCTTTGTG 547 [4] 

 

 

3. Results 

3.1 Total RNA extraction using three different approaches  

During RNA extraction using TRI reagent, we obtained an average of 20 ng/μl from each 

sample. Using the heat-processing technique, the RNA concentration was higher but the purity 

was lower. Most importantly, none of the three extraction methods negatively affected the PCR 

results.  

To evaluate the RNA extraction method, three RNA samples extracted with TRI reagent at the 

research laboratory were sent to a diagnostic laboratory for testing. The results showed that the 

Ct values for the RNA extracted using these methods were similar and also indicated the 
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compatibility of the RNA extraction procedure using TRI reagent with the Rotor-Gene system 

using the Altona Diagnostics kit. 

 

3.2 Detection of SARS-CoV-2 in test samples using the SYBR Green assay 

For a valid diagnostic test, the sample was considered positive for SARS-CoV-2 when the cycle 

threshold growth curves for both target genes crossed the threshold line within 40 cycles (<40.00 

Ct) regardless of whether the RNase P growth curve also crossed the threshold within 40 cycles. 

A sample was considered negative for SARS-CoV-2 when the cycle threshold growth curves for 

both targets did not cross the threshold line within 40 cycles (>40.00 Ct) but the RNase P growth 

curve did cross the threshold line within 40 cycles. Figure 1 shows a representative RT-PCR 

amplification plot. The results of our developed SYBR Green assay protocol indicated that of the 

40 nasopharyngeal samples tested, SARS-CoV-2 was detected in 28. This result was 100% 

concordant with that of the diagnostic laboratory at KFSHRC that had originally tested the 

samples. Figure 1 depicted a representative amplification plot the showed two different target 

genes, internal positive control and negative control. Figure 2 showed the distribution of Cycle 

Threshold (Ct) Values by RT PCR assays. Altona Diagnostic PCR assay detected SARS-CoV2 

mostly in earlier cycles than with SYBR-Green RT-PCR, though there was no significant 

difference. 
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Figure 1. Representative Amplification Plot for Real-time PCR Using SYBR Green and the 

∆∆Ct Method of Relative Quantification. Plot showing the Ct value of two target genes, an 

internal positive control (IPC) and a no-template control (NTC). The lower the Ct value, the 

greater the sensitivity. ∆Rn indicates Rn (the reporter signal normalized to the fluorescence 

signal of Applied Biosystems ROX Dye) minus the baseline; ΔRn is plotted against PCR cycle 

number.  

 

 

Figure 2. Distribution of Cycle Threshold (Ct) Values by RT PCR assays. Altona Diagnostic PCR assay 

detected SARS-CoV2 in earlier cycles (Mean=24) in comparison to SYBR-Green RT-PCR (Mean=28) 

however there was no significant differences. 
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3.3 Detection of SARS-CoV-2 in test samples using PCR 

For a valid diagnostic test using PCR, the following conditions must be met. For positive control 

samples, the bands with the corresponding amplicon size must be visualized, whereas for 

negative samples, the band must not be present. In addition, the positive control must be positive; 

if this test failed, the experiment was repeated. The test for the negative control (DNase/RNase-

free water) must be negative; if this test failed, the experiment was repeated. 

Consistent with the results of the SYBR Green assay, of the 40 tested nasopharyngeal samples, 

SARS-CoV-2 was detected in 27 samples. Figure 2 shows representative results of the PCR 

assay. 

 

 

Figure 2. Representative images of PCR Detection of the SARS-CoV-2 ORF1a and S Genes. 

Reaction products tested on an agarose gel stained with ethidium bromide to confirm the results. 

DNA ladder is 100 base pairs (bp).   
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3.4 Test accuracy and validation 

Parallel tests to detect SARS-CoV-2 were conducted by a diagnostic laboratory accredited by the 

College of American Pathologists and our research laboratory to validate the accuracy of the 

developed protocol. Both labs ran 28 identical deidentified nasopharyngeal samples. The 

research laboratory used SYBR Green and PCR assay protocols, whereas the diagnostic 

Molecular laboratory at the Department of Pathology have utilize either EZ1 Virus Mini Kit v2.0 

(QIAGEN) or Abbott m2000 SP System with either DNA or RNA virus kit for extraction and the 

Rotor-Gene RT-PCR cycler (QIAGEN) with a commercial kit from Altona Diagnostics.  

 

The results of the laboratories were 100% concordant. No false-positive or false-negative test 

results were reported using the two in-house assay protocols. 

To determine the limit of detection, 10-fold serial dilutions using a plasmid with a known copy 

number (104/μL) were tested. Real time PCR and PCR were used to assess the sensitivity of the 

assay. The limit of detection is the lowest concentration of the diluted sample that returns a 

positive result. Our results showed that the limit of detection for our assays was 10 copies/µL.  

The results from both laboratories were presented as either positive [Ct <40] or negative [Ct >40] 

for the detection of SARS-CoV-2. The Ct values in the positive samples ranged from 16 to 38. 

