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Abstract 
Variation in free-living, microparasite survival can have a meaningful impact on the 

ecological dynamics of established and emerging infectious diseases. Nevertheless, 

resolving the importance of environmental transmission in the ecology of epidemics 

remains a persistent challenge, requires accurate measuring the free-living survival of 

pathogens across reservoirs of various kinds, and quantifying the extent to which 

interaction between hosts and reservoirs generates new infections. These questions are 

especially salient for emerging pathogens, where sparse and noisy data can obfuscate 

the relative contribution of different infection routes. In this study, we develop a 

mechanistic, mathematical model that permits both direct (host-to-host) and indirect 

(environmental) transmission and then fit this model to empirical data from 17 countries 

affected by an emerging virus (SARS-CoV-2). From an ecological perspective, our 

model highlights the potential for environmental transmission to drive complex, non-

linear dynamics during infectious disease outbreaks. Summarizing, we propose that 

fitting such models with environmental transmission to real outbreak data from SARS-

CoV-2 transmission highlights that variation in environmental transmission is an 

underappreciated aspect of the ecology of infectious disease, and an incomplete 

understanding of its role has consequences for public health interventions.  
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Introduction 

The ecology of infectious disease has provided a theoretical basis for understanding 

how interactions between microbes, their hosts, and environments, shape the severity 

of epidemics. Mathematical modeling methods offer means of testing a systems 

perspective such that we can explore—if even theoretically—the consequences of 

underappreciated routes of transmission in epidemics. This is useful in the case of 

emerging diseases, where it may be challenging to fully resolve all of the features of an 

epidemic, including the influence of different routes of transmission on key features of 

an epidemic.  That is, even though there is a large literature on environmental 

transmission (or “fomite” transmission), relatively few studies have explored how 

particulars aspects of environmental transmission—the nature, composition, and 

frequency of environmental reservoirs—can influence disease dynamics.  

 

Lack of clarity regarding of the signature of variation in environmental transmission is 

especially notable in emerging diseases, where data sets are elusive, sparse, or noisy.  

For example, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the 

etiological agent of coronavirus disease 2019 (COVID-19), has caused one of the most 

devastating pandemics of the last century. The complex set of epidemiological 

characteristics defining COVID-19 outbreaks presents a number of challenges for 

controlling this disease. As a consequence, countries have achieved varying levels of 

success in reducing transmission and protecting vulnerable populations, often with 

dramatic variation from setting to setting in the epidemic growth rate, intensity, and/or 

severity. The basic reproductive number (ℛ0) (1-3), fatality rate (4-5), incubation period 

(4, 6-8), transmission interval (9), prevalence of super-spreading events (10-11) and 
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other relevant aspects of COVID-19 epidemiology provide a mechanistic window into 

how SARS-CoV-2 is transmitted in different settings. However, one feature of SARS-

CoV-2 transmission that was validated in laboratory settings, but whose epidemiological 

role remains highly controversial, is SARS-CoV-2 free-living survival (12-14). 

Specifically, while several laboratory and epidemiological findings have suggested that 

environmental transmission may play a role in some settings (11, 13-16), none have 

fully investigated how this route of transmission may influence features of outbreaks, 

and have cast doubt about its relevance as a significant mode of transmission at all 

(17). These unknowns notwithstanding, the availability of SARS-CoV-2 data make it a 

valuable model for examining the particulars of environmental transmission in emerging 

outbreaks.  

 

In this study, we use confirmed case data and laboratory and epidemiologically 

validated parameters to develop a mechanistic transmission model.  Using this, we 

evaluate the potential for variability in environmentally-mediated transmission to explain 

variability in various features associated with the intensity of outbreaks.  This framework 

includes parameters corresponding to the transmission of the virus from both 

presymptomatic/asymptomatic and clinical (symptomatic) carriers of virus, and the 

possibility that susceptible hosts can acquire infection through environmental reservoirs. 

We examine how outbreak dynamics can be influenced by differences in viral free-living 

survival that include empirical values for survival on various abiotic reservoirs (e.g. 

aerosols, plastic, copper, steel, cardboard) (12). 
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Specifically, our findings highlight the need for an empirically-informed, mechanistic 

understanding of the ecology of emerging viral outbreaks—including the particulars of 

how free-living virus survives on different abiotic surfaces, and in aerosol form—should 

be a greater focus in emerging infectious disease outbreaks, as lack of clarity regarding 

the specifics of this route can obfuscate important details of outbreak dynamics.   

 

Materials and Methods 

A Waterborne, Abiotic, and other Indirectly Transmitted (WAIT) model for the 

dynamics of emergent viral outbreaks. Several models have been engineered to 

explore aspects of COVID-19 dynamics. For example, models have been used to 

investigate the role of social distancing (2, 18), social mixing (19), the importance of 

undocumented infections (20), the role of mobility in the early spread of disease in 

China (21), and the potential for contact tracing as a solution (22). Only a few notable 

models of SARS-CoV-2 transmission incorporate features of indirect or environmental 

transmission (15, 16, 22), and none consider the dynamical properties of viral free-living 

survival in the environment. Such a model structure would provide an avenue towards 

exploring how variation in free-living survival influences disease outbreaks. 

Environmental transmission models are aplenty in the literature and serve as a 

theoretical foundation for exploring similar concepts in newer, emerging viruses (23-32). 

