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Abstract

Since its discovery in the Hubei province of China, the global spread of the novel
coronavirus SARS-CoV-2 has resulted in millions of COVID-19 cases and hundreds of
thousands of deaths. The spread throughout Asia, Europe, and the Americas has
presented one of the greatest infectious disease threats in recent history and has tested
the capacity of global health infrastructures. Since no effective vaccine is available,
isolation techniques to prevent infection such as home quarantine and social distancing
while in public have remained the cornerstone of public health interventions. While
government and health officials were charged with implementing stay-at-home strategies,
many of which had little guidance as to the consequences of how quickly to begin them.
Moreover, as the local epidemic curves have been flattened, the same officials must
wrestle with when to ease or cease such restrictions as to not impose economic turmoil.
To evaluate the effects of quarantine strategies during the initial epidemic, an agent
based modeling framework was created to take into account local spread based on
geographic and population data with a corresponding interactive desktop and web-based
application. Using the state of Massachusetts in the United States of America, we have
illustrated the consequences of implementing quarantines at different time points after
the initial seeding of the state with COVID-19 cases. Furthermore, we suggest that this
application can be adapted to other states, small countries, or regions within a country
to provide decision makers with critical information necessary to best protect human
health.
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Author summary

In this work we presented a local agent-based geographic model for the epidemic spread
of COVID-19 with and without quarantine measures. The model is implemented as an
interactive Microsoft Windows application, as a web tool online (summaries only), and
the source code is freely available at GitHub. In this article, the model is presented for
the state of Massachusetts (United States), but can be easily adopted to other
administrative districts, areas and territories where the demographics and population
characteristics of the reported cases are known. After calibration, the model predicts
the morbidity and mortality of the epidemic as it spreads with different quarantine
parameters, which lead to reduction of social contact probabilities between individuals.
The model outputs for different quarantine start dates and durations are then
summarized and compared to actual disease incidence. These summaries demonstrate
the effectiveness of the early quarantine measures on the reduction of the number of
new infections and deaths. The model framework can also be adopted for use in future
decision making process for government and health officials as plans to cease or ease
quarantines continue to evolve using the interactive application.

Introduction 1

The epidemic of a novel coronavirus was first detected in the city of Wuhan in the 2

Chinese province Hubei on December of 2019 [1] [2] [3] [4]. Despite the unprecedented 3

efforts from Chinese authorities including the complete lockdown of the entire city of 4

Wuhan on January 22, 2020 the virus has rapidly spread to all continents except 5

Antarctica. The World Health Organization (WHO) officially declared the coronavirus a 6

global pandemic on March 11, 2020 [5], only three months after the first case was 7

detected. The novel coronavirus is now officially named SARS-CoV-2 and the disease 8

caused by it has been called COVID-19 [6] to distinguish from SARS-CoV and the 9

corresponding severe acute respiratory syndrome (SARS) pandemic from 2003 [7] [8]. 10

Despite the much lower case-fatality rate, SARS-CoV-2 has caused morbidity and 11

mortality orders of magnitude higher than severe acute respiratory syndrome (SARS) 12

and Middle East respiratory syndrome (MERS) combined [9]. As of May 13, 2020, more 13

than 4.1 million infections have been reported worldwide, with more than 287, 000 14

deaths due to complications of COVID-19 [10]. As of May, 2020 there is neither an 15

effective virus-specific treatment, nor Food and Drug Administration (FDA) approved 16

vaccine available for SARS-CoV-2 [11] [12] [13] [14]. As such, social distancing and 17

quarantine are the only available measures to reduce the transmission and prevent 18

overwhelming the capacity of existing healthcare systems. Starting at the epicenter of 19

Hubei province [15] in January, 2020, governments around the world have implemented 20

society lockdown measures of varying degrees [16] [17] [18] [19] [20]. Since such measures 21

remain the only available tools to control the spread of the pandemic, it is critical to 22

understand the transmission dynamics of SARS-CoV-2 in the population. This would 23

allow for the prediction of COVID-19 cases and deaths over time under different 24

mitigation strategies, which could be implemented to reduce morbidity and mortality; 25

as well as the allocation of limited resources to medical providers. 26

To achieve this goal, multiple approaches can be implemented that are typically 27

driven by the quality and precision of the available data. The most commonly reported 28

data for epidemics are the incidence of new cases and deaths represented as a time 29

series over the fixed intervals (e.g. days or weeks) aggregated across multiple regions 30

and reporting sources [21] [22] [23]. This aggregated data can be used for incidence 31

curve reconstruction, modeling, and prediction when more detailed information about 32

each infected individual is not available [24] [25] [26] [27] [28]. Such models are called 33
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compartmental models [29] where the study population is divided into groups while 34

individuals within each group are assumed to have the same characteristics of interest 35

