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ABSTRACT 

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 

coronavirus disease 2019 (COVID-19) has led to the rapid initiation of urgently needed clinical 

trials of repurposed drug combinations and monotherapies. These regimens were primarily relying 

on mechanism-of-action based selection of drugs, many of which have yielded positive in vitro but 

largely negative clinical outcomes. To overcome this challenge, we report the use of IDentif.AI, a 

platform that rapidly optimizes infectious disease (ID) combination therapy design using artificial 

intelligence (AI). In this study, IDentif.AI was implemented on a 12-drug candidate therapy search 

set representing over 530,000 possible drug combinations. IDentif.AI demonstrated that the 

optimal combination therapy against SARS-CoV-2 was comprised of remdesivir, ritonavir, and 

lopinavir, which mediated a 6.5-fold improvement in efficacy over remdesivir alone. Additionally, 
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IDentif.AI showed hydroxychloroquine and azithromycin to be relatively ineffective. The 

identification of a clinically actionable optimal drug combination was completed within two weeks, 

with a 3-order of magnitude reduction in the number of tests typically needed. IDentif.AI analysis 

was also able to independently confirm clinical trial outcomes to date without requiring any data 

from these trials. The robustness of the IDentif.AI platform suggests that it may be applicable 

towards rapid development of optimal drug regimens to address current and future outbreaks.  

 

INTRODUCTION 

Drug repurposing, or the use of approved and investigational therapies for other 

indications, has been a widely implemented strategy towards treating COVID-19. Examples 

include clinical studies of ritonavir and lopinavir (1); hydroxychloroquine in combination with 

azithromycin (2); favipiravir in combination with tocilizumab (NCT04310228); remdesivir (3); and 

losartan (NCT04312009), among others. In one trial, remdesivir met trial endpoints, reducing the 

median time to recovery from 15 days to 11 days (P < 0.001), and has ultimately received United 

States Food and Drug Administration (FDA) authorization for emergency use in severe COVID-

19 patients (4). The majority of trial outcomes are either pending or have not shown clinical benefit 

over standard of care or placebo. As such, while drug repurposing enables rapid intervention 

against COVID-19, there is still a lack of clarity with regards to how to best treat this disease. 

 Traditional methods for implementing combination therapy and monotherapy based on 

drug repurposing rely on mechanism of action (MOA)-based drug selection and standard clinical 

dosing guidelines to achieve drug synergy and therapeutic efficacy.  For example, a recent 

preclinical study showed that remdesivir as well as high-dose chloroquine were efficacious 

towards SARS-CoV-2 in vitro. While this is an established approach that has led to promising 

candidate therapies, many of these regimens were not able to translate their in vitro outcomes 

into successful clinical results. Therefore, optimal efficacy that is clinically relevant is a different 

objective that presents substantial challenges to traditional drug screening and repurposing 
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methods. For example, if candidate effective drugs are given in combination at suboptimal 

respective doses, resulting efficacy is moderate or even absent. At the same time, the relative 

doses between drugs within a combination can substantially impact treatment efficacy and toxicity 

due to unpredictable drug interactions. Therefore, drug dosing has a critical role in identifying 

which drugs belong in the optimal combination in the first place. Therefore, optimizing treatment 

outcomes, particularly in combination therapy, ultimately relies on selecting the right drugs at the 

right respective doses (5, 6). Reconciling drug-dose parameters also requires leveraging 

unpredictable drug interactions in order to mediate maximal efficacy of combination therapies. 

Unfortunately, simultaneously pinpointing these parameters is an extraordinarily complicated 

task. For example, a parameter space of 1 trillion (1012) possible combinations would be created 

from a pool of only 12 candidate therapies interrogated at 10 dose levels. This is an 

insurmountable barrier for traditional drug screening. Important studies have previously sought to 

leverage drug synergy interactions to predict multi-drug combinations (7). Other strategies have 

investigated higher order drug interactions to develop antimicrobial drug combinations (8). 

Bridging these findings with clinical validation remains a challenge due to the size of the 

experimental search space.  

 In this study, we sought to overcome these challenges in developing effective combination 

therapies against SARS-CoV-2 infection using the IDentif.AI platform. IDentif.AI harnesses a 

quadratic relationship between therapeutic inputs (e.g. drug and dose) and biological outputs (e.g. 

quantifiable measurements of efficacy, safety) to experimentally pinpoint optimal combinations 

from large parameter spaces with a marked reduction in the number of required experiments (Fig. 