 

Here, we parameterize and validate an SEIR-W model: Susceptible (S), Exposed (E), 

Infectious (I), Recovered (R), and WAIT (W) model. Here W represents the 

environmental component of the transmission cycle during the early stage of the SARS 
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CoV-2 pandemic. This model is derived from a framework previously developed called 

the “WAIT” modeling framework—which stands for Waterborne, Abiotic, and other 

Indirectly Transmitted—that incorporates an environmental reservoir where a pathogen 

can sit and wait for hosts to interact with it (33, 34). 

 

Building the SEIR-W model framework for SARS-CoV-2. Here W represents the 

environmental component of the early stage of the SARS CoV-2 pandemic (Fig. S1). 

This environmental compartment refers to reservoirs that people may have contact with 

on a daily basis, such as doorknobs, tables, chairs, mail packages, and non-circulating 

air indoors. The W compartment of our model represents the fraction of these 

environmental reservoirs that house some sufficiently transmissible amount of infectious 

virus. We emphasize that the W compartment is meant to only represent reservoirs that 

are common sites for interaction with people. Thus, inclusion of the W compartment 

allows us to investigate the degree to which the environment is infectious at any given 

point, and its impact on the transmission dynamics of SARS CoV-2.  

 

Model parameters are described in detail in Table 1. The system of equations in the 

proposed mathematical model corresponding to these dynamics are defined in 

equations 1-6: 

 
!"
!#
= 𝜇(𝑁 − 𝑆) − ($!%!&$"%"

'
+ 𝛽(𝑊)𝑆                                 (1) 

!)
!#
= ($!%!&$"%"

'
+ 𝛽(𝑊)𝑆 − (𝜖 + 𝜇)𝐸                             (2) 

!%!
!#
= 𝜖𝐸 − (𝜔 + 𝜇)𝐼*                                                     (3) 
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'
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Infection trajectories. In addition to including a compartment for the environment (W), 

our model also deviates from traditional SEIR form by splitting the infectious 

compartment into an IA-compartment (A for asymptomatic), and an IS-compartment (S 

for symptomatic). As we discuss below, including asymptomatic (or sub-clinical) 

transmission is both essential for understanding how we environmental—as opposed to 

simply unobserved or hidden—transmission effects the ecological dynamics of 

pathogens and also for analyzing SARS-CoV-2. The former represents an initial 

infectious stage (following the non-infectious, exposed stage), from which individuals 

will either move on to recovery directly (representing those individuals who experienced 

mild to no symptoms) or move on to the IS-compartment (representing those with a 

more severe response). Finally, individuals in the IS-compartment will either move on to 

recovery or death due to the infection. This splitting of the traditional infectious 

compartment is motivated by mounting evidence of asymptomatic transmission of 

SARS CoV-2 (20, 36-39). Thus, we consider two trajectories for the course of the 

disease, similar to those employed by (18): (1) E → IA → R and (2) E → IA → IS → R (or 

death). More precisely, once in the E state, an individual will transition to the infectious 

state IA, at a per-person rate of ε. A proportion p will move from IA to the recovered state 
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R (at a rate of p ⍵). A proportion (1 - p) of individuals in the IA state will develop more 

severe systems and transition to Is (at a rate of (1 - p) ⍵). Individuals in the Is  state 

recover at a per-person rate of 𝜈 or die at a per-person rate μS. In each state, normal 

mortality of the individual occurs at the per-person rate μ and newly susceptible (S) 

individuals enter the population at a rate μN. The important differences between these 

two trajectories are in how likely an individual is to move down one path or another, how 

infectious individuals are (both for people and for the environment), how long individuals 

spend in each trajectory, and how likely death is along each trajectory. 

 

Clarification on the interactions between hosts and reservoirs. The model couples 

the environment and people in two ways: (1) people can deposit the infectious virus to 

environmental reservoirs (e.g. physical surfaces, and in the case of aerosols, the 

ambient air) and (2) people can become infected by interacting with these reservoirs 

(infecting the people). While the gist of our study is focused on physical surfaces, we 

also include data and analysis of SARS-CoV-2 survival in aerosols. While aerosols 

likely play a significant role in person-to-person transmission, they also facilitate an 

indirect means of transmitting. For example, in indoor settings an infected individual can 

deposit infectious SARS-CoV-2 into aerosols, which can then infect other individuals in 

an indoor setting (41, 42). These can then remain suspended in the air, whereby other 

individuals can become infected without ever having to be in especially close physical 

proximity to the aerosol emitter (only requires that they interact with the same stagnant 

air, containing infectious aerosol participates). In this setting, the free-living survival of 
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SARS-CoV-2 in aerosol form is a very relevant parameter in determining disease 

dynamics.  

 

Environmental reservoirs infect people through the βW term (equations 1 and 2), a proxy 

for a standard transmission coefficient, corresponding specifically to the probability of 

successful infectious transmission from the environment reservoir to a susceptible 

individual (the full rate term being βWW·S). Hence, the βW factor is defined as the 

fraction of people who interact with the environment daily, per fraction of the 

environment, times the probability of transmitting infection from environmental reservoir 

to people. The factor βWW (where W is the fraction of environmental reservoirs infected) 

represents the daily fraction of people that will interact with the infected portion of the 

environment and become infected themselves. The full term βWW·S is thus the total 

number of infections caused by the environment per day. 

