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Highlights: 

1. Kuwait is experiencing a COVID-19 outbreak since the first imported case on Feb 24, 

2020. 

2. We develop a mathematical model of disease transmission to provide a real-time 

tracking and forecasting tool for the epidemic outbreak in Kuwait as well as assess the 

potential epidemic and healthcare burdens and the effectiveness of early control 

measures. 

3. We calibrate the model against daily numbers of detected infection and death cases 

using a maximum likelihood framework. 

4. We find that early control measures had the effect of delaying and lowering the 

intensity of the outbreak but were unsuccessful in reducing the effective reproduction 

number below 1. 
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Abstract 

Kuwait has been experiencing a COVID-19 outbreak since the first imported case on Feb 24, 

2020. Analysis of data from the early stage of COVID-19 outbreak in Kuwait can provide 

important information about the potential epidemic and healthcare burdens as well as assist in 

evaluating the potential impact of various outbreak control measures. Such control measures 

are essentially implemented to achieve a sufficient reduction in the effective reproduction 

number during an outbreak. In this study, we use a mathematical modeling framework to 

simulate the outbreak dynamics of SARS-CoV-2 transmission in Kuwait and forecast the 

potential burden on the healthcare system. We calibrate the model against daily numbers of 

detected infection and death cases using a maximum likelihood framework and estimate both 

the basic and effective reproduction numbers. Our results indicate that the early control 

measures implemented in Kuwait had the effect of delaying the intensity of the outbreak but 

were unsuccessful in reducing Rt below 1. This highlights a need for a systematic investigation 

of the current public health interventions as well as a scientific surveillance tool that is 

sufficiently sensitive to outbreak temporal dynamics. Meanwhile, the developed model can 

serve as a public health tool to control the current outbreak and can be used to anticipate 

effective measures should a second wave re-emerge in Kuwait.   
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Introduction 

In early December 2019, a cluster of pneumonia cases of unknown cause were reported 

in Wuhan, China (1). Later the pathogen was identified and named, Severe Acute Respiratory 

Syndrome Corona Virus 2 (SARS-CoV2), an enveloped single strand RNA β-coronavirus with a 

genome of almost 30 thousand bases (2). Since then the virus has been spreading rapidly all 

over the globe with the World Health Organization (WHO) confirming Corona Virus Disease 

2019 (COVID-19) as Pandemic on March 11
th

, 2020. With the number of cases reaching a 

staggering 3.5 million cases in more than 200 countries and a death toll exceeding 250 

thousand (3), coordinated worldwide efforts are needed to prepare healthcare systems to cope 

with this unprecedented challenge. While some countries showed a degree of resilience and 

capacity to deal with the progression of COVID-19, in others the burden on healthcare systems 

was overwhelming leading to catastrophic consequences. 

On February 24
th

, Kuwait recorded the first confirmed cases of COVID-19 in four 

passengers arriving from Iran. Since then, the Ministry of Health have confirmed more than 

4000 COVID-19 cases and 26 deaths. Kuwait has implemented gradual control measures in 

attempt to contain the spread of SARS-CoV2 including:  closure of schools, universities, 

governmental offices and non-essential businesses; full border lockdown, partial curfew and 

geographic isolation of areas experiencing wide community transmission (Figure 1). The 

situation in Kuwait was further complicated by a remarkable repatriation operation to bring 

back more than 50,000 Kuwaiti citizens from around the world by May 7th, 2020. The 

government is implementing home and institutional quarantine measures to limit virus 

transmission from arrivals. Despite these early and aggressive control measures, community 

transmission remains observed as manifested by the apparent acceleration of case and death 

numbers well beyond the anticipated period of slowdown. Hence it is unclear how the outbreak 

will unfold in the next few months as recent contact-tracing measures highlighted the widening 

community transmission.  In addition, the polymerase chain reaction (PCR) testing seems to be 

constrained by a global shortage of testing kits and reagents.  In anticipation of the unfolding of 
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such circumstance it becomes necessary to forecast the potential burden it may incur on the 

local healthcare system. 

Forecasting the outbreak dynamics of COVID-19 cases in Kuwait is crucial to estimating, 

well in advance, the potential burden on the healthcare system. These epidemic outbreak 

dynamics are typically investigated by employing mathematical models of infectious disease 

transmission dynamics such as the classic Susceptible-Infective-Recovered (SIR) or Susceptible-

Exposed-Infective-Recovered (SEIR) epidemiological models (4-6). Such models play a pivotal 

role in understanding the epidemic characteristics of an infectious disease outbreak (7), as well 

as in assessing the impact of various interventions on the spread of the disease (6, 8-11) . 