(e.g. susceptible, infected, vaccinated, or immune). The compartmental models are 36

formulated via a defined system of differential equations that allows for both 37

deterministic and stochastic formulations to quantify the uncertainty of the model fit. 38

Those models provide insight into the underlying epidemic dynamics and allow for the 39

prediction of future trends in incidence under different transmission scenarios, including 40

interventions such as social distancing, quarantines, and vaccinations. Another approach 41

are the agent-based models [30] [31] [32] [33], which utilize a synthetic population, that 42

attempts to realistically represent the social interactions in time and space between 43

individuals with different characteristics and infection status [32]. Compared to 44

compartment models, agent-based models rely on detailed data about the study 45

population, making them more computationally intensive while allowing for more 46

realistic simulations of human transmission pathways. 47

An example of an agent-based model that has been successfully applied to study 48

respiratory diseases, including the efficacy of quarantine measures for containment of 49

SARS-CoV-2 is the FluTE model [31] [34]. The FluTE model is based on the 50

assumption that the synthetic study population is parsed in social subgroups and the 51

interactions between them are modeled at different community levels (household, 52

neighborhood, work), age groups, time of the day, and other characteristics. In this 53

work, we propose a localized, agent based model using incidence data from 54

Massachusetts, USA. The proposed model incorporates the infected individuals that are 55

reported in the beginning of an epidemic for a given area and their personal 56

characteristics such as the date the infection was confirmation, geographic location, and 57

demographic characteristics. Thus, by using a limited amount of information, such as 58

the populations of each zip code and number of reported cases, a robust simulation is 59

generated with time series data of predicted disease morbidity and mortality. 60

Furthermore, by incorporating different quarantine strategies, the reduction in the 61

number of new cases and deaths can be estimated for each locale depending on their 62

unique characteristics. Since this model uses limited input data that are publicly 63

available and is implemented in the form of an interactive web application, we believe 64

that this tool could represent a widely adaptable format for state and local governments 65

and health officials to make informed decisions as they consider easing or ceasing 66

mandatory quarantines. Once effective treatments and vaccines become available, this 67

framework could also be used to allocate treatment resources and plan vaccination 68

campaigns tailored to fit different geographic regions. The reported demographics data 69

can also be depersonalized in accordance to HIPAA regulations [35] to make the use of 70

the model versatile and not to violate the privacy of individuals. 71

Materials and methods 72

The Model Structure 73

The model stochastic simulations are generating the infected individuals at different 74

times and stages. Those individuals are indexed by k and have individual characteristics 75

presented below: 76

Qk =
(
(xk, yk), tinfk, detk, stgk, agek, radk, pcont(k), contk, R0(k), severk, durk, stk(t)

)
. (1)

The characteristics of each individual Qk are determined and updated within the 77

simulation process and have the following details: 78

• (xk, yk) - the Cartesian coordinates (in pixels) of the individual Qk that do not 79

change within the simulation process after they are introduced; 80
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• tinfk – the time of infection onset for the individual Qk which is measured in 81

relation to the simulation baseline time denoted as 0; 82

• detk – the detection time variable measured in days that corresponds to a period 83

from an infection acquisition until the proper diagnosis and reporting of individual 84

Qk; 85

• stgk =
(
stg1(k), stg2(k), stg3(k)

)
– the vector of durations of three disease infection 86

stages measured in days that characterize the severity of the disease. It is 87

assumed that stg1(k) + stg2(k) + stg3(k) = detk; 88

• agek – the age of the individual Qk at the time of the infection onset; 89

• radk – the distance (in meters) up to which the individual Qk is able to infect the 90

nearby individuals; 91

• pcont(k) – the probability that during each day the individual Qk has any contacts 92

which lead to new infections; 93

• contk =
(
µcont(k), σ

2
cont(k)