 

In an analogous manner, we model the spread of infection to the environment with the 

two terms 𝜎A IA·(1 - W) / N and 𝜎S IS·(1 - W) / N representing deposition of infection to 

the environment by asymptomatic individuals, in the former, and symptomatic 

individuals, in the latter. In this case, 𝜎A (and analogously for 𝜎S) gives the fraction of 

surfaces/reservoirs that interact with people at least once per day, times the probability 

that a person (depending on whether they are in the IA or the IS compartment) will 

deposit an infectious viral load to the reservoir. Thus, 𝜎A IA / N and 𝜎S IS / N (where N is 

the total population of people) represent the daily fraction of the environment that 

interacts with asymptomatic and symptomatic individuals, respectively. Lastly, the 
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additional factor of (1 - W) gives the fraction of reservoirs in the environment that have 

the potential for becoming infected, and so 𝜎A IA·(1 - W) / N (and analogously for IS) 

gives the fraction of the environment that becomes infected by people each day. We 

use W to represent a fraction of the environment, although one could also have 

multiplied the W equation by a value representing the total number of reservoirs in the 

environment (expected to remain constant throughout the course of the epidemic, 

assuming no intervention strategies). 

 

Parameter values estimation. Table 1 displays information on the population 

definitions and initial values in the model. Tables 2 and 3 contain the fixed and 

estimated values and their sources (respectively). Because this model iteration is 

relatively underexplored with regards to COVID-19, we have worked to justify its use in 

various ways. The model’s estimated parameters are based on model fits to 17 

countries with the highest cumulative COVID-19 cases (of the 181 total countries 

affected) as of 03/30/2020, who have endured outbreaks that had developed for at least 

30 days following the first day with ≥10 cumulative infected cases within each country 

(40) (See supplementary information Tables S1 – S3). In addition, we compare country 

fits of the SEIR-W model to fits with a standard SEIR model. Lastly, we compare how 

various iterations of these mathematical models compare to one another with regards to 

the general model dynamics. For additional details, see the supplementary information. 

 

Estimation of fixed parameters. There are 6 fixed parameters, 6 fitted parameters, 

and one parameter (⍵) dependent on the values of one of the fixed parameters (𝜂) and 
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one of the fitted parameters (𝛆). These fixed parameters are 𝜂, 𝜇, 𝜇S, 𝜈, k, & p. The first, 

𝜂, is the incubation period) (6, 43), and we assume that the expected time in the E state 

(1/𝛆) and the expected time in the IA state (1/⍵) sums to 𝜂, i.e. 𝜂 = 1/𝛆 + 1/⍵. Fixing 𝜂 

constrains one of the two parameters, 𝛆 or ⍵, and the other can be fitted; we choose to 

fit 𝛆 and therefore constrain ⍵. The second fixed parameter 𝜇, the normal death rate, 

was calculated by taking the reciprocal of the average life expectancy (in days) of the 17 

countries sampled, weighted by population size. We calculated a value of 80.3 years, 

based on data from individual countries (44). The third parameter 𝜇S is the sum of the 

normal death rate and an additional death rate due to a more severe form of the 

infection. We assumed a death rate of 3.8% (43) and that death follows after initial 

symptoms between 3 and 4 weeks (43). Thus 𝜇S = 𝜇 + 0.038/(3.5 * 7), where we use 

the average of 3 and 4 weeks and we convert to days with the factor of 7. The fourth 

fixed parameter 𝜈, the recovery rate once in the symptomatic state, was assumed to be 

the reciprocal of the average of 3 and 6 weeks (the range of recovery times) (4, 43) 

times the fraction of individuals in the symptomatic state that do not die, i.e. 1 - 0.038, 

so 𝜈 = (1 - 0.038)/(4.5 * 7). The fifth fixed parameter k, the rate of viral decay in the 

environment, is the reciprocal of the average time that SARS-CoV-2 is expected to 

survive in the environment across a set of abiotic reservoirs, based empirical 

measurements (22). The sixth fixed parameter p, the fraction of individuals in the IA 

state that move on to recovery without experiencing severe symptoms, was taken to be 

0.956 (2). 
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We fit our model variations to the daily new cases data provided (See: supplementary 

information) starting on the day when there were ≥10 cumulative infected cases in that 

region. We choose the starting point of 10 cumulative cases in order to allow the 

outbreak to settle into a more consistent doubling time while also providing enough of 

an early-on window to capture the dynamics relevant to the ℛ0 and force of infection 

estimations. 

 

We calculate the number of daily new infections in our model by numerically integrating 

the influx rate of new symptomatic infections over the course of a single day (i.e. ∫ (1 - p) 

⍵ IA dt). We perform this calculation for each of 30 consecutive days and fit these 

values to the daily new cases data. We use the influx rate of symptomatic infections, as 

opposed to the total rate of new infection (including asymptomatic individuals), as we 

expect that the large majority of reported cases in the early COVID-19 outbreak to be 

symptomatic. And we expect that—in the outbreaks—almost all asymptomatic cases go 

unreported (20). 