1). Identif.AI does not use pre-existing training datasets, but rather uses an orthogonally-designed 

set of calibrating regimens to simultaneously identify effective drugs and corresponding doses 

that optimize treatment outcomes from prohibitively large drug-dose parameter spaces that 

cannot be reconciled by brute force drug screening (5, 9). In effect, IDentif.AI leverages these 

calibrating regimens to crowdsource SARS-CoV-2 live virus responses to experimentally drive 
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the efficacy towards an optimal outcome. In this study, IDentif.AI was applied to a 12-drug set of 

candidate therapies to pinpoint clinically actionable combination therapy regimens against the live 

SARS-Cov-2 virus isolated from a nasopharyngeal swab of a patient in Singapore (10). The 12-

drug set included a broad spectrum of repurposed agents that are currently being evaluated in 

clinical studies for treatment of COVID-19 or being administered in conjunction with these 

therapies, including remdesivir (RDV), favipiravir (FPV), ritonavir (RTV), lopinavir (LPV), 

oseltamivir (OSV-P), dexamethasone (DEX), ribavirin (RBV), teicoplanin (TEC), losartan (LST), 

azithromycin (AZT), chloroquine (CQ), and hydroxychloroquine (HCQ). Based on prior studies of 

minimal resolution experimental design, 3 dosing levels were employed with these 12 drugs, 

creating a combinatorial space of 531,000 regimens (11). With a 3-order of magnitude reduction 

in required tests, we identified a clinically actionable list of 2-,3-, and 4- drug combinations ranked 

based on viral inhibition efficacy with accompanying safety data against kidney epithelial cells 

(Vero E6), liver epithelial cells (THLE-2) and cardiomyocytes (AC16). The top-ranked combination 

was comprised of remdesivir, ritonavir, and lopinavir, which mediated a 6.5-fold increase in 

efficacy (viral inhibition %) compared to remdesivir alone. Further demonstrating the clinical 

actionability of IDentif.AI, hydroxychloroquine and azithromycin combination was shown to be a 

relatively ineffective regimen, mirroring recent clinical results. Importantly, the IDentif.AI-

pinpointed relative efficacy of the combinations and monotherapies was independently 

confirmatory of many of the clinical trial endpoints to date. These outcomes, coupled with the fact 

that foundational precursors to IDentif.AI have been clinically validated for infectious disease, 

oncology, and organ transplantation human studies, support the potential application of IDentif.AI 

as a clinical decision support platform for the optimized design of actionable combination therapy 

regimens (12-14).  
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Fig. 1 Project IDentif.AI workflow. Project IDentif.AI has four phases: (1) drug-dose selection established 
for each drug based on dose-response curves and Cmax of clinically administered dosages, (2) combination 
therapies determined by a three-level orthogonal array composite design for experimental testing, (3) 
IDentif.AI analysis of the drug dose parameter space identifies drug-drug interactions and ranks optimal 
drug-dosage combinations, (4) experimental validation of IDentif.AI-designed and other selected 
combinations. 
 
 

MATERIALS AND METHODS 

IDentif.AI Analysis 

IDentif.AI, a dynamic optimization AI-based platform, identifies the drug-dose parameter 

space by harnessing the quadratic relationship between biological responses to external 

perturbations, such as drug/dose inputs (15). IDentif.AI analysis of the drug-dose parameter 

space identifies drug-drug interactions and ranks optimal drug-dosage combinations. This study 

aimed to use IDentif.AI to determine effective optimal drug-dosage combinations from a diverse 
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set of 12 drugs currently being explored in clinical trials to combat the COVID-19 disease. The 

concentration levels of the 12 drugs for the in vitro IDentif.AI experiments were determined from 

EC50, CC50, and Cmax for corresponding clinically administered dosages. From the in vitro 

experiment data, IDentif.AI analyses were performed to identify drug combinations from this pool 

of candidates that were effective against the SARS-CoV-2 virus.  

Cell ATP activity for each well was processed using custom written Python 3.7.7 script 

(Python Software Foundation). Data were normalized to the average readout from the DMSO 

vehicle controls on the same plates. Vero E6, AC16 and THLE-2 %Cytotoxicity and viral activity 

%Inhibition (Vero E6) were calculated using the same formulae as for the drug monotherapy 

analysis (Supplementary Materials and Methods). %Inhibition calculations used cell and media 

only control wells. The resulting %Cytotoxicity and %Inhibition calculations were used as inputs 

in IDentif.AI analysis. 