)
– the individual-specific parameters that define the 94

distribution of the number of successful infection transmissions to other 95

individuals within a given day. This number is generated randomly for each day t, 96

provided that the individual has any transmissions on the given day (according to 97

the contact probability pcont(k)). 98

• R0(k) – the individual’s reproduction number. This variable stores the number of 99

individuals that is infected by Qk during the infection period detk. The average of 100

those reproduction numbers across individuals and simulations are used to 101

estimate the basic reproduction number R0 [36] which is a characteristic of the 102

entire epidemic; 103

• severk – the disease severity variable for the individual Qk that takes three values, 104

where 1 corresponds to lethal, 2 corresponds to severe, and 3 corresponds to mild; 105

the disease severity does not change for a given individual after it is determined 106

randomly from a trinomial distribution; 107

• durk – the disease duration from the infection onset to cure (or death) in days, 108

which is generated randomly based on the severk parameter; 109

• stk(t) - the status of the individual Qk at a given day t. The status of the 110

individuals within the simulation is expected to change over time and is expected 111

to take the following values: 112

– stk(t) = 0 – the individual is detected based on the external information i.e. 113

from the reported data that are used as the model input; 114

– stk(t) = 1 - the individual is infected but has not been identified as such yet; 115

– stk(t) = 2 – the individual has been infected and detected as such, which has 116

also implied the individual’s isolation (quarantine). 117

– stk(t) = 3 – the individual has recovered and is immune; 118

– stk(t) = 4 – the individual has deceased. 119

In the beginning of the simulations the model utilizes multiple local epidemic epicenters 120

E = {E1, E2, . . . , EI}. Those epicenters serve as the model initial conditions and 121

represent the introductory geographic points for the index cases that are introduced into 122

the susceptible population. The epicenters can either correspond to the actual address 123
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coordinates for those places where the initial outbreaks were detected or to the centers 124

of the corresponding aggregated geographic units. The latter may be the case, if either 125

the exact infection acquisition locations are not known, or the privacy concerns prevent 126

the inclusion of such data into the model. In the latter case the centers of the 127

aggregated geographic units are taken as epicenters Ei for each i = 1, 2, . . . , I. 128

The local epicenters in the model are defined by a pair of geographic coordinates 129

(Lat, Long) and by an epicenter-specific region radius Ri which is defined in meters. 130

Therefore, for i = 1, 2, . . . , I the epicenter region is defined by a triplet: 131

Ei = ((Lati, Longi), Ri) . (2)

The epicenter regions are defined from the surveillance epidemiological data. As the 132

initial conditions in addition to the local epicenters the model incorporates the areas of 133

high density P = {P1, P2, . . . , PJ } for j = 1, 2, . . . ,J , where each Pj represents a large 134

city or a densely populated area and which is also defined by a triplet: 135

Pj = ((Latj , Longj), Rj) . (3)

In the model the reporting times (days) for the initial index cases for each epicenter i 136

precede the modeled epidemic starting time which corresponds to the baseline time slot 137

t = 0. Therefore, the reported time slot indexes across the epicenters Ei are denoted as 138

s = 1, 2, . . . ,S with the corresponding times t̃1, t̃2, . . . , t̃S . The earliest reported cases 139

and their dates are used for the model input with indexes s = 1, 2, . . . , S̃ such that 140

S̃ < S and the corresponding times t̃1, t̃2, . . . , t̃S̃ . The corresponding number of 141

confirmed and reported infections for each local epicenter Ei up to and including the 142

time t̃S̃ for s = 1, 2, . . . , S̃ is denoted as ni(t̃S̃) . The corresponding set of infected and 143

reported (i.e. with the status stk(t) = 1) individuals across all epicenter is denoted as: 144

D =
{
Q̃1, Q̃2, . . . , Q̃KS̃

}
, (4)

where k = 1, 2, . . . ,KS̃ is the global index for initial cases across all times t̃1, t̃2, . . . , t̃S 145

and KS̃ is the total number of the initial index cases that is simulated within the model 146

based on the input data. The tilde notation for Q̃k-s in D emphasizes the link to the 147

model input data. 148

The time index that corresponds to individual day within the model is denoted as t 149

and is equal to 0 at the model baseline. The simulation baseline time t = 0 corresponds 150

to the latest reporting time t̃S̃ of the earliest reported cases that are used for the model 151

input. The actual infection times for those index cases precede the selected baseline 152

simulation time t = 0 due to the infectivity periods generated for those index cases prior 153