 

Initial conditions. For each country, we use the first cumulative count that is ≥10 as a 

proxy for the initial number of active symptomatic cases IS0. We can justify this by 

proposing that, given that the doubling time is expected to fall between 3 and 6 days 

(45) then the exponential growth rate parameter of the infection (r in exp(rt)) would fall 

between 0.231 days-1 and 0.116 days-1 respectively. And, assuming 1 initial infected 

individual, the time to reach 10 cases for the former rate would be about 10.0 days 

(~log(10)/0.231) and the time for the latter would be 19.8 days (~log(10)/0.116). Thus, 
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since recovery of symptomatic individuals, which takes between 3 and 6 weeks (39, 43) 

exceeds this interval, we expect that at the point when 10 cases have accumulated, all 

cases are still active. Lastly, in fitting the data to our model, we initialize all fitting 

parameters to a value of 1.5, in whatever units are appropriate for that parameter 

(expected to be close to the true value for most of the fitting parameters). 

As an estimate for the initial number active asymptomatic cases, we take IA0 = IS0. That 

is, we expect that there are approximately as many asymptomatic cases as 

symptomatic cases early on. This assumption appears to be consistent with empirical 

findings. For example, data from the Diamond Princess cruise liner (11, 46), where all 

passengers were tested, revealed that approximately half of positively-testing cases 

were asymptomatic. Lastly, we assumed that the initial number of exposed individuals 

was approximately ℛ0· (IA0 + IS0), based on the supposition that each of the initially 

infectious individuals (IA0 + IS0) will have exposed the infection to approximately ℛ0 other 

individuals. We take the value of ℛ0 in this case to be 2.5, based on prior studies (18, 

20). The R population is assumed to be 0 in the early stage of the outbreak, given the 

(average) 3 to 6-week recovery delay of COVID-19. The W population is assumed to be 

1%. 
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Symbols Initial Values Units Definitions Sources 

S0 Varies by 

country 

people Susceptible individuals Vary 

E0 ℛ0 · (IA0 + IS0) people Exposed individuals Deduced 

IA0 IS0 people Asymptomatic individuals Deduced 

IS0 Varies people Symptomatic individuals Deduced 

Rec0 0 people Recovered individuals Deduced 

W0 1% unitless % of viruses in environment Deduced 

Table 1. Model population definitions and initial values denoted with subscript 0 for 
each state variable. Here we present definitions for the population groups represented 
by each compartment as well as their initial values. The initial value of the S and IS 
populations vary by country, as shown in Table 2. We take the initial value of the IA 
population to be the same as the initial value of symptomatic individuals as a 
conservative estimate. The initial value of the E population is computed by assuming 
that all initially-infected people (IA0 + IS0) have exposed the virus to approximately 
ℛ0 (≈ 2.5) other people. 
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    Symbols    Values  Units Definitions Sources 

			𝜇 1 80.3 x 365 1/day Natural Death Rate (Reciprocal of  
the average life expectancy of 

17 countries sampled) 

 

               (40, 47) 

			𝜇S   0.00159 1/day Infected death rate            (4, 35) 

			𝜂   5.5 days Incubation Period   (43) 

   1/⍵ 				𝜂 - ε-1 days Expected time in the  
asymptomatic state 

 Fitted and  

dependent on 𝜂 

		𝜈   0.031 1/day Recovery rate (Average of  
3 to 6 weeks) 

(43) 

			p	
 

  0.956 unitless Fraction that move along the “mild” 
recovery track 

 

(2) 

			k   0.649 1/day Viral decay rate in environment 
 (using average of all material values, 

wood, steal, cardboard, plastic) 

           

      (12)      

  

Table 2. Fixed parameter values estimated based on available published literature. 
These estimated values derived from the existing COVID-19 and SARS-CoV-2 
literature. 
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Symbols 

Average 
values 

(SEIR-W) 

Standard 
Deviation 
(SEIR-W) 

Average 
values 
(SEIR) 

Standard 
Deviation 

(SEIR) 

  
Units 

  
Definitions 

βA 0.550 0.345 0.429 0.751 1/day (Contact rate of people with 

people) x (transmission 

probability of people to 

people by an asymptomatic 

person) 

βS 0.491 1.260 8.019 5.972 1/day (Contact rate of people with 

people) x (transmission 

probability of people to 

people by I-person) 

βW 0.031 0.039 0.0 -- 1/day (Contact rate of person with 
environment) x 

(transmission probability of 

environment to people) 

𝜎A 3.404 6.662 0.0 -- 1/day (Contact rate of person with 

environment) x 

(probability of shedding by 
asymp.-person to 

environment) 

𝜎S 13.492 18.849 0.0 -- 1/day (Contact rate of person with 

environment) x 

(probability of shedding by 

symp.-person to 

environment) 

1/ε 2.478 1.325 2.381 2.249 days Average number of days 

before infectious 

Table 3. Estimated parameter values, averaged across countries. Here we provide a 
table of the average values of the fitted parameters used in this model. These averages 
are taken across all of the selected 17 countries. See supplementary information for 
more details on country data and parameter estimation. 
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Basic reproductive ratios (ℛ0). We can express the ℛ0 (eq. 7) in a form that makes 

explicit the contributions from the environment and from person-to-person interactions. 