Indeed, various countries and states are currently using these models to help inform their 

epidemic containment policies (6). Different generalized versions of these mathematical models 

can provide more detailed mechanisms for the epidemic dynamics (e.g. mode of transmission, 

quarantine dynamics, testing scope, and hospitalization dynamics). A widely adopted model for 

characterizing the epidemic outbreak SARS-CoV-2 is the SEIR model (5). However, under-

reporting in daily case numbers poses a significant challenge to understanding the trends 

associated with COVID-19 progression by public health authorities (12). One way to mitigate 

the impact of this structural limitation is by fitting a dynamic transmission model to daily 

numbers of incident cases of infections and reported deaths (13). 

In this study, we model the course of the COVID-19 outbreak in Kuwait by developing a 

generalization of the SEIR model that is informed by two local mechanisms; a delay period 

during which suspected COVID-19 individuals are tested, identified and hospitalized, and 

different severity of illness (ranging from recovered asymptomatic to needing critical care). We 

then calibrate the model by applying a maximum likelihood framework using incident cases of 

infections and reported deaths (14).  
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Methods 

Mathematical Model 

We use a deterministic compartmental model for infectious disease transmission with 

additional compartments to describe the dynamic burden on the healthcare system (Figure 2). 

Our model simulates SEIR, testing and hospitalization dynamics and can be described by the 

following set of differential equations: 
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Upon infection, individuals that are susceptible to the virus (S) become exposed but 

non-infectious carriers (E) and later infectious (I). A fraction of infectious individuals may 

remain undetected and ultimately enter into a recovered class (R), while the remaining fraction 

end up being detected (C) by some form of clinical testing or diagnosis. Detected individuals are 
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sent to hospitals (H) where they are admitted to either an isolation ward (W) or an intensive 

care unit (U) based on the intensity of their symptoms. Intensive care patients either die (D) or 

get sent to an isolation ward to stay until full recovery (R).  

The progression through the different compartments in our model is characterized by 

key time periods which describe the dynamic transmission of infection, case detection, patient 

care and hospitalization, and recovery or death: the average durations of viral latency (1/σ), 

carrier infectiousness (1/γ), onset-to-hospitalization (1/α), onset-to-death, hospitalization-to-

discharge, and ICU-stay. The fraction of individuals who end up being detected (f) is related to 

the case fatality rate. Since the transmission rate β is affected by the implementation of control 

measures, we take it as a function of time ���� � �
0
����, where �

�
 is the transmission rate 

without control measures (baseline) and 0 � ���� � 1 is a scaling factor by which interventions 

reduce the transmission rate. In other words, the lower the value of � the more effective is the 

intervention in curbing the epidemic. Here � � 1 indicates an ineffective or absent control 

measure. 

 

We remark here that due to a lack of detailed data about country demographics and 

associated person-person contact structure, the current model assumes homogeneous mixing 

and neither account for age-structure nor the risk associated with comorbidities. Nonetheless, 

these can be easily incorporated into our model once detailed data become available. 

 

 

 

 

 

 

Data & Parameters 
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Numbers of confirmed infection and death cases were collected from daily reports from the 

European Center for Disease Control (15). The key time durations in our model were fixed to 

values obtained from published datasets as well as unpublished local hospitalization data (Table 

1). The mean durations of latency, incubation and infectiousness of SARS-CoV-2 ware based on 

the reported cases from the COVID-19 outbreak in Singapore and Tianjin, China (16). 

 We assume that a single case started the outbreak on Feb 25, 2020, which coincides 

with the date of the first reported case of COVID-19 in Kuwait. The total population of Kuwait 

(N) is about 4,776,000. We note here that our model parameter estimation is insensitive to the 

number of susceptible individuals as long as the number of cases is small relative to N. We take 

the initial susceptible population to be 500,000 which is the effective number of individuals 

who account for the majority of local community transmission in Kuwait. This estimate is 

consistent with the assumptions that 1) the majority of the population has been protected by 

the stay-at-home orders, 2) most community transmission cases are localized to certain 

geographic areas, and 3) children younger than 18 represent a very small percentage of the 

total number of infected patients. However, we also model 1,500,000 susceptibles and show 

the corresponding results. 

To assess the impact of control interventions, we assume ���� � 1 prior to the 

implementation of a partial lockdown on March 22, 2020 (see timeline in Figure 1). We then 

estimate � and the baseline transmission rate �
�
 by employing a maximum likelihood 

framework (14). To derive the maximum likelihood estimates (MLE) of our unknown 

parameters we assume the daily numbers of incident infections are detected according to a 

negative binomial distribution (NBD). We additionally assume the daily number of incident 

deaths are drawn from a similar distribution. Then optimization was carried out using the 

Nelder-Mead method (17) on the combined minus log-likelihood function. 