IDentif.AI analysis correlated drug combinations experimental results into a second-order 

quadratic series. Each independent drug combination inhibition and monotherapy inhibition 

replicate was used in the optimization process. The second-order quadratic model is as follows: 

 

𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 +  𝛽𝛽12𝑥𝑥1𝑥𝑥2 +⋯+ 𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 +  𝛽𝛽11𝑥𝑥12 + ⋯+ ⋯+ 𝛽𝛽𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛2  

 

where y represents the desired biological response output (%Inhibition), xn is the n-th drug 

concentration, β0 is the intercept term, β n is the single-drug coefficient of the n-th drug, β mn is the 

interaction coefficient between the m-th and n-th drugs and β nn is the second-order coefficient for 

the n-th drug, while m ≠ n. This second-order quadratic analysis and parabolic response surface 

plot analysis were conducted using the built-in “stepwiselm” function in Matlab R2020a 

(Mathworks, Inc.) with custom-written code. IDentif.AI derived four quadratic series using 

bidirectional elimination approach with the P value from the F-Statistic as the selection criterion 

for the experimental results: %Inhibition, %Cytotoxicity, %Cytotoxicity AC16, and %Cytotoxicity 
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THLE-2. Residual-based outlier analysis was performed for all four IDentif.AI series. Single 

replicates identified as outliers remained in the data set to account for biological variation. The 

combinations with all replicates identified as outliers were excluded from the data set and the 

IDentif.AI analysis was repeated.  

IDentif.AI analysis yielded both drug-drug interaction plots and optimized drug 

combinations. The optimized drug combinations were ranked according to corresponding 

%Inhibition from the correlated second-order quadratic series with the %Cytotoxicity of the cell-

lines (Vero E6, AC16, and THLE-2) serving as qualitative indicators for consideration. The 

predictive power was also calculated via adjusted R2 to establish the robustness of IDentif.AI 

optimization considering the number of drug and drug-drug interaction terms. Correlation 

coefficients were derived from the experimental output values and projected output values for the 

corresponding drug combinations. 

 

Statistical Analysis 

All experiments were performed in at least triplicate biological repeats with data presented 

as means ± standard deviation (SD), unless otherwise stated. Shapiro-Wilk normality test was 

used to determine if samples were from normally distributed populations. Variance equality was 

tested with Bartlett’s test. The Kruskal-Wallis test by ranks was used for multiple comparisons, 

followed by Dunn’s post hoc test for pairwise comparisons. Student’s two-tailed t test and 

Wilcoxon rank sum test were used for comparing individual samples from normally and non-

normally distributed populations, respectively. Bonferroni post-hoc correction was applied to 

account for multiple comparisons. Statistical analyses for coefficient estimation in the IDentif.AI 

analyses were performed using sum of squares F-test. Alongside the P-values, the results were 

interpreted in the light of logic, background knowledge and the specifics of the experimental 

design (16). 
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RESULTS 

 

Monotherapy Assessment and OACD Dataset Construction 

A pool of drug candidates was first chosen and evaluated for downstream IDentif.AI 

analysis and drug combination optimization. The pool of candidate therapies for IDentif.AI-driven 

optimization contained eleven drugs that were hypothesized to inhibit SARS-CoV-2 viral infection 

via affecting: viral entry into the host cell - CQ, HCQ, AZT, LST, TEC; viral replication – RTV, LPV; 

viral RNA synthesis - RDV, FPV, RBV; viral release - OSV-P (17-20). To create combinations 

actionable within the current clinical guidelines we aimed to investigate drug interaction space 

between the antiviral and concomitant medications. The last drug added to the pool, DEX, has 

been discussed for preventing and treating acute respiratory distress syndrome (ARDS) resulting 

from COVID-19 (21), NCT04325061. LST is a common hypertension drug whose dosing should 

not be paused while undergoing COVID-19 treatment (22). TEC is a wide spectrum antibiotic 

prescribed for pulmonary infections, potentially including those occurring as COVID-19-related 

complications (23). 

IDentif.AI interrogates drug-dose relationships in order to identify the most efficacious drug 

combinations within a defined drug concentration range. With the ultimate goal of clinical 

implementation, drug-dose response experiments were performed within concentration ranges 

that accounted for clinically implemented concentrations and avoided clinically unrealistic drug 

concentrations. The drugs with and without the addition of 100 TCID50 of SARS-CoV-2 virus were 

incubated with primate kidney cell line Vero E6 for 72h before measuring inhibition and cytotoxicity 

and generating the dose-response curves (Fig. S1).  

