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Abstract

Background Social distancing has led to a “flattening of the curve” in many states across the

U.S. This is part of a novel, massive, global social experiment which has served to mitigate the

pandemic in the absence of a vaccine or effective anti-viral drugs. Hence it is important to be able

to forecast hospitalizations reasonably accurately.

Methods We propose on phenomenological grounds a generalized diffusion equation which in-

corporates the effect of social distancing to forecast the temporal evolution of the probability of

having a given number of hospitalizations. The probability density function is log-normal in the

number of hospitalizations, which is useful in describing pandemics where the number of hospital-

izations is very high.

Findings We used this insight and data to make forecasts for states using Monte Carlo methods.

Back testing validates our approach, which yields good results about a week into the future. States

are beginning to reopen at the time of publication and our forecasts indicate possible precursors

of increased hospitalizations.

Additionally we studied the reproducibility Ro in New York (Italian strain) and California

(Wuhan strain). We find that even if there is a difference in the transmission of the two strains,

social distancing has been able to control the progression of COVID 19.

Funding None.

∗ Also at Department of Physics and Nuclear Engineering, U.S. Military Academy at West Point, N.Y.;

shirish.chitanvis@westpoint.edu

1

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.18.20105411doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:shirish.chitanvis@westpoint.edu
https://doi.org/10.1101/2020.05.18.20105411
http://creativecommons.org/licenses/by-nd/4.0/


I. INTRODUCTION

One goal while tracking the COVID-19 epidemic is to make forecasts of hospitalizations[1].

This calls for caution[2] as the uncertainty in the forecast has to be estimated for a virgin

virus. The uncertainty can be reduced by using what has been learned from the history

of hospitalizations. It has been reported that the IHME model used such an approach to

estimate the maximum hospitalizations in NY state within a factor of two or so.

A straightforward way to make a forecast is to use extrapolation of previous data. One

then needs a model of some ilk in order to quantify the uncertainty in the forecast. Uncer-

tainty arises because the transmission of the disease is a probabilistic process which depends

on on the distance of closest approach, virus load, time of contact, susceptibility of the target

etc. Some models use epidemiological knowledge from previous occurrences of a disease to

inform their predictions. In the case of COVID-19 which is a novel virus attacking humans,

it is not entirely clear that assumptions from other epidemics apply[3]. Indeed, it would be

desirable to have a model for the evolution of hospitalizations which depends only on the

history of the current epidemic.

Added value of this study

We developed a Fokker-Planck/diffusion equation model for the estimation of uncertainty

as we extrapolate in time.

We will show via back-testing that our approach yields useful results about a week into

the future. We show formally that our approach gives results with narrower uncertainty

bands that do standard distributions.

II. METHODS

A chain reaction model describes an exponential growth in the number of infections (or

hospitalizations) I(t) for the virus:

dI(t)

dt
= α(t)I(t) (1)

where α/ ln(2) is the inverse doubling time. α can be reduced via social distancing and is

related to the reproducibility Ro:

2

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.18.20105411doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.18.20105411
http://creativecommons.org/licenses/by-nd/4.0/


α(t) =
Ro(t)− 1

τincubation
(2)

where τincubation is the incubation time for a disease. The incubation time for COVID-19 has

been quoted to range from a few days to 14 days.

The formal solution to Eqn. 1 is:

I(t) = I0 exp

(∫ t

0

α(t′)dt′
)

(3)

This chain reaction is essentially a probabilistic process, where the chances of transmission

between an infected person and a target could depend on the distance of closest approach,

virus load or duration of contact, susceptibility of the target etc. The question we would

like to address is whether one can obtain a fundamental model to describe the probabilistic

progress of the disease.

Towards that end let us focus on the exponent in Eqn. 3. The number of hospitalizations

I at a given time t empirically displays an exponential growth in which the exponent can

change in time to reflect the effect of social distancing (see e.g. result for NY state in Fig.

1a, which displays a “square root x” behavior near the beginning of the data):

ln

(
I(t)

I0

)
= τ(t)1/2 (4)

where τ(t)1/2 is a general function which describes the flattening effects of social distancing,

or lack thereof.

Using data, we can obtain τ(t)1/2 up to some time t ≤ t0. We expect that for a short

period of time determined by changes in social distancing behavior for example, we can

extrapolate τ(t)1/2 for t > t0. The disease progresses exponentially, and hence small changes

at a given instant in time can have a large effect on later results. This is the reason why we

do not expect forecasting to hold beyond a short period.

If τ(t)1/2 ∼ t1/2, the process is analogous to the process of diffusion where the root mean

square distance ξrms traveled by a particle is proportional to t1/2. In our case ξrms ≡ ln
(

I(t)
I0

)
.

And we know that the probability P (x, t) of finding a diffusing particle a distance x after a

time t is described by:

∂P

∂t
−D∂

2P

∂ξ2
= 0 (5)
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where the diffusion constant is D.

Indeed, we found empirically that τ(t)1/2 ∼ tp gave a crude fit to data, with p < 0.5 for

several states we considered. In our case ξ ≡ ln(I/I0), so that the general master equation

we seek follows by inspection:

∂P

∂τ
− ∂2P

∂ξ2
= S(ξ, τ)

ξ≡ ln

(
I

I0

)
(6)

where τ ≡ τ(t), P (ξ, τ) is the probability that ξ will have a certain value at a “time” τ ≡

τ(t) [dimensionless], while S(ξ, τ) is an arbitrary source function. The diffusion constant

is taken to be unity without loss of generality.

