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1 Abstract

A dynamic model for the current coronavirus outbreak is presented. The most
important parameters are identified which determine the number of cases pro-
gression. Results of a numerical simulation are compared with existing data
of the number of infections in Sao Paulo and Brazil. On the basis of these re-
sults measures are proposed to control the epidemics and to flat the infection
curve. A simple three steps procedure is proposed to predict the time evolution
of the epidemics and a criteria to resume ‘normal‘ activities after quarantine is
proposed.

2 Introduction

The multiplication process of the number of cases in an epidemics is primarily
determined by the infection rate parameter (R0). This dimensionless quantity is
defined as the average number of new infections caused by each infected person.
In the case of SARS-COV2 outbreak in Sao Paulo this number is estimated to
be between 2-6, if no social distancing measures are taken and the epidemics is
left to follow its natural course. The infection rate (R0) is the parameter that
controls the number of new infections in a certain moment given the number
of infected people in the days before. The assumption that the new number
of cases is completely determined by the product between R0 and the current
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number of infections implies directly that the epidemics curve will be an expo-
nential whenever R0 > 1. As R0 increases, the steepness of the exponential also
increases. The infection rate parameter R0 can be reduced by adopting measures
of social distancing and quarantine [1, 2]. A decrease in the social interaction
rate and hygiene measures have the potential to strongly decrease R0 reducing
the steepness of the exponential curve and flattening the infection curve. For
R0 ≤ 1 the infection curve becomes flat and the epidemics is controlled.

Another important parameter in the dynamics of the epidemic is the frac-
tion of the population which became immune to the virus. Its complementary
quantity is fraction of the population susceptible to the virus (T). T is given
as the ratio between the number of susceptible people and the total population
and decreases in time as more and more people are being healed reducing its
transmission probability. The fraction of susceptible people should decrease in
time, assuming that all the healed population became immune although recent
findings indicate that the latter assumption may not be rigorously valid [3].

Other important parameters are the incubation time and the healing time.
These parameters basically determine all the dynamics of the epidemics.

In the next sections we will present details of the model and compare the
results of the numerical simulation with epidemiological data.

3 Numerical Model and results

The algorithm calculates the number of new infections in a certain day, given
the number of infections in the previous days. The total number of infections
in a day n is obtained by the equation below:

a(n) = Tn−1 ∗
n−1∑
1

p(i) ∗R0 ∗ anew(i)∑n−1
1 p(i)

+ a(n− 1). (1)

Where anew(i) stands for the new infections in each day i. Note that the
number of new cases in day n, given by the summation in the right side of Eq.1,
is obtained from the contribution of all previous cases since the beginning of
the epidemics (day 1) up to day n-1, weighted by a probability p(i) which is a
function of time. This probability was taken as a Gaussian distribution centered
in a distance backwards from day n equal to the incubation time (τinc) with a
given width (w). Every infected person will contribute to a certain number of
new infections with a probability that depends on how far backwards it is from
day n. This probability increases from day 1 up to a maximum in the incubation
time day, decreasing down to day n-1. The Gaussian is normalized to 1 by the
factor in the denominator.

The factor (Tn) multiplies the summation in the right side of Eq.1 and

is an important one. It is defined as T =
Npop−Ninf

Npop
, where Npop is the total

population andNinf is the current total number infections. AsNinf is a function
of time, Tn will also be a function of time starting from T = 1 (Ninf = 0) going
down to T < 1 as the total number of infections Ninf increases.
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The number of new cases in day n has to be added to the total number of
cases until day n-1 to obtain the cumulative number of infections.

In Figure 1 we plot the cumulative number of current infections given by
Eq.1 versus the epidemic time. The epidemic time is measured in days, starting
in the day of the first infection. The infection curve initially rises exponentially
decreasing its inclination as it approaches the plateau. In the plateau the num-
ber of new infections falls exponentially to zero as Tn → 0 and the epidemics
stops.