Only high concentrations (>1 µM) of RDV, LPV, CQ and HCQ achieved half maximal 

absolute effective concentration (EC50) for the viral inhibition within the tested concentration 

ranges. High concentrations (>20 µM) of RTV, LPV and CQ led to half maximal absolute cytotoxic 
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concentration (CC50) within the tested concentration ranges (Table 1). These results indicated low 

cellular effects of the selected monotherapies at the tested concentrations. No effect of the 

maximum vehicle concentration (0.1% DMSO) was detected on viral inhibition or on cytotoxicity 

(Student’s t-test, n = 12, P > 0.05). The EC50 and CC50 of HCQ, CQ, RDV, FPV, and RBV were 

different from previously reported values, attributable to differences in the experimental conditions 

(e.g. SARS-CoV-2 strain, assays, incubation periods) (24, 25). Because a common source of 

failure in translating in vitro results to clinical trials, including for coronaviruses, is the high ratio of 

EC50 to maximum plasma concentration (Cmax) achieved in the human body, Cmax was included 

as a crucial consideration for selecting drug concentrations at Level 1 and Level 2 for each drug 

that ensure none of the drugs were overrepresented in relation to other drugs and to human 

pharmacokinetics (Table 1, Supplemental Results) (26). Regardless of the monotherapy antiviral 

activity, all drugs were considered for the combinatorial optimization process in order to identify 

possible unpredictable drug interactions that could markedly impact treatment efficacy and safety. 

 
Table 1. Drug concentrations in combinatory treatment. Absolute half efficacy (EC50) and absolute half 
cytotoxicity (CC50) concentrations, and maximum plasma concentration (Cmax) and its source for each drug. 
NCT number is provided for COVID-19 clinical trials with drug dosages like those that where the basis for 
Cmax selection. Concentration Levels 1 and 2 were based on: # absolute EC10 and absolute EC20 for RDV;  
* 2.5% and 5% of Cmax for RTV, LST and TEC; and 5% and 10% of Cmax for the rest of the drugs.  
 

Drug EC50 
(µM) 

CC50 
(µM) 

Cmax  
(µM) 

COVID-19 
Clinical Trial 

Level 0 
(µM) 

Level 1 
(µM) 

Level 2 
(µM) 

RDV 1.1 >100 9 (27) NCT04292899 0 0.81# 0.9 # 
FPV >600 >600 331.83 (28) NCT04310228 0 16.5915 33.183 
RTV >100 97 20.39 (29) - 0 0.50975* 1.0195* 
LPV 17 26 19.56 (30)  NCT04330690 0 0.978 1.956 
RBV >100 >100 17.3 (31) NCT04276688 0 0.866 1.73 
CQ 5.3 99 1.42 (32) NCT04362332 0 0.071 0.142 
HCQ 6.3 >100 5.6 (33) NCT04261517 0 0.28 0.56 
AZT >100 >100 0.32 (34) NCT04329832 0 0.016 0.032 
OSV-P >10 >10 0.18 (35) NCT04255017 0 0.009 0.018 
LST >100 >100 0.43 (36)  NCT04335123 0 0.01075* 0.0215* 
TEC >50 >50 20.475 (37) - 0 0.511875* 1.02375* 
DEX >100 >100 0.63 (38) - 0 0.0315 0.063 

 
In order for IDentif.AI to determine optimized drug combinations from this 12-drug set, 100 

drug-dose combinations were generated according to OACD (Table S1) and, together with drug 

monotherapies at concentration Level 1 and Level 2, were evaluated for their antiviral and 
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cytotoxic activity on Vero E6 cells. Drug combinations’ cytotoxicity was additionally tested on 

human cell lines: liver (THLE-2), and cardiac myocytes (AC16). No effect of the maximum vehicle 

concentration (0.006% DMSO) was detected on viral inhibition or on cell cytotoxicity (Wilcoxon 

rank-sum test, n = 18, P > 0.05).  

