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Abstract  

OBJECTIVE 

To develop and validate a prognostic model for in-hospital mortality in COVID-19 patients 

using routinely collected demographic and clinical characteristics.  

DESIGN 

Multicenter, retrospective cohort study. 

SETTING 

Jinyintan Hospital, Union Hospital, and Tongji Hosptial in Wuhan, China.  

PARTICIPANTS 

A pooled derivation cohort of 1008 COVID-19 patients from Jinyintan Hospital, Union 

Hospital in Wuhan and an external validation cohort of 1031 patients from Tongji Hospital in 

Wuhan, China.  

MAIN OUTCOME MEASURES  

Outcome of interest was in-hospital mortality, treating discharged alive from hospital as the 

competing event. Fine-Gray models, using backward elimination for inclusion of predictor 

variables and allowing non-linear effects of continuous variables, were used to derive a 

prognostic model for predicting in-hospital mortality among COVID-19 patients. Internal 

validation was implemented to check model overfitting using bootstrap approach. External 

validation to a separate hospital was implemented to evaluate the generalizability of the 

model.   

RESULTS  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.13.20100370doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.13.20100370


4 

 

The derivation cohort was a case-mix of mild-to-severe hospitalized COVID-19 patients 

(n=1008, 43.6% females, median age 55). The final model (PLANS), including five predictor 

variables of platelet count, lymphocyte count, age, neutrophil count, and sex, had an excellent 

predictive performance (optimism-adjusted C-index: 0.85, 95% CI: 0.83 to 0.87; averaged 

calibration slope: 0.95, 95% CI: 0.82 to 1.08). Internal validation showed little overfitting. 

External validation using an independent cohort (n=1031, 47.8% female, median age 63) 

demonstrated excellent predictive performance (C-index: 0.87, 95% CI: 0.85 to 0.89; 

calibration slope: 1.02, 95% CI: 0.92 to 1.12). The averaged predicted survival curves were 

close to the observed survival curves across patients with different risk profiles.     

CONCLUSIONS  

The PLANS model based on the five routinely collected demographic and clinical 

characteristics (platelet count, lymphocyte count, age, neutrophil count, and sex) showed 

excellent discriminative and calibration accuracy in predicting in-hospital mortality in 

COVID-19 patients. This prognostic model would assist clinicians in better triaging patients 

and allocating healthcare resources to reduce COVID-19 fatality. 

 

Keywords: COVID-19, in-hospital mortality, prognostic model. 
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INTRODUCTION 

The novel coronavirus disease (COVID-19) has become a pandemic worldwide since its first 

outbreak in Wuhan, China since December 2019.1As of May 12, 2020, more than 4 million 

WHAT IS ALREADY KNOWN ON THIS TOPIC  

The global pandemic of coronavirus disease 2019 (COVID-19) is still under rapid progression 

worldwide and causes thousands of deaths daily.  

Previous published prognostic models have been criticized and are prone to bias due to 

unrepresentativeness of patient population, lack of external validation, inappropriate statistical 

analyses, or poor reporting. 

A high-quality and easy-to-use prognostic model to predict in-hospital mortality for COVID-19 

patients could support physicians to make better clinical desicions. 

WHAT THIS STUDY ADDS 

Using a pooled derivation cohort of 1008 COVID-19 patients from Jinyintan Hospital, Union 

Hospital in Wuhan and an external validation cohort of 1031 patients from Tongji Hospital in 

Wuhan, China, we developed a prognostic model (PLANS), including five predictor variables of 

platelet count, lymphocyte count, age, neutrophil count, and sex. 

This PLANS model showed excellent discriminative and calibration accuracy in predicting 

in-hospital mortality in COVID-19 patients.  