The uncertainty of parameters was represented by quantile-based credible intervals 

(CI). We use the asymptotic normality of MLE to account for such uncertainty through deriving 

simulation-based 95% CIs for the model curves (18). Simulations were run 10,000 times based 

on random draws of the unknown model parameters from a normal distribution �, � ~
 !", #$. 
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Here �� � ��
0

� , �	
 are maximum likelihood estimates and � is the variance-covariance matrix 

associated with them. Given the parameterization of our transmission model, these parameters 

permit a model-based estimation of the basic and effective reproduction numbers. In 

particular, in each simulation run an R0 value is drawn from a range of values (Table 1) as an 

initial point to kick start the parameter search algorithm. All such simulations, parameter 

estimation and model calibration were run in the R software (19).  

Our transmission model was fitted to estimate key transmission parameters. The 

maximum likelihood estimates of the baseline and effective transmission rates,  �
�
 and �

�
 were 

used compute the basic and effective reproduction numbers via these formulas 
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Table 1. Model parameters. Rate of testing and the proportion of cases being tested remain largely unknown at this stage but 

are expected to increase over time as health authorities increase their laboratory testing capacity. The hospital care data were 

provided by colleagues from the Ministry of Health, Kuwait.  

Symbol Definition Default Values Justification 

� Total population of Kuwait 4,776,000 PACI, Kuwait 

�  Susceptible subpopulation 500,000 MOH, Kuwait 

�� Basic reproduction number 1.5 – 3.5 (20) 

� Factor for transmission reduction 0.5  

��� Latent period 2 days (16) 

��� Infectious period 3.2 days (16) 

��� Onset-to-hospitalization period 2 days Unpublished data 

��

��
 

Initial hospitalization period 6 days Unpublished data 

��

��
 

Mean ICU duration until recovery 8.5 days Unpublished data 

��

��
 

Mean isolation ward duration 10 days Unpublished data 

��

��
 

Mean ICU duration until death 10.5 days Unpublished data 

� Proportion of tested & reported daily cases 0.12 (21) 

�� Proportion of patients admitted to ICU 0.075 Unpublished data 

�� Proportion of ICU patients with death outcome 0.25 Unpublished data 

CFR Case fatality ratio 1.4% (12) 
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Results 

Our estimated basic reproduction number is R0 = 1.43 (95% CI: 1.33–1.58). Interestingly, 

the MLE of the factor by which control measures reduce transmission was estimated at � � 1 

(95% CI: 0.9998–1). This corresponds to an effective reproduction number �
�

� ��, which is 

consistent with reports from the Centre for Mathematical Modelling of Infectious Diseases (22). 

Table 2. Projected epidemic and healthcare burdens. Burden projections based on model simulations are presented. 

Uncertainty is represented by with 95% credible intervals. 

Expected Burden 500,000 Susceptibles 1,500,000 Susceptibles 

Max reported cases 480 (300—680) 1400 (800—2000) 

Max hospital occupancy 8000 (5000—12000) 25000 (15000—35000) 

Max ICU occupancy  350 (220—480) 1000 (600—1400) 

Max daily mortality 8 (5—12) 24 (15—33) 

Peak time-window 15 May – 3 June 1 June – 20 June 

 

We remark here that our model-based estimates of the reproduction numbers, which 

directly influence the prevalence of the epidemic, depend on the values we adopt for the 

incubation and infectious periods (Table 1). In particular, larger periods are expected to lead to 

higher values for the reproduction numbers. For example, we find Rt = R0 = 1.97 (95% CI: 1.85–

2.12) if we change the incubation and infectious periods to 5 and 6 days, respectively.  

Our parameter estimations captured the variation around the observed number of 

reported cases and deaths to project a posterior distribution of the expected numbers. Our 

projected trajectories and their 95% credible intervals were able to capture the early slow 

increase in observed cases, hospitalization and deaths (Figure 3).  

Under the current testing rate, capacity and scope, the model projects the daily 

numbers of reported cases to peak around 480 (95% CI: 300—680) by the second half of the 

month of May. In terms of the burden on the healthcare system, our model projects peak 

hospital admission of 8000 patients (95% CI: 5000—12000) with ICUs projected to peak around 

350 patients (95% CI: 220—480). At these rates the model projects a peak daily mortality 

around 8 deaths (95% CI: 5—12). We additionally explored a scenario that simulates an 
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expansion in the size of the susceptible subpopulation by a factor of three. A summary of the 

projected epidemic and healthcare burdens is presented in Table 2. 