 

IDentif.AI Analysis and Drug Combination Optimization 

Utilizing the single drug and OACD drug treatment data, IDentif.AI analysis determined 

RDV/RTV/LPV to be the most efficacious 3-drug combination. It was also present in all top 10 

ranked 4-drug combinations. RDV/LPV was the top ranked 2-drug combination (Table 2). While 

RDV was identified as the most efficacious single drug, in line with current clinical trial outcomes, 

IDentif.AI analysis determined that the 3-drug combination of RDV/RTV/LPV is critical for 

achieving maximal therapeutic efficacy. IDentif.AI analysis allows for comparative ranking of all 

possible combinations within the 12-drug set, including analysis of regimens currently being 

clinically investigated but that are not observed as top ranked optimized drug combinations. Both 

LPV/RTV (Kaletra) and HCQ/AZT have been clinically evaluated as potential treatments against 

SARS-CoV-2 infection with discouraging outcomes. IDentif.AI analysis of these combinations 

revealed that they were identified to be sub-optimal - LPV/RTV ranked 1261 and HCQ/AZT ranked 

5161 amongst all 9968 drug combinations that include up to 4-drugs, and predicted viral inhibition 

efficacies of 23% and 2%, respectively. The aforementioned findings were based on the IDentif.AI 

quadratic series assessing the %Inhibition experimental data with a close proximity as indicated 

by adjusted R2 of 0.898 (Table S2).  

Multi-parameter IDentif.AI analysis allowed cytotoxicity of ranked combinations to be 

interrogated as well via deriving %Cytotoxicity quadratic series (Table S3-S5). The top ranked 3- 

and 4-drug RDV-based combinations were determined to have similar %Cytotoxicity in the Vero 

E6 cells in and experimentally measured single drug RDV treatments. IDentif.AI analysis also 

determined low %Cytotoxicity for the top 3-drug combination, RDV/RTV/LPV in the AC16 cells 
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and higher %Cytotoxicity in the THLE-2 cells.  This IDentif.AI-derived THLE-2 %Cytotoxicity was 

predicted to decrease with the addition of DEX in the top 4-drug combination (Table 2). Outlier 

analysis performed for each IDentif.AI quadratic series (Fig. S2-S5) identified and excluded 

OACD combination 15 from the AC16 %Cytotoxicity data set (Fig. S4) and combination 46 from 

the THLE-2 %Cytotoxicity data set (Fig. S5). These data sets were subsequently re-analyzed 

(Fig. S6-S7).  Taken together, IDentif.AI identified RDV-based treatments as likely the most 

effective therapies against SARS-CoV-2 infections, with RDV/RTV/LPV capable of achieving 

maximal efficacy with potential reductions in overall toxicity if complemented with the fourth drug. 
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Table 2. IDentfif.AI top ranked combinations. Top ranked IDentif.AI determined 4-drug, 3-drug, and 2-drug combinations with corresponding 
%Inhibition and %Cytotoxicity of Vero E6, AC16, and THLE-2. Monotherapies with corresponding %Inhibition and %Cytotoxicity Vero E6. 
Monotherapy experiments were run in triplicate. Data are shown as mean ± SD; N=3. # corresponds to rank of out 9968 combinations (4-drugs or 
less). * Indicates clinically tested monotherapies. 

  