The model would assist clinicians in better triaging patients and allocating healthcare resources 

to reduce COVID-19 fatality. 
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cases are confirmed in more than 200 countries, including 283 271 deaths.2 Due to the high 

contagiousness and rapid progression of the disease, healthcare demand, in particular for 

critical care capacities, has often been overwhelming even in high-income areas.3 Good 

support tools are needed for clinicians and other healthcare workers to respond promptly to 

urgent situations. It is crucial to accurately select severe patients for targeted treatment. For 

example, while it is essential to increase the intensive care unit (ICU) capacities and staff, 

ICU triage may be critical to prioritize severe patients for intensive care.4 Therefore, early 

stratification of patients will facilitate targeted supportive care and appropriate allocation of 

medical resources.  

Prognostic model that combines several clinical or non-clinical variables to estimate 

the future health outcomes of an individual could be a useful tool.5 To respond quickly to the 

health crisis of COVID-19, a prognostic model based on robust evidence could be used as a 

simple and inexpensive tool to assist doctors in triaging the patients in the first place, which 

in turn may mitigate the burden of overwhelmed healthcare system and better allocate limited 

healthcare resources to reduce COVID-19 fatality.6 Currently, several clinical prognostic 

models have been developed for COVID-19 patients.7 8 However, the quality of these models 

has been criticized and was prone to bias due to unrepresentativeness of patient population, 

lack of external validation, inappropriate statistical analyses, or poor reporting.7 Two of these 

prognostic models have been constructed with promising predictive performance for 

predicting mortality.9 10 However, they may not be highly reliable due to relatively small 

derivation cohorts (189 to 296 patients) and external validation cohorts (19 to 165 patients). 

In addition, some of the predictor variables included in the final models may not be routinely 
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measured, which in turn limited the implementation of the model to clinical practice. 

Furthermore, the model generalizability to different settings is rarely considered in the model 

derivation. Given the fact of the ongoing worldwide pandemic, a reliable prognostic model 

should not only be applied in the local setting but also can be generalized in different settings 

after updating.  

In this study, we aimed to develop a prognostic model to predict in-hospital mortality 

in COVID-19 patients using routinely measured demographic and clinical characteristics 

from two state-designated hospitals for COVID-19 treatment in Wuhan, China. We also 

validated this model in another independent hospital in Wuhan. Furthermore, we developed 

two updated prognostic models accounting for different characteristics in patients from New 

York in the USA and Lombardy in Italy.     

 

METHODS 

Study cohorts 

Derivation cohort 

The derivation cohort included 1008 COVID-19 patients admitted at Jinyintan Hospital 

(n=763) and Union Hospital (n=245) in Wuhan, China from January 1 to February 10, 2020 

and all patients were followed up to March 20, 2020. The Jinyintan hospital had mostly  

severe patients while Union Hospital had mostly mild patients, thus the cohort consisted of a 

case-mix of mild-severe COVID-19 patients. 

Validation cohort 
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The validation cohort included 1031 COVID-19 patients aged ≥ 18 years at Tongji Hospital 

in Wuhan, China from January 14 to March 8, 2020. Since this cohort was designed to assess 

the potential risk factors related to acute cardiac injury in COVID-19 patients, the cohort did 

not include patients with the stage of chronic kidney disease ≥ 4, chronic heart failure in the 

decompensatory stage, acute myocardial infarction during hospitalization, or having missing 

information on hypersensitive cardiac troponin I. Patients were followed up to March 30, 

2020.  

Data collection 

A trained team of physicians retrospectively reviewed clinical electronic medical records and 

laboratory findings for all the patients. All patients met the diagnostic criteria according to 

the WHO interim guidance.11 In the derivation cohort, we collected data on age, sex, the 

dates of admission and discharge or death, complete blood count at admission (neutrophil, 

lymphocyte, platelet count, haemoglobin), current smoking status (no, yes), chronic disease 

history (hypertension, digestive disease, kidney disease, coronary heart disease(CHD), 

chronic pulmonary disease, cerebrovascular disease, diabetes, thyroid disease, malignancy, 

and other diseases). In the validation cohort, we collected data on age, sex, the dates of 

admission and discharge or death, complete blood count at admission (neutrophil, 

lymphocyte, platelet count), chronic disease history (hypertension, diabetes, CHD). All data 

were reviewed and collected by two physicians and a third researcher adjudicated any 

difference in interpretation between the two physicians.  