In this way, the full ℛ0 is observed to comprise two ℛ0 sub-components: one the number 

of secondary infections caused by a single infected person through person-to-person 

contact alone (Rp) and the other is the number of secondary infections caused by 

exchanging infection with the environment (Re). 

 

𝑅! =
"!	$	%"!" 	$	&	"#"

'
                                                    (7) 

 

where Rp and Re are defined in equations 8a and 8b. 
 
 

𝑅( =
)	(+$	(,%	$	-)	$	+%(/	0	()	1)

(,	$	))(,	$	1)(,%	$	-)
, 𝑅2' =

)	+'	(3$	(,%	$	-)	$	3%(/	0	()	1)
4	(,	$	))(,	$	1)(,%	$	-)

																		  (8a, 8b) 
 

Note that when Rp = 0, the ℛ0 reduces to Re and when Re = 0, the ℛ0 reduces to Rp. 

Thus, when person-to-person transmission is set to zero, the ℛ0 consists only of terms 

associated with transmission from the environment, and when transmission from the 

environment is set to zero, the ℛ0 consists only of infection directly between people. 

When both routes of transmission are turned on, the two ℛ0-components combine in the 

manner in equation 7. 

  

While Re represents the component of the ℛ0 formula associated with infection from the 

environment, the square of this quantity Re2 represents the expected number of people 

who become infected in the two-step infection process: people → environment → people, 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 1, 2020. ; https://doi.org/10.1101/2020.05.04.20090092doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090092
http://creativecommons.org/licenses/by-nc/4.0/


18 
 

representing the flow of infection from people to the environment, and then from the 

environment to people. Thus, while Rp gives the expected number of people infected by 

a single infected person when the environmental transmission is turned off, Re2 gives 

the expected number of people infected by a single infected person by way of the 

environmental route exclusively  

 

no direct person-to-person transmission). Also note that Re2/(Re2 + Rp) can be used to 

measure the extent of transmission that is mediated by the environment exclusively. 

This proportion can be used as a proxy for how important environmental transmission is 

in a given setting.  Elaboration on formulas 8a-b—and associated derivation-

discussions—appear in the supplementary information. 

 
 
Results 

The results section covers the following sets of tests and analyses: 

1. The process through which parameters were estimated through fits to country-level 

outbreak data.  

2. Sensitivity analysis, to discuss how variation in parameters influences key aspects of 

virus transmission dynamics. 

3.  An examination of how mathematical model incorporates environmental 

transmission. We discuss a calculation of the proportion of the transmission in a given 

setting can be attributed to environmental transmission.  

4.  Simulations of “reservoir world” scenarios, where the environmental transmission 
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value is set to one of the environmental settings for which there are published findings 

(12). This is designed to identify how hypothetical settings comprising SARS-CoV-2 

environmental transmission of a certain kind influences disease dynamics.  

 

Establishing features of environmental transmission using country outbreak data. 

Using the Akaike information criterion (AIC), SEIR models with an environmental 

compartment (SEIR-W) provide a strong relative fit to country incidence data. As 

discussed in the Methods, we compared the performance of models with (SEIR-W) and 

without (SEIR) environmental transmission across multiple countries to assess the role 

of environmental transmission in different contexts. Using the fitted parameters provided 

in Tables 1-3, and S1-S3, we calculate AIC values for the two mechanistic models: the 

standard SEIR model and the SEIR-W model. Table S4 displays the summary of the 

AIC values for each model-type fit to the first 30 days after the first day with total counts 

≥10. In 10/17 countries (including 9/11 European countries), the SEIR-W model 

provided a better fit to the country data. In Fig. 1, we display the comparative individual 

country fit results for 4 of the countries with the fastest 30-day case growth rates—

Spain, Italy, Iran, and Switzerland. The SEIR-W variant provides a better fit (significantly 

lower AIC score) than the standard SEIR model for all of these. Note that, as features of 

independent country epidemics are myriad and difficult to disentangle, several aspects 

independent of the model structure could explain the superior fit of the SEIR-W models. 

Results for additional country fits can be found in the supplementary information, Fig. 

S2. 
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Sensitivity analysis reveals how environmental transmission can modulate 

disease dynamics. Partial Rank Correlation Coefficient (PRCC) analyses for the four 

examined features of the outbreak—(i) ℛ0, (ii) total number of infected individuals after 

30 days, (iii) time to peak number of infected individuals, and (iii) size of peak number of 

infected individuals. Fig. 2 demonstrates the PRCC calculations for all four of these 

outbreak characteristics. For ℛ0, we observe that the model was strongly sensitive to 

several aspects related to virus transmission— βA, βS, βw——as well as the rate at which 

asymptomatic individuals develop symptoms (⍵), the rate of recovery (𝜈) and SARS-

CoV-2 free-living survival rate (k). 

 

One can also observe how some parameters are better suited to modify the peak of the 

infection, such as the recovery rate (𝜈; which includes in it the swiftness of diagnosing 

and treating the virus). Others modulate the timing of the peak, such as ε, the rate of 

leaving the “exposed” compartment (or equally well, the reciprocal of the average time 

spent in the exposed compartment). Note that across all features, the fraction of cases 

that move along the “mild” route (p), from E→IA→R, has a powerful influence on all 

factors. 