to their reporting. The actual simulation starting time that accounts for the infectivity 154

periods is denoted as t = Tmin and is smaller than the baseline time t = 0. This 155

simulation starting time t = Tmin is generated within the model, while the baseline time 156

t = 0 is defined by the data and is defined by the largest index within the set of 157

calibration indexes s = 1, 2, . . . , S̃. The largest simulation time t = Tmax is determined 158

by the model user based on the desired length of prediction. The initial set of index 159

cases D from (4) defines the model initial cases that are allocated across the local 160

epicenters (2) at times up to the baseline time t = 0. 161

Based on the model geographic characteristics (2) and (3) and the initial set of 162

reported individuals D from (4) the new lists L(t) of of modeled individuals are 163

simulated for time slots t ∈ [Tmin;Tmax] where Tmax − Tmin + 1 is the total number of 164

the simulated time slots. The simulated lists L(t) have the following format: 165

L(t) =
{
Q1, Q2, . . . , QK(t)

}
(5)
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where the value of K(t) is defined by the simulation at every simulation time step 166

t ∈ [Tmin;Tmax]. During this procedure the input set individuals D defined in (4) is 167

allocated between the different epicenters and time slots within the lists L(t) defined by 168

(5). The allocations of the set D is performed during the time slots t ∈
[
Tmin; t̃S̃

]
where 169

t̃S̃ < Tmax. 170

The Overall Model Flow 171

The entire modeling process can be summarized via the following steps: 172

• The model input time interval is determined by fixing the first S̃ reporting 173

indexes out of the total S where S̃ < S. Those indexes correspond to the 174

reporting time slots t̃1, t̃2, . . . , t̃S̃ . This completely defines the list of reported 175

index cases D from (4) that are used as the model initial conditions. The baseline 176

time of the model t = 0 is assumed to correspond to t̃S̃ . 177

• The individuals from the reported set D that are defined in (4) are assigned to 178

the local epicenters of the future epidemic Ei for i = 1, 2, . . . , I based on the 179

available (from the input data) geographic distribution. 180

• The geographic data about the areas of high density Pj for j = 1, 2, . . . ,J are 181

incorporated into the model. 182

• The model is initialized with the index cases from D. Based on those index cases 183

that are defined in (4) the initial infection time Tmin is determined. This step is 184

necessary to incorporate the infection times that have been present before the first 185

reporting time t̃1 into the model. 186

• The final time point of the stochastic simulations Tmax is define by the user based 187

on the desired study and prediction goals. 188

• The initial list of infected individuals L(Tmin) is initialized at time Tmin only 189

with the earliest model input cases from the list D(Tmin). 190

• The infected list of individuals L(t+ 1) for the time slot t+ 1 is generated 191

sequentially for all t ∈ [Tmin;Tmax − 1] based on the list of individuals L(t) from 192

previous time slot t and the individual’s characteristics within the list L(t+ 1) are 193

updated at this time step t+ 1. The details of the new infection generations are 194

provided in S1 Appendix. 195

Based on the lists L(t) at every time slot t ∈ [Tmin;Tmax] the infected modeled 196

population summaries can be computed and summarized. In particular, the total 197

number of currently infected but not identified individuals (i.e. those with the status 198

st(t) = 1) is saved into Inf(t) variable for every t. The total number of treated or 199

quarantined individuals (i.e. with the status st(t) = 2) is saved into Treat(t) variable 200

for every t. The total number of recovered individuals (i.e. with the status st(t) = 2) is 201

saved into Recov(t) variable for every t. The total number of deceased individuals (i.e. 202

with the status st(t) = 4) is saved into Dead(t) variable for every t. Those numbers are 203

used in the model calibration procedures, epidemiological summaries and in the model 204

predictions. The model input utilizes only the first S̃ reported indexes with the 205

corresponding reported times t̃s for s = 1, 2, . . . , S̃ with the total number of reported 206

indexes equal to S and S̃ < S. The remaining reported indexes S̃ + τ, S̃ + τ + 1, . . . ,S 207

for some integer τ are divided into the two groups: 208{
S̃ + τ, S̃ + τ + 1, . . . , Ṡ

}
and

{
Ṡ + 1, Ṡ + 2, . . . ,S

}
. (6)
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The first group of the reported indexes from (6) is used for the model calibration and 209

estimation of the unknown parameters. The second group of the reported indexes from 210