  IDentif.AI 
Rank Top 4-drug Combinations (Concentration in µM) %Inhibition %Cytotoxicity %Cytotoxicity (AC16) %Cytotoxicity (THLE-2) 
1 RDV (0.9)  + RTV (1.0195) + LPV (1.956) + DEX (0.063) 96.6 -0.8 -9.6 12.9 
2 RDV (0.9) + RTV (1.0195) + LPV (1.956) + RBV (0.866) 95.6 5.2 -13.1 64.5 
3 RDV (0.9) + RTV (1.0195) + LPV (1.956) + RBV (1.73) 94.6 -0.1 -23.5 70.4 
4 RDV (0.9) + RTV (1.0195) + LPV (1.956) + DEX (0.0315) 88.9 0.1 -20.3 44.8 
5 RDV (0.9) + RTV (1.0195) + LPV (1.956) + AZT (0.032) 82.4 0.6 -25.6 70.5 
Rank Top 3-drug Combinations (Concentration in µM) %Inhibition %Cytotoxicity %Cytotoxicity (AC16) %Cytotoxicity (THLE-2) 
1 RDV (0.9)  + RTV (1.0195) + LPV (1.956)   81.2 1.0 -19.4 65.1 
2 RDV (0.9)  + RTV (0.50975) + LPV (1.956)   67.4 2.4 -1.9 59.9 
3 RDV (0.81)  + RTV (1.0195) + LPV (1.956)   66.2 0.6 -17.2 67.0 
4 RDV (0.9)  + LPV (1.956) + AZT (0.032)   66.2 3.6 -13.2 36.1 
5 RDV (0.9)  + LPV (1.956) + RBV (0.866)   64.9 8.1 13.7 43.5 
Rank Top 2-drug Combinations (Concentration in µM) %Inhibition %Cytotoxicity %Cytotoxicity (AC16) %Cytotoxicity (THLE-2) 
1 RDV (0.9)  + LPV (1.956)     53.6 3.9 7.4 44.1 
2 RDV (0.81)  + LPV (1.956)     38.6 3.5 9.6 44.1 
3 RDV (0.9)  + LPV (0.978)     38.1 2.7 -17.4 54.9 
4 RDV (0.9)  + AZT (0.032)     35.3 1.2 -33.4 57.6 
5 RDV (0.9)  + RBV (0.866)     32.2 5.7 -17.5 63.3 
Rank Clinically Relevant Combinations (Concentration in µM) %Inhibition %Cytotoxicity %Cytotoxicity (AC16) %Cytotoxicity (THLE-2) 
1261# RTV (1.0195) + LPV (1.956)     23.2 -2.6 1.9 18.9 
5161# HCQ (0.28) + AZT (0.016)     1.9 9.6 17.5 -16.6 
  Experimental 
Rank Monotherapies (Concentration in µM) %Inhibition (mean ± SD) %Cytotoxicity (mean ± SD) 
1 RDV (0.9)*       21.1 ± 6.0 2.2 ± 6.1 
2 RDV (0.81)*        15.5 ± 1.9 0.3 ± 7.5 
3 FPV (33.183)*     1.9 ± 1.6 5.1 ± 6.7 
4 CQ (0.071)*       1.4 ± 3.9 4.2 ± 5.5 
5 RTV (1.0195)       0.9 ± 0.8 0.5 ± 4.9 
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Experimental Validation of IDentif.AI Results 

Validation results were interpreted considering not only the P-values, but also the logic, 

background knowledge and specifics of the experimental design (16). The studies confirmed 

IDentif.AI ranking of RDV in combination with LPV and RTV as the optimal combination of the 

study, resulting in complete viral inhibition (Fig. 2A, Table S6). This combination resulted in a 6.5-

fold increase in efficacy compared to RDV alone. RDV was confirmed as an essential driver of 

the antiviral efficacy in the optimized combinations, even though it mediated only moderate 

antiviral effect on its own. These validation studies were conducted following IDentif.AI 

identification of top-ranked optimized RDV-based drug combinations and comparative ranking of 

these combinations against other possible combinations. 

LPV and RTV are commonly administered together as RTV acts as a pharmacokinetic 

enhancer of LPV. Of note, the high antiviral effects of RDV/RTV/LPV were sustained when the 

RTV concentration was decreased 20-fold, and the RTV/LPV concentrations reflected the 

standard 100/400mg bid dosing in its clinically administered formulation (Kaletra). As such, 

RDV/RTV/LPV combination likely does not require increasing RTV dose beyond what is 

commonly used clinically and is readily clinically actionable upon an approval. Importantly, 

RTV/LPV synergistic effects were limited to antiviral inhibition and did not adversely affect RDV 

cytotoxicity. RDV’s cytotoxicity, also reported clinically (27), was not enhanced in any of the 

combinations (Fig. 2B). In fact, the results suggest that RDV/RTV/LPV may suppress RDV-

induced cytotoxicity both on human cardiac myocytes and human liver cell lines, with this effect 

being strengthened when combining with concomitant drugs, DEX and TEC. Monkey kidney cells 

did not exhibit cytotoxicity after any of the treatments.  While these data suggest that specific top-

ranked RDV-based combinations may also lower RDV-induced cytotoxicity, this observation 

requires further investigation. Dose limiting and drug exclusion experiments further deciphered 

the contribution of each drug towards overall RDV/RTV/LPV antiviral activity. RDV was confirmed 

to have the greatest contribution, with LPV/RTV on its own not mediating viral inhibition. High 
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concentrations of LPV were critical to maximizing the RDV/RTV/LPV antiviral activity. While the 

concentration of RTV was not a critical determinant of the resulting efficacy of the combination, 

the presence RTV was critical to RDV/ RTV/LPV achieving maximal viral inhibition. Further 

confirming the accuracy of IDentif.AI analysis, validation of currently clinically trialed treatments 

against COVID-19, LPV/RTV (Kaletra)(1), HCQ/AZT (39, 40), FPV (NCT04310228) and CQ 