 

The model emerging virus’ ℛ0 comprises person-to-person and environmental 

transmission.  In the Methods, we described how the ℛ0 is composed of two sub-ℛ0 

components, corresponding to different infectious interactions: person to person (Rp), 

person to environment and environment to person (Re). Tornado plots were constructed 
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that demonstrate how the ℛ0-components have their own architecture and sensitivity 

(Fig. 3).  

 

 

In Fig. 4, we observe how variation in free-living survival (1/k) influences four 

characteristics of an outbreak: ℛ0, total number of infected individuals after 30 days, 

time to peak number of infected and symptomatic individuals, and maximum number of 

symptomatic individuals in the first 30 days. Note the annotations on the figure that 

highlight where the empirically-determined survival times of SARS-CoV-2 on a range of 

reservoir types (aerosol, copper, plastic, cardboard, stainless steel) (12). Also note that 

the quantitative relationships between 1/k and various outbreak features are slightly 

different. For example, the ℛ0 increases more gradually across a wider range of free-

living survival values than some of the other features (Fig. 4).  

 

We should reemphasize some aspects of the underlying physics of the simulations in 

this study that were introduced in the Methods section.  In reality aerosol transmission 

likely contributes to person-to-person transmission. There, however, scenarios where 

aerosols serve as environmental reservoir, capable of transmitting between individuals 

in an “indirect” way.  In this study, we use it in an analogous way to surfaces, where air 

may be exchanged in the same room where infected individuals were, rather than 

exchanging infectious particles on a surface.  

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 1, 2020. ; https://doi.org/10.1101/2020.05.04.20090092doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090092
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

The composition of abiotic reservoirs modulates outbreak dynamics. Fig. 5 

depicts the results of “reservoir world” simulations, where the k values correspond to 

those from a 2020 study highlighting the survival of SARS-CoV-1 and SARS-CoV-2 on 

different physical surfaces (12). The summary of these simulations (Fig. 5) highlights 

that the surface composition of a setting has a meaningful impact on several features of 

outbreak dynamics. Of the “reservoir world” simulations, “aerosol world” (5a) and 

“copper world” (Fig. 5c) takes the longest amount of time (91.5 and 88.4 days, 

respectively) to rise to the peak number of infected-symptomatic individuals, indicating 

an outbreak which is slower to develop. Relatedly, the ℛ0 values are much different in 

the different “reservoir world” scenarios: The “aerosol world” simulation has an ℛ0 of 

2.38, the “copper world” simulation an ℛ0 of 2.4, and the “plastic world” simulation an ℛ0 

of 3.18 (Fig. 6 and Table S5). In addition, the total number of individuals infected after 

30 days of the outbreak, and the total number dead after 30 days are both significantly 

lower in the “aerosol world” and “copper world” setting (Fig. 6 and Table S5). The peak 

value of infected individuals is not dramatically different across “reservoir worlds.” That 

is, while many features associated with severity differ greatly across “reservoir world” 

settings, we observed significantly less variation in the peak of the epidemic as 

compared with the time to the peak of the epidemic (Table S5). Maybe the most 

noteworthy of the differences is the vast disparity in the number of deaths in the first 30 

days of the outbreak, where the “plastic world” setting has more than 30 times the 

number of deaths as the “copper world” scenario (1,814 vs. 55, respectively; Fig. 6 and 

Table S5).  
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Lastly, comparisons of the metric, Re2/(Re2 + Rp), which measures the extent to which 

transmissions can be attributed to the environmental route, further highlights how 

different environmental reservoirs influence disease transmission (Fig. 6). The “aerosol 

world” and “copper world” settings comprise 4.6% and 6% of transmission events 

occurring through non-person to person transmission. This differs dramatically from the 

“plastic world” setting, where 52% of transmission events are occurring through the 

environmental route.  

 
Discussion 

Deconstructing the basic reproductive number (ℛ0) into subcomponent reveals 

the role of environmental transmission. By deconstructing the basic reproductive 

number into components, we can better understand how variation in the ℛ0—by setting, 

time, or geography—may reside in how these contexts are driven by environmental 

transmission. Many of these effects may be (as they are in this study) localized to one 

component of the ℛ0, labeled Re2 in this study. Notably, the Re2 component is highly 

sensitive to the transmission interaction between people and the environment (𝛃w), and 

the decay rate of virus in the environment (k). Interestingly, the Re2 is relatively robust to 

the rate of infectious virus shed into the environment from the asymptomatic infected 

individuals (the parameter called σA in this model). Also, deconstructing the ℛ0 value 

into these components facilitates the creation of new metrics that quantify how much a 

given epidemic is driven by certain routes. As many viral diseases may contain multiple 

transmission routes, being able to properly quantify their relative contribution may be 

useful for public health interventions. 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 1, 2020. ; https://doi.org/10.1101/2020.05.04.20090092doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090092
http://creativecommons.org/licenses/by-nc/4.0/


24 
 

Determining the role of viral free-living survival on disease transmission should 

be the focus of early inquiry in the ecology of any emerging infectious disease. In 

this study, we introduce a general framework for studying the joint effects of direct and 

indirect microparasite transmission and then analyzed that model using data from 

SARS-CoV-2.  We demonstrate that understanding the particulars of environmental 

transmission, including variation in viral free-living survival, can alter fundamental 

characteristics of disease dynamics.  For SARS-CoV-2, we find that across 17 

countries, the SEIR-W model better explained the epidemiological patterns than did 