(6) is used to evaluate the quality of the model predictions. The Massachusetts 211

surveillance data that are used for the model calibration, validation and predictions are 212

freely available at the Massachusetts Department of Public Health web site [37]. The 213

first reported date which corresponds to the time index t̃1 in the model is March 13, 214

2020. The latest reported date that is used for the model input is March 26, 2020 which 215

corresponds to the time index t̃S̃ in the model. The time indexes that correspond to 216

t̃S̃+τ and t̃Ṡ are April 14, 2020 and April 22, 2020 respectively. The parameter 217

optimization is performed by minimizing the sum of squared differences between the 218

model-produced outputs and the calibration data by using the Nelder–Mead numerical 219

minimization method [38]. The additional details about the model formulation, 220

parameterization, and calibration are summarized in the S1 Appendix. 221

After the model calibration is performed various quarantine and transmission 222

intervention strategies can be investigated as a build-in function within the calibrated 223

model. Those intervention strategies are based on the assumption that the probability 224

of contacts decreases with the increase in quarantine measures. The social contact 225

probabilities can also be adjusted within the model settings and are either estimated or 226

defined manually for both non-quarantine and quarantine settings. 227

The model availability 228

The model has been implemented in multiple environments which include the 229

implementation for Microsoft Windows and as a web prediction tool [39] [40] 230

(summaries only). In addition to that the model application is freely available under the 231

terms of the MIT license [41] and the sources are available on GitHub [42]. The current 232

model implementation has been calibrated based on the state of Massachusetts (United 233

States) incidence data [37]. The proposed framework and the code are fairly general and 234

can be adopted for other areas and territories where the demographics of the incidence 235

cases and population characteristics are known with at least some geographic precision, 236

and where the rapid evaluations of social distancing measures have to be quantified. 237

Results 238

Within the model multiple epidemic progression scenarios can be considered; three 239

different quarantine strategies are presented in this manuscript as an illustration of the 240

model input and outputs. Other quarantine scenarios can be produced and customized 241

by the user within the interactive application. The first scenario corresponds to the 242

quarantine date on March 29, 2020 i.e. the early reduction in contact probabilities and 243

social distancing between individuals. The second scenario assumes the implementation 244

of the quarantine measures on April 6, 2020, and the third scenario assumes the 245

implementation of the quarantine measures on April 13, 2020. The point estimates and 246

the prediction bands have been produced by replicating each of the three scenarios and 247

taking the median values across 500 model runs for the point estimates and 5-th and 248

95-th percentiles for the 90% prediction intervals. The results are summarized in 249

Tables 1 and 2 for the model-predicted cases and deaths, respectively. For example, the 250

summaries from Table 1 can be compared after one month of the baseline date i.e. on 251

April 26, 2020. For the first scenario the model predicts 24, 039 cumulative cases (with 252

the 90% PI (20, 665; 27, 296)), for the second scenario the model predicts 56, 587 253

cumulative cases (with the 90% PI (46, 944; 66, 401)), and for the thirds scenario the 254

model predicts 123, 351 cumulative cases (with the 90% PI (100, 113; 144, 018)). 255

Compared to the quarantine start date in the second scenario, the first scenario results 256
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in 58% reduction in cumulative cases on April 26, 2020, in 63% reduction in cumulative 257

cases on May 26, 2020, and in 65% reduction in cumulative cases on June 26, 2020. 258

Compared to the quarantine start date in the third scenario, the first scenario results in 259

81% reduction in cumulative cases on April 26, 2020, in 87% reduction in cumulative 260

cases on May 26, 2020, and in 88% reduction in cumulative cases on June 26, 2020. 261

Based on the model outputs the earliest quarantine measures and the reduction in 262

contact probabilities can be extremely beneficial in mitigation of the outbreak 263

consequences. The analogues summaries for the model-predicted death across the three 264

scenarios are summarized in Table 2. Compared to the quarantine start date in the 265

second scenario, the first scenario results in 52% reduction in cumulative deaths on 266

April 26, 2020, in 63% reduction in cumulative deaths on May 26, 2020, and in 65% 267

reduction in cumulative deaths on June 26, 2020. Compared to the quarantine start 268

date in the third scenario, the first scenario results in 70% reduction in cumulative 269

deaths on April 26, 2020, in 86% reduction in cumulative deaths on May 26, 2020, and 270

in 88% reduction in cumulative deaths on June 26, 2020. 271

Table 1. The predicted number of cumulative cases produced by the model over time for three different
quarantine scenarios and three time periods together with the corresponding 90% prediction intervals.