Outcome and candidate predictors 
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The outcome of interest was in-hospital mortality. Length of hospital stay (LOS) was defined 

as the time from hospital admission to either discharged alive or death. The follow-up started 

from hospital admission and ended at death, discharged alive, or 30-day after hospital 

admission (administrative censoring at 30-day after hospital admission), whichever came first. 

Candidate predictor variables were selected according to clinical knowledge, literature,7 12 

and data availability, including age, sex, neutrophil count, lymphocyte count, platelet count, 

current smoke status, comorbidities (hypertension, CHD, diabetes, cerebrovascular disease, 

and malignancy). While current smoking status was not considered due to high proportion of 

missing data in the derivation cohort (46.3% missing), information on all other candidate 

predictor variables and outcome was complete for data analysis.   

Model derivation 

Fine-Gray models were used to develop the prognostic model, treating discharged alive from 

hospital as a competing event.13 The prognostic model derivation consisted of a prognostic 

index (PI) that captured the effect of the predictor variables on cumulative mortality rate, and 

a baseline survival that determined the survival of an “average” patient, i.e., a patient with the 

average value of PI.        

First, uni-variable Fine-Gray models with fractional polynomials (maximum 

permissible degree 1) were performed to investigate the functional form for the continuous 

variables. Second, a multivariable Fine-Gray model with all the predictors was built. 

Backward elimination was applied to do the variable selection with significant level setting to 

0.05, resulting in a final model in this step. PI was then calculated based on the combination 

of β coefficients and values of the corresponding predictors.     
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The baseline survival ����� corresponds to the survival of an “average” patient with 

the average value of PI. The survival of other patients can be computed via the formula: 

����� � �����
��� ��	�
�	����, where ���  is the PI of patient i and ��			 is the average value of PI 

in the derivation cohort. 

Details about the inplementation and estimates of the Fine-Gray model, see the 

Supplementary Appendix S1.   

Model performance and internal validation  

Model performance was assessed in terms of discrimination and calibration. Discrimination 

was assessed using the concordance statistic (C-index).14 Calibration was assessed jointly by 

calibration slope and calibration plot. Calibration slope is a measure to estimate the 

regression coefficient on the PI in the validation dataset (equaling to exactly 1 in the 

derivation data).15 In the calibration plot, the averaged predicted survival curves estimated by 

the proposed prognostic model were compared with the averaged observed survival curves 

across several risk groups. The risk group was based on patients’ PI (thresholds: 16th, 50th and 

84th percentiles).16  

We performed internal validation to estimate the optimism (the level of model 

overfitting) and adjusted measures of C-index and calibration slope by bootstrapping 1000 

samples of the original data. Details about the implementation of bootstrap can be found in 

Supplementary Appendix S2. Average calibration slope in the internal validation was 

obtained to be a uniform shrinkage factor. We multiplied the shrinkage factor by the raw PI 

(PI in the model derivation step) to obtain optimism-adjusted PI. Lastly, we developed the 
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final model by re-estimating the baseline survival probabilities based on the 

optimism-adjusted PI.   

External validation  

The final model was applied to each patient in the external validation cohort. PI was then 

calculated based on the combination of β coefficients and the corresponding predictor values 

of every patient in the validation cohort. The discriminative accuracy of the proposed model 

was evaluated using C-index and visually checked by the distribution of PIs. The calibration 

accuracy of the proposed model was assessed using calibration slope and visually checked by 

plotting agreement between predicted and observed survival curves across four risk groups as 

done in the derivation cohort.  