SEIR models. Critically, the SEIR model included asymptomatic/sub-clinical 

transmission. Given that features of environmental transmission can influence central 

properties of disease dynamics, we should consider the possibility that variation in free-

living survival may contribute to variation in aspects of disease dynamics. Nevertheless, 

that the SEIR-W model fits certain country data relative to others may be the 

consequence of many characteristics of an epidemic (e.g. quality of data, testing 

capacity), none of which represents anything meaningful about the mechanism of an 

outbreak. Indeed, the model is strongly sensitive to several aspects related to virus 

transmission, including the rate at which both symptomatic and asymptomatic 

individuals transmit infection to susceptible hosts, the rate at which asymptomatic 

individuals develop symptoms, the rate of recovery (𝜈) and SARS-CoV-2 decay rate (k). 

 

Disease dynamics in different hypothetical “reservoir world” settings resemble 

essentially different outbreaks. Analysis of the ℛ0 and its subcomponents highlights 

that many aspects of outbreak dynamics are sensitive to the parameter associated with 
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environmental decay rate (k in the model presented in this study). Analysis of 

hypothetical settings purely comprising reservoirs of a certain kind (“reservoir world”) 

fortifies the significance of free-living survival on physical surfaces and environmental 

transmission in outbreak dynamics. While our findings cannot speak to the outbreak 

dynamics in any particular setting in the real world, they do reveal that the surface 

composition of a setting can significantly influence the behavior of an outbreak. For 

example, the ℛ0 in the “plastic world” simulation (ℛ0 = 3.18) is over 1.3 times the ℛ0 in 

the “copper world” simulation (ℛ0 = 2.4). Many other differences between these 

outbreaks come as a consequence of the different ℛ0 values. For example, the “plastic 

world” simulation reaches a peak number of symptomatic infectious individuals almost 

1.7 times faster than the “copper world” simulation, and kills over 30 times more people 

in the first 30 days (1,814 deaths in “plastic world” vs. 55 deaths in the “plastic world”). 

 

These differences are so significant that they might be naively interpreted as completely 

different outbreaks early on in an outbreak. Note, however, that the maximum value of 

the infected- symptomatic populations are roughly equivalent across “reservoir worlds,” 

and so the influence of SARS-CoV-2 survival on physical surfaces (mediated by 

difference in free-living survival) doesn’t affect all aspects of outbreak dynamics equally.  

 

Despite the breadth of differences observed across surfaces, a very notable finding 

regards the similarity between the “aerosol world” and “copper world” results. That is, an 

outbreak in a hypothetical world where there are no physical surfaces, but only 

transmission via aerosols would be only slightly more intense than an outbreak where 
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indirect transmission was driven entirely by copper (using ℛ0 as a quick proxy, “aerosol 

world” = 2.38, and “copper world” = 2.4).  The implications here are subtle, but worth 

elaborating on: while a lot of public debate has focused on a dichotomy between 

aerosol-mediated transmission and environmental transmission, our findings suggest 

that the differences between aerosol transmission and some physical surfaces is so 

minute that the epidemiological signature for differences between them may be 

indistinguishable. Consequently, the more productive debates would focus, not on 

whether environmental transmission is occurring at all, but how the combination of 

aerosols and surfaces contribute to non-contact transmission events. 

 

Implications for the ecology of emerging outbreaks. As of June 1, 2020, the 

scientific community remains in the fact-finding phase of SARS-CoV-2 biology and 

COVID-19 understanding. A significant source of fear and speculation in the pandemic 

involves the plausibility that SARS-CoV-2 has undergone local adaptation in certain 

settings, translating to different epidemiological properties. While there is no currently 

convincing molecular or clinical support for local adaptation in SARS-CoV-2, our 

findings highlight how easy it is to conflate an environmental (or ecological) difference 

for a genetic one: the same virus, spreading in populations of identical size and 

behavior, differing only in the composition of physical surfaces where the virus can be 

transmitted through the environment, can have ℛ0 values between 2.4 and 3.18, with 

early death rates 30 times apart. Even further, our findings highlight how models of 

direct and indirect/environmental transmission can provide comparable results, 

rendering it easy to conflate routes of transmission.  This is related to a problem known 
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as the identifiability problem that arises when models are fit to early outbreak data (48).  

 

These difficulty in predicting outbreaks conferred by this identifiability problem, and the 

generic variability in disease dynamics from setting to setting has been encapsulated in 

a concept called permutation entropy (49). Even more, environmental reservoirs 

composed of certain physical surfaces (plastic-like in our model) may be associated 

with phenomenon resembling a “superspreading” event, where individual variation in 

contagiousness can drive unusually large numbers of infections (50). Perhaps a better 

understanding of how, and on what surfaces, viral populations survive may one day 

improve the predictability of outbreak trajectories.  