In Figure 1 we present the results of the simulation for three different in-
fection rate parameters (solid lines) R0 = 3.5, 1.9, 1.4 compared to the reported
number of infections in Brazil (blue circles). The other parameters of these
calculation are: incubation time τinc =4.4 days, width of Gaussian distribution
w =2.2 days and a total population of 200 million people. The reported number
of cases in Brazil (blue circles) have been multiplied by a constant factor 7.14
which stems from the estimated undocumented factor of 86% as reported in [1].
With this correction factor our mortality rate is around 1%.

The black squares are the São Paulo state data compared to the black curve
for R0 = 1.3 and 10 million people.

The curves are plotted in logarithm scale. This is an important remark since,
by taking the log of an exponential, any terms multiplying the exponential be-
come constant and are washed out when the derivative is taken. As R0 is related
to the derivative (inclination) of the curves, this means that the determination
of R0 is independent of constant multiplicative factors in the exponential. As
a consequence, even if the data are underestimated as they are, that would not
affect R0, as long as the underestimating factor stays constant in time.

In Figure 1 we clearly see 3 regimes in the time evolution. Until 23/03/2020
data clearly are following the orange curve corresponding to R0 = 3.5. From
23/03 up to 08/04/2020 it follows R0 = 1.9 (red curve) and after that until
08/05/2020 it follows R0 = 1.4. The doubling time is indicated in the figure.
The relation between R0 and the time to double the number of cases (doubling
time τd) in the ascending part of the curve can be estimated as:

τd ≈
1

log2R0
∗ τinc (2)

where τinc is the incubation time.
The correspondence between the epidemic time (x-axis) and the real time is

not trivial. This relation is of great interest since it would allow to predict how
far we are from the peak. In principle there is no way to determine this param-
eter other than by a measurement of the real total number of cases in a certain
time. This is virtually impossible, since it would require testing all the popu-
lation. The determination of the true number of infections requires a precise
measurement of the undocumented factor which is not easy since it depends on
particular characteristics of the testing methodology in each particular country.
On the other hand, random surveys of the type performed in elections could,
in principle, give a good idea of this parameter. Random surveys performed
in selected samples of the population allow to determine the percentage of the
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population which has already been in contact with the virus, providing and es-
timation the Tn factor which, by its turn, would give an idea of the position in
the epidemic time. Unfortunately such surveys are not available in Brazil yet.

In Figure 2 we compare the number of new cases reported every day in
Brazil to the simulation results for R0=1.4 and the same parameters as quoted in
Figure 1 (black curve). The calculation have been re-normalized by an arbitrary
factor and shifted (x-axis) to be compared to the data. The data goes up May,8.
Changes in R0 due to relaxation in the social distance measures can modify this
prediction however the all curves have been calculated with the same parameter
but normalized by different constants and shifted in time by different amounts.
This corresponds to assume different total population in the sample. We see
that all curves are consistent with the data but give different predictions for the
position of the peak indicating that it is trivial to predict when the maximum
of infection with be attained [5]. Different total populations can modify the
peak position. Another important factor that has to be taken into account is
the delay in the reporting time. there are indication the, in Brazil, the reported
data can be delayed by up to 14 days implying that the real position in the
curve should be shifted to the right by this amount of time.

In Figure 3 we show the result of two calculations. The red curve is the total
number of infections and the black curve is the infection curve for R0 = 1.4 and
population of 10 million. For R0 = 1.4 51% of the population is contaminated
[6]. The vertical dashed line shows the position of the peak its correspondence
on the total number of infections curve. We see that at the peak of the epidemics
about 3.3 million cases (red curve) in a total of 5.1 million are reported. It means
that, in the peak of the new cases contamination curve, about 65% of the total
number of infections is reached, corresponding to 33% of the total population.
The latter corresponds to the herd immunity factor (R0 × Tn ≤ 1) as quoted in
[6]. This will be discussed in more details in the next subsection.