(NCT04362332) did not induce as much viral inhibition as compared to RDV alone.  These data 

confirm that IDentif.AI can accurately reflect the unsatisfactory outcomes observed in those 

clinical trials, without incorporating any prior clinical data or drug mechanism assumptions as 

input. 
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Fig. 2 IDentif.AI-designed combinations validation. (A) %Inhibition of the optimal IDentif.AI combination 
of RDV/LPV/RTV (green), IDentif.AI designed combinations (blue), and regimens in clinical trials (red). (B) 
%Cytotoxicity of Vero E6 (grey), AC16 (orange), and THLE-2 (purple), of the optimal IDentif.AI combination 
of RDV/LPV/RTV, IDentif.AI designed combinations, and regimens in clinical trials. Data are shown as 
mean ± SD; N=3. *P < 0.05 (Kruskal Wallis test with Dunn’s post-hoc).  
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Drug-drug interaction analysis of IDentif.AI results were also compared to experimental 

observations and known clinical investigations. %Inhibition IDentif.AI response surface plot 

mirrored well-documented and experimentally confirmed synergy between RTV and LPV (Fig. 

3A). In contrast, IDentif.AI identified an antagonistic interaction between RTV and OSV-P (Fig. 

3B), a combination that is currently being investigated in clinical trials (NCT04303299).  

Combining RDV with LPV only, which to our knowledge has not been explored clinically as a 

registered trial, doubled their individual viral inhibition when added together. Accordingly, the 

corresponding %Inhibition IDentif.AI response surface plot identified a previously unknown 

synergistic interaction between RDV and LPV (Fig. 3C). Further confirming IDentif.AI rankings 

and validation experiments, the RDV/RTV interaction was not significant, but when given in 3-

drug combination, RTV boosted the RDV/LPV interaction almost two times (Fig. 3D). These 

results further highlight the ability of IDentif.AI to leverage unexpected drug-dose interactions to 

identify optimal drug combinations from a massive drug-dose search space. 
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Fig. 3. Antiviral drug interactions determined from the IDentif.AI analysis based on OACD 
concentration Levels 1 and 2. (A) IDentif.AI determined synergistic interaction between lopinavir and 
ritonavir. (B) Antagonistic interaction between ritonavir and oseltamivir phosphate. (C-D) Synergistic 
interaction between remdesivir and lopinavir (C) was boosted by the presence of ritonavir (RTV) (D). 
 
 

DISCUSSION 

This study harnessed the IDentif.AI platform to interrogate a 12 drug-dose parameter 

space against the SARS-CoV-2 live virus to develop actionable and optimized combination 

therapy regimens. IDentif.AI implementation addresses several important factors when designing 

multi-drug regimens that are best suited for clinical translation from in vitro validation, especially 

under urgent scenarios like COVID-19. Importantly, IDentif.AI considers the critical need for 

simultaneous reconciliation of drug composition and dosing within combination therapy design. 

MOA-based drug selection alone followed by dose finding, while an established method of 

combination therapy design, presents substantial barriers to the optimization process since drug 

dosing also plays a role in determining which drugs belong in an ideal combination. In lieu of 

validating a small number of MOA-based potential drug combinations for efficacy which is 
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commonly observed in traditional workflows, IDentif.AI takes an MOA-agnostic approach to 

efficiently analyze crowdsourced therapeutic responses to the live virus following expansive drug-

dose exposure to both outline the drug-dose space and define resulting drug-dose compositions 

of the optimal regimens (41). With this data, IDentif.AI is able to leverage on unexpected dose-

dependent drug interactions to mediate improved treatment outcomes over MOA-based drug 

selection followed by dose finding. 

 Another critical aspect of IDentif.AI is that the in vitro drug dosing parameter space 

interrogated in this study is a departure from traditional drug screening approaches. In traditional 

drug screening, compounds that do not elicit at least a low micromolar EC50 treatment response 

during drug dose-response evaluations are typically removed from further consideration, thereby 

markedly reducing the number of candidate therapies and possible drug combinations. The 

removal of these drug candidates is a key driver of sub-optimal treatment responses as it ignores 

a broad spectrum of potential combinations that can be assessed. Lack of monotherapy efficacy 

does not preclude the use of these drug candidates from IDentif.AI’s combinatorial search space. 

Instead, IDentif.AI’s approach allows for continued evaluation of these drugs to determine if they 

are vital toward driving previously unknown drug interactions that optimize combinatorial 

treatment outcomes. In addition to being observed in this study, this phenomenon has also been 

observed with our prior clinical studies in chronic infectious diseases and blood and solid cancers, 

among other indications (5, 8, 9, 42).   