 

Because of the identifiability problem, and a general lack of consensus regarding the 

mechanisms of transmission in various diseases, we caution against the 

overextrapolation of these findings to any particular epidemic. As of July 2020, the 

evidence for widespread surface transmission of SARS-CoV-2 remains dubious. Insofar 

as SARS-CoV-2 is not the last of the emerging infectious diseases, then we should 

remain vigilant about understanding how different routes of transmission may influence 

disease dynamics. This is especially true because there remain other microparasites 

(viral and other) in human and nonhuman hosts that are transmitted via the 

environmental route that will continue to require our attention.  
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Fig; 1. Illustrative model fit comparisons for SEIR-W and standard SEIR to case 
counts in early windows of the outbreak. The model fits are comparable across four 
countries with the largest early epidemics. These were chosen based having the highest 
cumulative number of infected cases after 30 days, following the first day when case 
counts were greater than or equal to 10. The four countries are (a,b) Spain, (c,d) Italy, 
(e,f) Iran and (g,h) Switzerland. These constitute a subset of 17 countries that had the 
highest number of cumulative COVID-19 cases (of the 181 total countries affected) as 
of March 30, 2020. Data come from the European Centre for Disease Control and 
Prevention, and from ourworldindata.org (40, 47). See supplementary information for 
more details.  
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Fig 2. A Partial Rank Correlation Coefficient (PRCC) sensitivity analysis. PRCC 
was performed with respect to (A) ℛ0, (B) total number of infected (and symptomatic) 
after 30 days of outbreak, (C) time to peak number of symptomatic individuals (tmax), 
and (D) peak number of symptomatic individuals. This analysis highlights the 
intercorrelated sensitivities of each of the model parameters. The blue bars show the 
mean value of each PRCC, with error bars at one standard deviation. This analysis was 
performed by sampling over uniform distributions of 4.5% around the nominal model 
parameter values. Parameters correspond to the fixed ones in Table 3, and the average 
fitted parameters values in Table S5. The red line marks PRCC values of +/- 0.50 and 
helps identify parameters that are more influential (greater than 0.50 or less than - 
0.50). See supplementary information for more details.  
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Fig.3. ℛ0 subcomponents have different parameter architecture.  We compare the 
parameter architecture for the two ℛ0 components that compose the full ℛ0 expression, 
(a) Rp, (b) Re2 and (c) ℛ0.  Parameters are colored according to their relation with the 
environment or people: green parameters refer to the environment, blue parameters 
strictly refer to people, and black parameters are neutral in this regard. Black bars show 
the extent to which the component after changed when the parameter values are 
increased by 4.5%, The white bars show the same except for a decrease of 4.5%. For 
clarity, the single parameter that most influences the ℛ0 and its subcomponents is the 
faction of cases that move through the mild route (p) has been removed. For more 
details on how this parameter influences the ℛ0 and other features of the outbreak, see 
the PRCC analysis as discussed in the Methods and supplementary information.  
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Fig. 4. Environmental transmission: Various features of an outbreak change as a 
function of 1/k  (where k is the rate of decay of SARS-CoV-2 survival in the 
environmental compartment): to (A) ℛ0, (B) total number of infected (and symptomatic) 
after 30 days of outbreak, (C) time to peak number of symptomatic individuals (tmax), 
and (D) peak number of symptomatic individuals. The black dashed lines show the 
value of the respective plotted value at the average value of 1/k (~ 1.5 days), used in 
the fits from above. The top red line shows the maximum of plotted value for either the 
smallest value of 1/k chosen ( = 1 hr) or the largest value of 1/k chosen ( = 3 days), 
depending on whether the plotted value decreases or increases with 1/k, and the 
bottom red line shows the plotted value at the other extreme of 1/k.   We emphasize that 
these correspond to indirect, environmental transmission only. Aerosol transmission, for 
example, is likely a cause of direct transmission between individuals.  
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Fig. 5. Hypothetical “reservoir world” simulations feature differing environmental 
transmission dynamics. Population and environmental dynamics of SEIR-W model 
outbreaks in hypothetical settings composed of pure substances where SARS-CoV-2 
can survive and be transmitted. (A, B) “aerosol world,” (C, D) “copper world,” “ (E, F) 
cardboard world,”  (G, H) “stainless steel world,” and (I, J) “plastic world.” Environment 
infectiousness corresponds to the proportion of the environment that contains infectious 
SARS-CoV-2. Note that the surface where the viral decay is strongest (Copper), the 
peak of the epidemic is pushed farthest from the origin. Also note the ℛ0 values graphs 
A, C, E, and G, which highlight that the different “reservoir worlds” behave like 
fundamentally different outbreaks in several ways.  
 
 
 
 
 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 1, 2020. ; https://doi.org/10.1101/2020.05.04.20090092doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090092
http://creativecommons.org/licenses/by-nc/4.0/


39 
 

 
 
 
 
 
 
 
 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 1, 2020. ; https://doi.org/10.1101/2020.05.04.20090092doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090092
http://creativecommons.org/licenses/by-nc/4.0/


40 
 

Fig. 6. Summary of the hypothetical “reservoir world” outbreak intensity 
measures. Graphs correspond to the attributes of simulated epidemics where 
environments are entirely composed of a given physical surface, and larger values 
correspond to various aspects of outbreak intensity. A) ℛ0, (B) total number of infected 
(and symptomatic) after 30 days of outbreak, (C) the inverse time to peak number of 
symptomatic individuals (tmax-1; larger values = shorter times to reach peak), (D) peak 
number of symptomatic individuals, (E) deaths after 30 days, and (F) environmental 
transmission fraction. Note the log scales on the y-axis in (B), (D) and (E). 
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