Scenario Quarantine Date April 26, 2020 May 26, 2020 June 26, 2020

First March 29, 2020 24, 039 (20, 665; 27, 296) 32, 692 (27, 361; 38, 221) 36, 767 (30, 288; 43, 976)
Second April 06, 2020 56, 587 (46, 944; 66, 401) 89, 727 (72, 843; 106, 797) 105, 464 (84, 859; 127, 796)
Third April 13, 2020 123, 351 (100, 113; 144, 018) 245, 255 (197, 748; 294, 750) 307, 128 (243, 184; 362, 104)

Table 2. The predicted number of cumulative death produced by the model over time for three different
quarantine scenarios and three time periods together with the corresponding 90% prediction intervals.

Scenario Quarantine Date April 26, 2020 May 26, 2020 June 26, 2020

First March 29, 2020 1, 432 (1, 248; 1, 614) 2, 236 (1, 879; 2, 619) 2, 603 (2, 156; 3, 066)
Second April 06, 2020 2, 959 (2, 473; 3, 405) 5, 987 (4, 863; 7, 118) 7, 397 (5, 947; 8, 870)
Third April 13, 2020 4, 813 (3, 996; 5, 591) 16, 046 (12, 859; 19, 007) 21, 339 (16, 884; 25, 086)

The model is presented via the graphic user interface (GUI) application for Microsoft 272

Windows as well as the as web prediction tool [39] [40] (summaries only) that can be 273

used for the geographic visualization of various epidemiological curves and geographic 274

visualization of cases in the state of Massachusetts. Users can work with the tool and 275

utilize the available model customizations. The appearance of the GUI for MS Windows 276

application is presented in Fig 1. 277

The presented application does not require installation and can be launched directly 278

by running the executable file. The tool allows the parameters optimizations and the 279

visual animated simulations of the model outputs and their comparison with the 280

reported data. The user can interactively customize the most important simulation 281

parameters, change the duration of prediction, and adjust manually the locations of 282

high population density. This allows the user to consider multiple scenarios of the 283

epidemic spread. In addition, the user has flexibility to re-run the model multiple times 284

either step by step or entirely for all time slots. The user can scroll via each day of the 285

recently completed simulation to see the visualized results of that specific day and 286

choose which epidemiological curves to include in the summary graphs. The modeled 287

cases and other summaries are saved into the comma-separated values (csv) files after 288

the end of each simulation. The tool also provides the estimate of the population basic 289

reproduction number R0 for each simulation run together with the corresponding 90% 290

confidence intervals. The estimates for R0 are provided based on the quantiles of the 291

individual’s reproduction numbers R0(k) across multiple individuals k both before and 292
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Fig 1. The tool graphic user interface. The visualization tool GUI for Microsoft
Windows. The tool provides the geographic visualizations of epidemic on the state of
Massachusetts map and constructs the epidemiological summaries and curves. The tool
allows interactive model calibrations and step-by-step simulations.

after the quarantine date that is defined by the user. The resulting distribution of the 293

individual’s reproduction numbers R0(k) from the tool before and after the quarantine 294

are summarized in Fig 2. 295

The example of the summary graphs for the model-produced outputs for the second 296

scenario from Tables 1 and 2 are presented in Fig 3, which contains the four combined 297

graphs available in the “Statistics” tab in the top right corner of the tool. Those graphs 298

within the tool can be produced by setting the “Max Simulation Time” and “Forecast 299

Day” fields to July 15, 2020 and by running the model 500 times by using the “Daily 300

Forecast Evaluation” button. The 500 runs are necessary to produce the median 301

predictions and the corresponding 90% uncertainty prediction bands across those runs 302

by taking the 5-th and the 95-th percentiles across those situations for each time slot. 303

Those graphs include the cumulative numbers of reported cases and deaths, together 304

with the currently hospitalized patients and unreported cases. The graphs also include 305

the reported data in blue. The calibration time period is highlighted in blue and is 306

bounded by vertical bars. 307
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Fig 2. The distribution of the individual’s reproduction numbers R0(k). The
example of the tool output for the distribution of the individual’s reproduction numbers
R0(k). The output graph contains the estimated probability density function of the
individual’s reproduction numbers R0(k) together with the cumulative distribution
functions both before and after the quarantine implementation date.