After the peak, the number of healing becomes larger than the number of
infections and the total number of current cases decreases. As the healing time
is of 14 days for COVID-19, after that time the healing curve will get to its peak.
At this position, about 88% of the infections took place and the contamination
will now decay exponentially to zero. We propose this as a criteria to start
relaxing quarantine and social distance measures.

3.1 Herd immunity

Herd immunity can be understood as the percentage of the population that
needs to be immune in order to slow down the spread of the virus. It can be
defined as the value of Tn below which the product R0 × Therd

n ≤ 1. Tn is a
decreasing function of time as discussed above and it is given as the fraction
of the population susceptible to infection. Then, for a given R0, as Tn get to
a value below which Tn ≤ 1

R0
the the effective infection rate (RTn) turns out

to be smaller than one and the epidemic becomes controlled. For R0 = 3.5 one
gets Therd

n = 0.28, meaning that 1−Therd = 72% of population is immune. The
herd immunity depends on R0. For R0 = 1.4 the fraction of immunity drops
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down to 28%. For R0 = 2, Therd = 50%. This is an important parameters since
it gives an idea of the magnitude of the immune population sufficient to stop
the exponential epidemic spread (see Figure 4.

Assuming that present São Paulo/Brazil‘s R0 ranges between 1.4− 2.0, one
would expected 28 − 50% required immunity to stop epidemics, as long as R0

stays constant in this range.
In the light of these findings we propose a simple three steps procedure to

estimate the herd immunity directly from epidemiological data:

• Determine the infection doubling time from epidemiological data.

• Apply the simple formula 1 that relates R0 with the infection doubling

time to obtain R0 = 2
τinc
τd where τinc and τd are incubation and doubling

time respectively.

• Once R0 is known, the herd immunity can be obtained as 1− 1/R0.

4 Conclusions.

We develop a model and a computer code to calculate the dynamics of Covid-
19. The model is a simple one but contains all the important ingredients, to be
know, the infection rate parameter R0, incubation time, healing time and the
immunity factor (T).

Calculations have been performed for different R0 factors and comparison
with epidemiological data shows that it is possible to determine quite precisely
the value of the infection rate R0 even if the data are sub-notified as long as
the sub-notification factor is constant. The result of our calculations show there
have been 3 moments in this epidemics in Brazil so far, with different R0 factors
R0 = 3.5; 1.9 and 1.4. In Sao Paulo the infection curve is following a little smaller
R0 = 1.3 value. The observed reduction of R0 was probably induced by the
quarantine and social distancing measures and eventually lock-down adopted
by State governments. It became clear that the social distancing politics is
essential to reduce the total number of cases and to control the epidemics. The
total number of infections drops from 97% down to 51% as the infection rate falls
from R0 = 3.5 to for R0 = 1.4. We show that, at the peak of the contamination
curve, about 64% of the total contamination has been reached and 14 days after
the peak about 88% of the total contamination took place suggesting the healing
time as a possible criteria to start relaxing social distance measures.

Conducting random surveys to determine the percentage of infected people
in the population is a critical measure to determine the position in the epidemic
curve, which would by its turn, provide as estimation of the distance to the
peak. The fraction of infected people (1-Tn) in the population is an important
parameter to estimate how far we are from the herd immunity condition (for a
given R0) and to guide the implementation of relaxation in the social distancing

1this formula is the inverse of equation 2.
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measures. This percentage can be obtained from serological tests performed in
random selected samples of the population. Otherwise, if there is no control
of the percentage of infected people, it turns out very difficult to make reliable
predictions of how far we are from controlling the epidemics.

In order to implement these procedures we have to keep in mind that all the
official reports provide a delayed picture of the epidemics and the delay time
depends on several factors as incubation time, time to hospitalization, reporting
time. An estimation of the reporting delay time is highly desirable in order to
give a reliable estimation of the time position in the epidemic curve.
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