Model update   

The proposed model may not be directly applied to other areas where the distribution of 

predictive factors may be different from that in Wuhan. For instance, New York of USA and 

Lombardy of Italy could have a different distribution of preditor variables compared with 

Wuhan. Therefore, we used entropy balancing to update proposed model to generalize to 

their settings.17 First, entropy balancing approach was implemented to estimate a weight that 

made our derivation data comparable with the New York cohort in terms of the distribution 

of age, sex, hypertension, CHD, diabetes and malignancy. Second, a weighted Cox regression 

was used estimate the baseline survival of the “average” patient in New York by offsetting 

the PI. Last, the updated prognostic model for New York can be obtained via ����� �

�����
��� ��	�
�	����, where ����� is a New York specific baseline survival, ���  is the PI of 
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patient i and ��			 is the PI of the average patient in New York, which was assumed the same 

as that in Wuhan. Same procedures were implemented to obtain the updated model in 

Lombardy.         

Statements about reporting and evaluation of our prognostic model  

The reporting of this prognostic model study followed Transparent Reporting of a 

multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement 

(Supplementary).18 The risk of bias of the prognostic model was independently assessed by 

an expert (JW, who did not take part in the model development and validation) using 

PROBAST (prediction model risk of bias assessment tool).19    

Patient and public involvement 

No patients were involved in setting the research question or the outcome measures, nor were 

they involved in developing plans for design or implementation of the study. No patients 

were asked to advise on interpretation or writing up of results. There are no plans to 

disseminate the results of the research to study patients or the relevant patient community. 

 

RESULTS 

Patient population 

Summary statistics of the patient characteristics at hospital admission are provided in Table 1. 

In the derivation cohort, the median age of 1008 patients was 55 (interquartile range [IQR] 

44-65, youngest at 14 years of age and oldest at 98 years) and 43.6% patients were females. 
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During a median LOS of 12 days (IQR 8-16), 211 (20.9%) died and the youngest and oldest 

deceased patients were 14 and 98 years old, respectively. There were 438 (43.5%) patients 

with one or more comorbidities. Hypertension (N=232, 23.0%), diabetes (N=110, 10.9%), 

chronic digestive disease (N=78, 7.7%), and chronic pulmonary disease (N=40, 4.0%) were 

among the most frequent comorbidities.  

In the validation cohort, the 1031 patients included were older (63, IQR 52-70), had 

more females (47.8%), and were more prevalent with hypertension (N=383, 37.1%), CHD 

(N=83, 8.1%) and diabetes (N=189, 18.3%), compared to the derivation cohort. Patients had 

a longer LOS (19, IQR 11-27). The survival probability of patients in the validation cohort 

was slightly higher compared with the derivation cohort (Figure S1).      

Coding of predictors 

Categorical predictors (sex, hypertension, CHD, diabetes, cerebrovascular disease and malignancy) 

were coded as dummy variables. Among continuous predictors, we did not observe obvious 

violation of linearity assumption for age, neutrophil and platelet count. We observed a 

non-linear relation between outcome and lymphocyte count, especially for lymphocyte count 

< 2×109/L. Therefore, we included the transformed lymphocyte count (square root of the 

lymphocyte count) in the model according to the results of fractional polynomial analyses.   

Model derivation and internal validation 

The PLANS model included five predictors: platelet count, lymphocyte count, age, 

neutrophil count, and sex (Table 2). In-hospital mortality was associated with older age, 

being male, higher neutrophil, lower lymphocyte and lower platelet count. This model 
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showed excellent apparent discriminative ability (C-index: 0.85, 95% CI: 0.83 to 0.88). After 

adjusting for overfitting, the model maintained excellent discriminative accuracy 

(optimism-adjusted C-index: 0.85, 95% CI: 0.83 to 0.87). The average calibration slope 

(uniform shrinkage factor) was 0.95 (95% CI: 0.82 to 1.08), again suggesting little model 

overfit. The final PI was calculated as 0.95 (uniform shrinkage factor) times the raw PI and 

the formula for final PI was structured as  

PI � �0.002 � Platelet � 2.399 � Lymphocyte � 0.044 � Age � 0.127 � Neutrophil �

0.468 � Sex (Formula 1) 