The outcome of applying IDentif.AI towards combating SARS-CoV-2 infection is an 

extensive list of combinations ranked by efficacy and/or safety that can be queried by a clinician 

based on clinically actionable criteria. These include, but are not limited to: highest ranked 2-, 3-, 

4-drug combinations by efficacy; highest ranked combinations that do not contain certain drugs 

due to supply shortages; highest ranked combinations that do not contain certain drugs or contain 

lower dosages of certain drugs due to patient co-morbidities; and highest ranked combination 

comprised of only approved therapies, among others. In the context of optimized regimen design, 
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which assesses regimen performance from the entire landscape of possible drug/dose 

parameters, IDentif.AI-enabled comparative evaluation of the relative efficacy of a broad spectrum 

of optimized regimens and clinically investigated regimens also independently confirmed the 

reported outcomes of clinical trials. This provides additional support for the potential application 

of IDentif.AI as a clinical decision support platform. For example, the relatively low efficacy 

exhibited HCQ alone (3.9%) or by HCQ and AZT (3% inhibition) in this study aligned with recent 

reporting of clinical outcomes for this drug given in mono- and combinatory therapy (39, 40). The 

relatively low efficacy (3.9% and 5.2%) of RTV and LPV combination when assessed by IDentif.AI 

at two different dosing ratios also aligned with recently reported outcomes showing no benefit 

over standard care (1). IDentif.AI also revealed a relatively low efficacy of FPV monotherapy 

(1.9% inhibition) and various combinations. This was consistent with clinical findings of FPV being 

potentially clinically effective only when administered with interferon-alpha, not included within our 

drug library (43). Of note, RDV alone resulted in the highest relative efficacy for monotherapy 

(15.5%) in this study. To date, compassionate use of RDV resulted in clinical improvement of 68% 

of the patients, and a larger study resulted in a statistically significant improvement in median time 

to recovery from 15 days to 11 days (4). At the same time, an RDV study in severe COVID-19 

patients was also recently terminated early (NCT04257656). Nonetheless, it has received FDA 

authorization for emergency use in severe COVID-19 patients. The substantial difference in 

efficacy observed between sub-optimal and optimal regimens highlights the importance of 

leveraging platforms such as IDentif.AI to systematically design combination therapies. This 

capability, along with the potentially predictive capacity of IDentif.AI for clinical trial outcomes 

could provide clinicians with an expanded arsenal of evidence-based candidate treatments and 

important insights into which potential treatments to further evaluate or potentially avoid under 

time-sensitive circumstances. 

It is important to note that the results reported here are derived from primarily an in vitro 

SARS-CoV-2 study. Further clinical validation of the outlined combinations in randomized 
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controlled trials will be needed. It should also be noted that, while RDV did not mediate a 

significant clinical benefit in severe COVID-19 patients, its efficacy in patients with varying disease 

burden severities should be evaluated further. Furthermore, the mixed reported clinical outcomes 

support the need for improved regimen design of RDV-based treatment. In the event of 

downstream clinical validation of IDentif.AI-designed combinations, the drug dosage ratios within 

the combination may vary from those pinpointed by IDentif.AI. In addition, it is possible that the 

optimal drug combinations may vary between patients due to their severity of infection, 

comorbidities, and other factors. It is for these reasons that potential downstream trials may be 

effective at determining the potential clinical benefit of the IDentif.AI-designed combinations if the 

enrolled patients are stratified by these aforementioned clinical parameters. The 12-drug search 

set used in this study did not include every therapeutic option currently under clinical investigation. 

Additional studies, including other repurposed compounds, may yield additional highly ranked and 

effective combination regimens. Also, as IDentif.AI can be applied to novel small molecules and 

antibody therapies, their inclusion into the drug pool would add further insight into other potentially 

actionable regimens. Furthermore, given the rapid mutagenicity of RNA viruses like SARS-CoV-

2, future studies with different drug candidates and different SARS-CoV-2 strains may yield 

different combinations. However, the efficiency and deterministic nature of IDentif.AI allows it to 

derive a ranked list of optimal regimens from a given set of drug candidates against a defined in 

vitro infectious disease model within two weeks. This further supports its potential application as 

a clinical decision support platform for the optimized design of combination therapy regimens 

against multiple SARS-CoV-2 strains as well as future unknown pathogens that will again require 

rapid mobilization and clinical guidance for effective treatment options. 
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