Discussion 308

In this work the local agent-based modeling framework for respiratory diseases has been 309

presented. This framework incorporates the reported geographic incidence data that are 310

typically available from surveillance, which include individual’s age, infection status, 311

and the severity of the disease. The model accounts for the latent period of the 312

individual’s infection before detection and proper reporting as well as for different 313

disease severity levels. The framework also allows to incorporate the exact geographic 314

addresses of individuals (if available) or the random geographic distribution of 315

individuals within those aggregated districts where they are reported in case of privacy 316

concerns. The model allows to perform predictions with different levels of social 317

isolation between individuals and quarantine measures. Those measures are 318

implemented at different times to compare different quarantine scenarios. As expected, 319

there was a decrease in the cumulative incidence and deaths inversely proportional to 320

the date quarantine was implemented; which resulted in approximately 50-80% 321

reduction in cases and deaths depending on the scenario. 322

Compared to complex agent-based models, the compartmental models are based on 323

the assumptions of homogeneous mixing and can be parameterized by a relatively small 324

set of rates and initial conditions. The main challenges for the compartmental 325

models [26] [27] [43] are the determination of the compartment types that are used in 326

the model, the assignment of individuals between compartment i.e. the specifications of 327

the set of rules that assign each particular individual to each type of compartments, and 328

the determination of the parameters of interest which can either be postulated from 329

external sources or estimated from data. The agent based models, due to their inherited 330

complexity, incorporate separate individuals with multiple different characteristics and 331

parameters per individual. This adds another layer of parameterization flexibility, but 332

also introduces another layer of modeling challenges, since the number of individual’s 333

characteristics within the model is determined by the modeler [30] [31] [32]. Ideally, the 334
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Fig 3. The model-produced predictions. The median of the model-produced 500
runs together with the corresponding 90% uncertainty prediction bands for different
model outputs. The top left graph includes the cumulative numbers of reported cases.
The top-right graph summarizes the cumulative subset of the reported cases that have
deceased. The bottom graphs summarize the number of hospitalized and unreported
patients in the given moment of time. The reported data are displayed in blue for visual
comparison.

model has to be: 1) flexible enough to incorporate the possible social and geographic 335

characteristics of individuals and to provide the way to realistically represent the social 336

interactions and the disease transmission mechanisms; 2) simple enough to avoid the 337

problems with parameterization, but able to capture the actual transmission patterns 338

with the goal of predictions and intervention studies; 3) utilize the available surveillance 339

and public health data in the best possible way. The best possible way in this context 340

means, that all the information from the data that can be used to answer the questions 341

of interest are utilized, while the number of assumptions within the model beyond the 342

information available from the data is the smallest possible that is necessary to 343

implement the model. 344

In the case of COVID-19, an epidemic which has quickly evolved into a pandemic, 345

the local epidemic developments in every region are expected to have different dynamics 346

influenced by multiple region-specific factors. Thus, an agent based model which utilizes 347

local settings is likely superior to a global agent-based model in this setting and can be 348

implemented with minimal inputs as long as local data are available. In this example, 349

we chose regional data for the state of Massachusetts, however we believe this 350

framework and interactive tool could be adopted and useful for small or middle size 351

countries or other administrative districts within a larger country, that have comparable 352

reporting and data quality across different administrative regions. 353
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Conclusion 354

In this paper, we have presented a novel, localized agent-based model that can be used 355

within minimal input data, which is publicly available and tailored to the population 356

distributions of Massachusetts, USA. After calibration the model provided a good 357

estimation of the actual incidence, hospitalizations, and death rates, with the added 358

benefit of estimating the number of undetected infections in the population. Given the 359

necessity for making decisions of easing or ceasing quarantines that are specific to a 360

state or county based on their reported case counts, adaptation of this framework could 361

prove to be very useful with efforts to reopen the economy, while quantifying the disease 362

burden posed by such decisions. In addition, this model could be used for future 363

outbreaks of other novel respiratory diseases to protect public health and possibly 364

designed tailored interventions of treatment and vaccination campaigns. 365

Supporting information 366

S1 Appendix. Model Details The details about the model formulation, 367

parameterization, and calibration. 368
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