- Platelet: ×109/L  

- Lymphocyte: ×109/L, transformed to lymphocyte ^ 0.5 

- Age: in years 

- Neutrophil: ×109/L 

- Sex: female=0; male=1 

The distribution of final PI suggested good discriminative ability of our model (upper panel 

of Figure 1).The relationship between PI and 7-day, 14-day and 30-day survival probabilities 

are presented in Figure 2. While we observed a slight underestimate of survival in the highest 

risk group, the agreement between predicted survival curves and the observed survival curves 

in the other risk groups suggested good calibration of our model (left panel of Figure 3).The 

final formula for calculating survival probability for patient i is ����� � �����
��� ��	�
�	����, 

where ����� is the survival probability of the “average” patient with PI equaling to 0.5662 

(Supplementary Table S1); ���  is the prognostic index of patient i and can be calculated by 
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Formula 1;  is the mean value of PIs in the derivation cohort and is 0.5662. A patient 

example of how the PLANS model can be applied in the real clinical practice is depicted in 

Box 1. 

 

External validation 

We applied the PLANS model to the independent cohort of 1031 patients from Tongji 

Hospital. The distribution of the PIs in the validation cohort was very similar to that in the 

derivation cohort, suggesting that the excellent discriminative accuracy of our model 

maintained in the validation cohort (Figure 1). The resulting C-index showed excellent 

discriminative accuracy of our model (C-index: 0.87, 95% CI: 0.85 to 0.89). Regarding the 

calibration accuracy, our model slightly underestimated survival in each risk group (right 
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panel of Figure 3). Details about the thresholds and corresponding proportion and death toll 

included in each risk group are provided in Supplementary Table S2. Jointly considering a 

close-to-one calibration slope (1.02, 95% CI: 0.92 to 1.12) and good agreement between 

predicted and observed survival curves, our model still suggested good calibration accuracy 

in the validation cohort.  

Model update 

Compared with those in Wuhan, patients in New York and Lombardy were older and 

prevalent with comorbidities (Supplementary Table S3). While Wuhan and New York had 

similar gender composition, Lombardy had a much higher of proportion of males 

(Supplementary Table S3). With the same PI equalling to 0.566, patients in New York had 

slightly better survival, while those in Lombardy had poorer survival compared with those in 

our derivation cohort in Wuhan. The final formula for calculating the survival probability for 

patient i is ����� � �����
��� ��	�
�	����, where ����� is the survival probabilities of the 

“average” patient in New York or Lombardy and is given in Supplementary Table S4 and 

Table S5; respectively; ���  is the prognostic index of patient i and can be calculated by 

formula 1; ��			 is the mean value of PIs in the derivation cohort and is 0.5662. 

Methodology quality assessment 

According to the PROBAST, the proposed model was rated as low risk of bias in all four 

domains: 17 of the total signaling questions were "Yes" and 3 were "Probably Yes". 

Rationales of answers were shown in Table S6. 
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DISCUSSION 

We developed a prognostic model (PLANS), using clinical readily available measures of 

platelet count, lymphocyte count, age, neutrophil count, and sex, to predict in-hospital 

mortality for COVID-19 patients in two retrospective cohorts in Wuhan, China. This model 

was first internally validated using bootstrap and then externally validated in an independent 

cohort in Wuhan. The PLANS model showed excellent discriminative and calibration 

accuracy. We further updated the PLANS model using summary statistics of the New York 

and Lombardy population, producing two adapted models for potential use in those two 

areas.  

      All the five predictors are routinely collected and some of them have been already 

well established as the risk factors for in-hospital mortality in previous studies.20 Recent 

studies from Italy, the USA, and China21-23 have also reported that advanced age was a strong 

predictor of in-hospital mortality as suggested in our study. Compared to previous studies,24 