If S(ξ, τ) is a Dirac delta function at the ξ = ξ0, τ = τ0, the normalized solution is:

P (ξ, τ) =
1√

2π(τ − τ0)
exp

[
− (ξ − ξ0)2

4(τ − τ0)

]
(7)

And since ξ is logarithmic in I, it follows that the number of hospitalizations will be deter-

mined by a log-normal distribution. This is especially meaningful since the pandemic shows

signs of producing an immense number of infections. We have used Eqn. 7 to make proba-

bilistic predictions of how the number of infections will evolve in time. The variance is given

by 2D(τ(t)− τ(0)), and the mean is ξ0. Here the diffusion constant D = 1 [dimensionless].

A. Data extraction

We used COVID19 state-wide hospitalization data from the Covid tracking project:

https://covidtracking.com/api/v1/states/daily.csv to plot and obtain fits to τ(t)1/2.

B. Data Analysis

A simple IR (Infections (hospitalizations), Recovered cases) model[4], a subset of the

SEIR model[5], was used to obtain Ro from this data. By dealing directly with a population

of hospitalized patients, we are not required to track susceptible and exposed persons. We

find from data that the recovery rate γ ≈ 0.1[1/Day], where dR/dt = γI. We used Python

to perform all the analysis presented in this paper.
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The model for extrapolation we have proposed is not unique. There are multiple meth-

ods to extrapolate based on previous data. In the case of the novel virus COVID-19 it

may be useful to have a diverse set of prediction models to understand the effect of social

distancing. The standard probability distribution function used in epidemiology[6, 7] is the

Erlang distribution Er(k, µ), which is related to the gamma distribution. There are qual-

itative differences between the standard model and ours. The normal distribution allows

the independent specification of the mean and the variance. The Erlang distribution is such

that the ratio of the square of the mean (kµ) and the variance (kµ2) is k. As such the

Erlang distribution will have a large variance if the mean is large, but not necessarily in our

log-normal distribution, where the ratio is ξ20/2 (τ(t) − τ(0)). Our model yields variances

that are smaller than those obtained from the Erlang distribution. Back testing results for

NY state are included in Appendix A which validate our model.
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III. RESULTS
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(a) Reproducibility via an IR model. This measure is a

leading indicator of an apex in (b).
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(b) Current hospitalizations in the state.

FIG. 1
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(a) Reproducibility via an IR model. Data fluctuations

around the middle of April (see Fig. 2b) causes the global

RMS error to be high. This measure is a leading indicator

of an apex in (b).
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drop off, as the Ro stays close to unity.

FIG. 2
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(a) Reproducibility via an IR model. This measure is a

leading indicator of an apex in (b). Observe the

fluctuations in Ro as social distancing changes over time.
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FIG. 3
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(a) Reproducibility via an IR model. This measure is a
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FIG. 4
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FIG. 5

10

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.18.20105411doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.18.20105411
http://creativecommons.org/licenses/by-nd/4.0/


04/03/20
04/10/20

04/17/20
04/24/20

05/01/20
05/08/20

05/15/20

0.5

1.0

1.5

2.0

2.5

R0
 (R

ep
ro

du
cib

ilit
y)

TX State
Est. incub. time 5 days; polyfit=2;
 RMSE=0.347
Est. incub. time 2 days; polyfit=2;
 RMSE=0.59
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FIG. 6

11

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.18.20105411doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.18.20105411
http://creativecommons.org/licenses/by-nd/4.0/


IV. DISCUSSION

The state of the COVID-19 epidemic is currently fluid. At the time of publication states

around the U.S. were beginning to reopen. And you can see possible precursors of resurgence

of hospitalIzations in some of them. California continues to reside on a plateau with Ro ≈ 1.

The reported hospitalizations in Kentucky appear to be relatively low. Observe the intra-

week systematic “waves” in hospitalizations for almost every state.

The important point to keep in mind is that the health care system must not be allowed

to approach saturation to prevent disastrous situations from developing in a state. This has

to be balanced against a difficult decision of what constitutes an “acceptable” casualty rate,

before states can be re-opened. While such statements are self-evident, tools like the one we

have developed in this paper can be used to inform policy decisions.

A recent preprint[8] suggests that the European strain of COVID 19 may be more trans-

missible than the Wuhan strain. In light of this we examine the progress of the disease in

California (presumably caused by the Wuhan strain), and New York (presumably caused by

the Italian strain). Based on a comparison of Figs. 1a and 2a, it may be tempting to say

that the higher Ro in NY implies a higher transmissibility in that state, compared to CA.

But we know that social distancing was imposed in NY later than in CA. So the difference

could have arisen for this reason. Furthermore, we cannot distinguish the Ro between the

two coasts within the estimated RMS error. In any event, as the curves were flattened, Ro

diminishes below one. The implication is that even if there is a difference in the transmission

of the two strains, social distancing has been able to control the progression of COVID 19.

V. CONCLUSION

The main message is that the growth/decay of cases in a pandemic is governed by a log-

normal distribution. This distribution changes in time according to a generalized diffusion

equation. The log-normal distribution arises from the fact that an epidemic is rather like a

chain reaction in a fission bomb.
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Appendix A: Back testing to validate our model

We show the results of back testing the time-series analysis for NY, extrapolating seven

days. Observe that the 85% confidence bands adequately describe the evolution over one

week.
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(a) 14 days past the start of data collection.
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(b) 24 days past the start of data collection.
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(c) 34 days past the start of data collection.
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(d) 44 days past the start of data collection.

FIG. 7
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