All PCR products were examined using electrophoresis of an agarose gel stained with ethidium 

bromide in standard TBE buffer. All of the detected positive samples showed a well-defined 

specific band with results consistent between the laboratories (i.e., faint bands for late Ct values). 

In addition, the melting curve analyses showed a single peak for each positive sample. 

 

 

4. Discussion 

Although commercial viral RNA extraction kits are available and are widely used in most 

laboratories, the aim of the present study was to use basic biology techniques that can be adopted 

by hospitals or laboratories worldwide, especially given that the availability of commercial kits 

or specialized reagents may be at risk. Thus, we developed and validated two low-cost, easily 

performed assays for detecting SARS-CoV-2: (1) a SYBR Green RT-PCR assay and (2) PCR 
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assay. The tests can be conducted using equipment and reagents already found in most pathology 

or diagnostic laboratories. 

The heat-processed RNA extraction procedure showed promising results. This finding is in 

agreement with a recent study that used this approach with various temperatures and times 

(5 min at 95 °C; 10 min at 95 °C; 5 min at 98 °C; 10 min at 98 °C) [5]. The present study found 

that the optimum temperature for robust results was 95 °C for 15 min. It is important to note that 

short amplicon sequences are critical for successful detection using heat-processed samples 

because it is the heat that shears the RNA.  

Testing with RT-PCR has been considered the gold standard for diagnosing COVID-19, with 

infected individuals identified by the successful amplification of the viral genome obtained using 

nasopharyngeal swabs. However, recent studies have stated some concerns regarding the 

specificity of the RT-PCR tests for patients with COVID-19 [6]. Indeed, inaccurate results, 

especially a false-negative, have dire implications for subsequent community transmission of the 

virus [7]. Therefore, the inclusion of two SARS-CoV-2 genes for accurate detection has been 

advised [8]. In the present study, we designed sets of primers that target the E and RdRp genes of 

the virus.  

SYBR Green quantitative PCR is widely used because of the ease in assay design and its 

relatively low setup and running costs. Unlike TaqMan fluorescent probes, SYBR Green dye 

intercalates into double-stranded DNA to monitor the amplification of the target gene 

specifically initiated by gene-specific primers [9]. However, one drawback of the SYBR Green 

assay is that the dye is nonspecific, and this lack of specificity can generate false-positive signals 

if nonspecific products or primer-dimers are present in the sample. However, including a melting 

curve analysis at the end of each PCR assay to determine the specificity and efficiency of each 

RT-PCR reaction will ensure the accuracy of the results when multiple peaks or primer-dimers 

are not observed. Another potential drawback of the SYBR Green assay is that the length of the 

amplicon may affect the intensity of the amplification; thus, the present study designed primers 

for an amplicon less than 120 base pairs.  

The World Health Organization and Pan American Health Organization published a 

recommendation for general procedures for inactivation of potentially infectious samples with 

Ebola virus and other highly pathogenic viral agents, indicating that using TRI reagent offers 
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excellent performance and a safer environment for handling pathogens in a biosafety level 2 

laboratory [10]. This is because TRI reagent has been shown to denature and destabilize the viral 

envelope and eliminate cellular nucleases while maintaining the structure of RNA for subsequent 

analyses. 

The total cost for the SYBR Green assay was estimated to be $21, and the cost for the PCR was 

estimated to be $16. Although the PCR assay was more cost effective than the SYBR Green 

quantitative RT-PCR assay, PRC is more laborious and requires a longer time to complete 

(approximately 7 hours) than the SYBR Green assay, which requires approximately 4 hours. The 

time is longer for both techniques than that for using a commercially available detection kit 

because the two assays developed here are conducted manually. However, the cost for any 

commercial kit is considerably higher. Of the two manually conducted assay options we 

developed and validated for detecting SARS-CoV-2, we believe that the SYBR Green assay 

using RT-PCR is the more favorable choice owing to its potential power in the field of virology, 

the speed of conducting the assay, and real-time data analysis. The PCR assay was developed 

and validated as an alternative approach in the event that a laboratory does not have an RT-PCR 

instrument [11]. 

In conclusion, we developed and validated two low-cost assays for detecting SARS-CoV-2 that 

can be used by laboratories that cannot afford or cannot obtain commercial testing kits. Heating 

samples and using SYBR-Green or PCR assays might be not the ultimate solution for sensitive 

and accurate diagnoses; however, at a time when SARS-CoV-2 is globally pervasive and deadly 

and commercial kits are limited, these assays offer viable alternative testing approaches. In 

addition, these protocols provide virus testing platforms for future threats because the only 

change that would be required to follow the same protocols to test for a different virus would be 

the pathogen sequence needed to design specific primers. Furthermore, the protocols have been 

approved by the Saudi Food and Drug Administration as Emergency Use Authorization for use 

in a clinical setting. 
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