 

Discussion 

We developed a mathematical modeling framework for real-time tracking and 

forecasting of the epidemic outbreak of COVID19 in Kuwait and the associated burden on the 

healthcare system. This quantitative framework is further employed to evaluate how the 

control measures implemented in Kuwait may have influenced the epidemic burden. 

 Our results suggest that the early gradual and aggressive control measures in Kuwait 

had the effect of delaying and lowering the intensity of the outbreak by protecting a large 

fraction of the population. Despite that fact that the country has been under lockdown since 

March 22
nd

, 2020, our model indicates that the effective reproduction number (Rt) remained 

unchanged. In principle, such control measures are implemented to achieve a sufficient 

reduction in the effective reproduction number during an outbreak. This may be explained by 

the reported outbreaks amongst migrant workers. Kuwait has a considerably heterogenous 

population with 60% comprised of migrant workers. A large proportion of these workers cluster 

in certain areas and live in cramped dormitories with poor and unsanitary housing conditions. 

Aggressive social distancing measures may not be implementable nor have the same effect on 

these subpopulations. Hence, this could exacerbate the transmission of the infection in the 

presence of lockdowns. It is therefore imperative, for the epidemiological understanding of the 

disease distribution, to perform demographic studies that aim to extract contact structure 

matrices and establish how different control measures may or may not affect heterogenous 

transmission rates (23). This is not only applicable to the State of Kuwait, but also the Arabian 

Gulf states, Singapore and other countries with somewhat similar demographic profiles.  

 Additionally, our results indicate that the COVID-19 outbreak in Kuwait is on course to 

accelerate further in the next few weeks, which is consistent with the recent trends associated 

with expanded testing and contact tracing. Indeed, our model analysis of the projected 

epidemic trend indicates that hospitals may need to prepare for admitting around 12000 

patients of which 500 may need critical care.  
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Conclusions 

COVID-19 poses significant public health challenges to many countries including Kuwait. We 

have shown that aggressive control measure can effectively delay and lower the intensity of the 

outbreak. However, they might not be sufficient to completely halt the transmission of the 

disease in the presence of certain structural restrictions. In turn, this highlights an urgent need 

for a systematic reassessment of public health interventions to account for demographic 

heterogeneities. Such an assessment needs to be supported by a scientific surveillance tool that 

is sufficiently sensitive to outbreak temporal dynamics. In particular, our model can serve as a 

public health tool for decision makers to guide in the control of the current outbreak. This tool 

can also be used to anticipate effective future measures should a second wave re-emerge in 

Kuwait. 
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Figure 1. Cumulative number of reported COVID-19 cases in Kuwait along with a timeline of 
events. 
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Figure 2. Schematic diagram of the CoVID-19 transmission model. Individuals (S) 

susceptible to the virus become infected by infectious individuals (I) at rate. They 

then move through a latent period (E) at rate before becoming infectious (I). 

Infectious individuals can either move through a detection period (C) at a rate  or 

eventually recover without symptoms at a rate . Confirmed infectious individuals 

move through an initial hospitalization period (H) at a rate after which they are 

admitted to either an isolation ward (W) at a rate or an intensive care unit (U) at a 

rate. Intensive care patients may recover and be sent to an isolation ward W at a 

rate or ultimately die (D) at a rate . Isolated patients move through a recovery 

period (R) at a rate, where they are assumed to be immune to the disease, at least 

in the medium term. 
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Figure 3. Observed and forecasted trajectories assuming 500,000 susceptibles. 
Observed and projected daily numbers of A) incident infections, B) death cases, C) 
general hospital admissions and D) ICU admissions.  Red rectangular ribbon highlights 
the projected time-window of the epidemic peak. Red lines represent the reported 
data. Black dashed lines represent model projections based on MLE of unknown 
parameters with shaded ribbons representing 95% credible interval on new 
observations. We note here that the observed cases and their projections only 
represent a fraction of the actual and model prevalence. This is based on our 
assumption of under-reporting and the presence of asymptomatic individuals in the 
population.   
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Figure 4. Tripling the size of the susceptible population. Peaks of forecasted 
trajectories are approximately tripled in size. The projected time-window of the peak 
is delayed by 2-weeks and widened (3-week period). Observed and projected daily 
numbers of A) incident infections, B) death cases, C) general hospital admissions and 
D) ICU admissions. Red rectangular ribbon highlights the projected time-window of 
the epidemic peak. Red lines represent the reported data. Black dashed lines 
represent model projections based on MLE of unknown parameters with shaded 
ribbons representing 95% credible interval on new observations. We note here that 
the observed cases and their projections only represent a fraction of the actual and 
model prevalence. This is based on our assumption of under-reporting and the 
presence of asymptomatic individuals in the population.   
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