25 our study had a more balanced gender composition. Our finding that male gender was 

associated with increased in-hospital mortality provided further evidence to support the 

hypothesis of male’s vulnerability to COVID-19.26 27 Our study further confirmed that poor 

prognosis was associated with higher neutrophil and lower lymphocyte count.28 On top of 

that, lymphopenia was found to have a non-linear relation with in-hospital mortality. A 

meta-analysis of nine studies had reported that thrombocytopenia was significantly associated 

with the severity of COVID-19 disease, but heterogeneity between studies was high.29 Given 

a relatively large sample size and longer follow-up, our study indicated thrombocytopenia 
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was associated with a higher risk of in-hospital mortality. Other studies have shown that 

several comorbidities (hypertension, diabetes, and coronary heart disease) were associated 

with poor prognosis.21 30 While none of the comorbidities were included in our model, we 

found that diabetes status would be incorporated when we excluded age from our model. It is 

plausible as the prevalence of most comorbidities, in particular diabetes, increases with age.22  

Since the outbreak of COVID-19 in Wuhan, a number of prognostic models have 

been established.7 A comprehensive systematic review conducted by Wynants and colleagues 

found that most of these models were of high risk of bias due to several methodological 

limitations from participant domain to analysis domain.7 Compared to the previous models, 

the PLANS model has several strengths. Our derivation cohort had a relatively large sample 

size with complete information on candidate predictors. While duration of follow up was 

unclear in most of the previous studies, the patients in our study were followed over a 

relatively long period, allowing us to perform a time-to-event analysis to predict in-hospital 

mortality by administratively censoring at 30 days after admission to hospital. A competing 

risk analysis treating discharged alive as a competing event was done in this study to avoid 

overestimation of mortality. The similar distribution of age and sex in our study to recent 

large international reports31 32 indicates good representativeness of the patient population. 

External validation of the PLANS model to a large sample of patients showed excellent 

discrimination and calibration accuracy, indicating the generalizability of the PLANS model 

in the same city. Furthermore, we explored the possibility of generalizing the PLANS model 

to New York and Lombardy by using the published summary statistics. Though the adapted 
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models are not recommended being applied before external validation, it might still be a good 

initiative to develop them and make use of them in the areas where the pandemic is still 

prevailing. The assessment of our model using PROBAST showed our model was of low risk 

of bias and out-performed currently available models.         

Several limitations should be noted. First, like most of the previous datasets and two 

main initiatives which created protocols for the investigators, namely, the ‘International 

Severe Acute Respiratory and emerging Infectious Consortium (ISARIC)’ (isaric.tghn.org) 

and the ‘Lean European Open Survey on SARS-CoV-2 Infected Patients (LOESS)’ 

(leoss.net), we only include closed (discharged or dead) COVID-19 cases. However, the 

resulting bias of unrepresentative sample could be largely offset by the long period of 

follow-up time. The patients excluded from our study at least stayed in hospital for 40 days 

(the period from inclusion deadline to the end of follow-up). These patients may be quite 

heterogeneous from those included in our study. Second, we did have missing data on current 

smoking status for some patients. Inclusion of smoking status into the current model might 

improve the model performance. However, a reliable mechanism under the association 

between smoking and negative progression of COVID-19 is still missing.33 Third, some 

potential risk factors confirmed by previous studies, such as D-dimer,28 were not available in 

our study. However, considering the practicality and validity in clinical application, a simple 

and interpretable model is usually preferred.34 In addition, our model showed promising 

performances with five routinely available predictors, balancing the trade-off between model 

performance and model practicality.    
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Implication for practice                             

The availability of a prognostic model that can accurately predict in-hospital mortality in 

COVID-19 patients upon admission to hospital has important implications for practice and 

policy. The PLANS model may assist physicians to early stratify the patients according to the 

estimated mortality at 7-day (14-day or 30-day) after admission, thus giving patients targeted 

supporting care and better allocating the limited medical facilities (e.g. ventilators), 

especially when critical care capacities are overwhelmed. Several studies showed that 

physicians have been experiencing guilt when they make clinical decisions that contravene 

the morals of those making them, e.g. one ventilator, two patients.35 36 The PLANS model 

might be useful to be incorporated into a protocol to assist physicians in making those 

difficult decisions. Our findings from the model update suggest that our model might be 

generalized to different countries as well. The model could be validated in the first place and 

then be used directly if it performs well or after some update according to local settings.37  

 

Conclusion and future research        

The PLANS model can be a guidance model for Chinese hospitals in case of the resurgence 

of COVID-19. It can also be a useful tool for predicting mortality or triage patients in the 

countries where COVID-19 is still a pandemic after being validated in their settings. Future 

studies are warranted about the impact of the PLANS model on clinical practice and decision.   
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Table 1. Basic characteristics 

 Derivation cohort (n=1008) Validation cohort (n=1031)

Age, years       55 (44-65)       63 (52-70) 

Sex, female       439 (43.6%)       493 (47.8%) 

Current smoke statusa  57 (10.5%)       -    

Neutrophil count, ×109/L 4.40 (2.79-6.96)       3.90 (2.78-5.68) 

Lymphocyte countb, ×109/L 0.95 (0.61-1.34)       1.07 (0.70-1.49)  

Platelet countc, ×109/L 194 (145-256)       219 (164-288)  

Haemoglobind, g/L 126 (115-138)       - 

Chronic pulmonary disease 40 (4.0%)       - 

Hypertension  232 (23.0%)       383 (37.1%) 

Coronary heart disease 32 (3.2%)       83 (8.1%) 

Diabetes        110 (10.9%)       189 (18.3%) 

Thyroid disease       31 (3.1%)        - 

Chronic digestive disease       78 (7.7%)       - 

Cerebrovascular disease       22 (2.2%)       - 

Chronic kidney disease 25 (2.5%)       - 

Malignancy   31 (3.1%)       - 
a Current smoke status was missing in 467 (46.3%) patients in the derivation cohort 
b Lymphocyte count was missing in 1 patient in the validation cohort 

c Platelet count was missing in 2 patients in the validation cohort 

d Haemoglobin was missing in 376 (37.3%) patients in the derivation cohort 
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Table 2. Results from multi-variable Fine-Gray model  

Variables Coding   Coefficient 95% CI P 

Age  =x† 0.046 0.036 - 0.057 <0.001 

Sex  Dummy (0=Female, 1=Male) 0.490 0.179 - 0.802 0.002 

Neutrophil count =x 0.133 0.109 - 0.156 <0.001 

Lymphocyte count Lymphocyte count ^ 0.5 -2.514 -3.192- -1.835 <0.001 

Platelet count =x -0.002 -0.004 - -0.001 0.028 

† x stands for original value. 
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Figure 1. Distribution of the prognostic index of the prognostic model in the derivation and 

validation cohort   

Figure 2. Prediction of 7-day, 14-day and 30-day survival probability versus final prognostic 

index 

Figure 3. Predicted vs. Observed survival per risk group in the derivation and validation 

cohort  

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.13.20100370doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.13.20100370


30 

 

 

Supplementary 

TRIPOD Checklist 

Appendix S1. Implementation and estimates of Fine-Gray model 

Appendix S2. Internal validation by bootstrap 

Figure S1. Survival curves for derivation and validation cohort (One patient in the validation 

cohort was excluded due to missing LOS).   

Table S1. “Baseline” survival probability (Wuhan, China) 

Table S2. Thresholds and corresponding proportion and death toll included in each risk group   

Table S3. Basic characteristics used in entropy balancing in Derivation cohort, New York 

cohort and Lombardy cohort  

Table S4. “Baseline” survival probability (New York, USA) 

Table S5. “Baseline” survival probability (Lombardy, Italy) 

Table S6 Methodology quality assessment based on PROBAST risk of bias assessment tool 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.13.20100370doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.13.20100370


Figure 1. Distribution of the prognostic index of the prognostic model in 

the derivation and validation cohort; Upper part: derivation cohort; Lower 

part: validation cohort   

Derivation

Validation
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Figure 2. Prediction of 7-day, 14-day and 30-day survival probability 

versus final prognostic index
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Figure 3. Predicted vs. Observed survival per risk group in the derivation 

and validation cohort*

*Risk groups were defined based on PI. PI range from low risk to high risk 

group: ≤ -0.81, -0.81 to 0.50, 0.50 to 2.03 and > 2.03. In the validation cohort, 

two lowest group were combined due to the limited death.
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