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SUMMARY 

The atypical pneumonia (COVID-19) caused by SARS-CoV-2 is an ongoing 

pandemic and a serious threat to global public health. The COVID-19 patients 

with severe symptoms account for a majority of mortality of this disease. 

However, early detection and effective prediction of patients with mild to severe 

symptoms remains challenging. In this study, we performed proteomic profiling 

of urine samples from 32 healthy control individuals and 6 COVID-19 positive 

patients (3 mild and 3 severe). We found that urine proteome samples from the 

mild and severe COVID-19 patients with comorbidities can be clearly 

differentiated from healthy proteome samples based on the clustering analysis. 

Multiple pathways have been compromised after the COVID-19 infection, 

including the dysregulation of immune response, complement activation, 

platelet degranulation, lipoprotein metabolic process and response to hypoxia. 

We further validated our finding by directly comparing the same patients’ urine 

proteome after recovery. This study demonstrates the COVID-19 

pathophysiology related molecular alterations could be detected in the urine 

and the potential application of urinary proteome in auxiliary diagnosis, severity 

determination and therapy development of COVID-19. 

 

INTRODUCTION 

Coronavirus Disease-2019 (COVID-19) is caused by a novel virus strain, the 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is an 

unprecedented global health threat [1, 2]. Within just four months, a total of 2.47 

million confirmed cases and nearly 170,000 fatalities, spreading in almost all 

countries and regions of the world, has been reported. Even worse, more than 

70,000 new cases are being confirmed daily. However, no clinical drugs or 

vaccine is available for highly infectious SARS-CoV-2, which further 

exacerbates the panic. 

Tremendous efforts have been devoted to investigating the SARS-CoV-2, 
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and its host response, epidemiological and clinical characteristics to mitigate 

the current pandemic [1, 3-10]. Compared to the SARS-CoV spike (S) protein, 

the homologous SARS-CoV-2 S protein showed a higher affinity interaction with 

angiotensin-converting enzyme 2 (ACE2), which is thought to be the major 

receptor mediating the entry of the virus into the cell [11]. The SARS-CoV-2 has 

been reported to be harmful to lung, liver, heart, testis, bladder and kidney, 

where ACE2 are highly expressed [5, 8, 9, 12, 13]. Phylogenetic network 

analysis showed that the circulating SARS-CoV-2 is consisted of 3 types (A, B 

and C) and the origins and transition chains of the virus should be further 

validated [14]. It has been estimated that about 80% of COVID-19 patients 

experiencing mild symptoms (M-COVID), recover with, or even without 

conventional medical treatment [10]. However, the remaining 20% of patients 

with respiratory distress symptom may die rapidly without urgent and 

specialized intensive medical care, including immediate oxygen therapy, and 

mechanical ventilation [15, 16]. Disease stage significantly affects COVID-19 

treatment and survivorship. The overall mortality rate for hospitalized patients 

varied from 2.3% for patients diagnosed at the early stage to 11% at the 

advanced stage [17]. Unfortunately, the majority of cases are diagnosed at the 

advanced stage due to the lack of biomarkers and medical resources at the 

early stage. Therefore, it is critical to develop novel approaches to estimate the 

disease stage for patients in order to seek appropriate treatments and allocate 

scarce medical resources. In addition, novel detection methods that genuinely 

reflect the underlying changes of molecular and biological processes of COVID-

19 patients would be favorable to the understanding of SARS-CoV-2 

pathogenesis.  

Blood and urine are frequent biometrics for discovery of biomarkers of 

human diseases because of their accessibility and non-invasiveness. The 

compositions of proteins detected in blood and urine samples can genuinely 

reflect the changes of the body health conditions; thus, they are considered an 

important source for early warning and sensitive for disease detection [18, 19]. 
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Recently, MS-based serum proteomics studies has been utilized to predict the 

severity of COVID-19 infection [20]. However, no study has been reported on 

the more accessible urine sample to date. Therefore, a comprehensive profiling 

of the urine proteome of COVID-19 patients will likely provide better diagnostics 

and clinical investigations of this disease.  

In this study, we evaluated the diagnostic roles of urine samples on the 

progression of mild to severe type of COVID-19, and recovery state with cutting-

edge urine proteomics [21]. Six COVID-19 patients, comprised of 3 diagnosed 

as severe cases including one death and 3 mild patients，were investigated. 

To confirm the findings derived from the urine proteome, two recovery samples 

were further analyzed. We found that proteins related with complement 

activation and hypoxia were highly up-regulated, while proteins associated with 

platelet degranulation, and glucose and lipid metabolic process were especially 

down-regulated in the COVID-19 severe type patients. However, the changed 

proteins during the infectious phase recovered to normal in the recovery stage. 

We propose that urine proteome characterization can be potentially used to 

distinguish and predict the COVID-19 progression of the mild to severe type. 

These urine proteome characteristics and changes may also shed light on the 

understanding of the COVID-19 pathogenesis. 

 

RESULTS 

Characterization of urine proteomes in controls and six COVID-19 

patients 

In total, we assayed 40 urine specimens that passed quality check (QC), 

including 32 healthy controls, 6 COVID-19 patients and 2 corresponding 

recovery person (Figures 1 and S1). All patients were tested positive for the 

presence of SARS-CoV-2 nucleic acid. They all developed either fever or cough. 

Severe patients showed typical symptoms of fatigue and dyspnea (Figure 1A). 

All patients had comorbidities, including 4 patients with essential hypertension, 
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1 patient with both essential hypertension and diabetes, and 1 patient with 

multiple metastases of colon cancer (dead on March 3, 2020) (Figure 1A). 

According to the Diagnosis standards [10], these six patients were categorized 

into two disease types: three patients were defined as severe type acute 

respiratory syndrome (S-COVID) and the other three were diagnosed as mild 

type (M-COVID). 

The severe COVID-19 patients showed ground-glass opacity in the lungs 

on Computed Tomography (CT) scanning (Figure 1B). After treatment, the lung 

shadow disappeared and gradually recovered (Figure 1B). Because the patient 

4 (P4) had multiple metastases of colon cancer, only X-ray test was obtained 

(Figure S2). Interleukin-6 (IL-6) is an indicator of inflammatory storms (REF) 

[22]. We found the level of IL-6 in mild patients was 4.73 ± 2.03 pg/mL (mean ± 

standard deviation), while the expression level of IL-6 in severe patients was 

significantly higher than the normal standard (≤ 7.0 pg/mL) and drastically 

fluctuated during the infection, indicating that the stress response to viral 

infection in S-COVID patients was more severe (Figures 1C and S3).  

The urine samples were collected after the diagnosis of the COVID-19. 

Four urine samples (H01-H04) of healthy controls were processed in parallel 

with the samples of COVID-19 patients (Figure 1D), which were further 

compared with the other healthy sample datasets (H05-H32) generated in the 

laboratory following the same sample preparation processes and mass 

spectrometry analysis in order to detect sample heterogeneity. To confirm the 

proteome shift observed from the COVID-19 patients, we also collected urine 

samples from two recovered patients (P1 and P6) (Figures 1A and S3).  

As the sample size increases, the number of identified proteins in control 

group grows quickly, and gradually become saturated (Figure 2A). The peptide 

over protein ratio was 6.0 (Table S1), indicating high quality and reliability of 

our protein identification. To improve the accuracy of COVID-19 and recovery 

samples, 2 technical repeats were measured for each sample. A total number 

of 2656 proteins was identified from 32 healthy control samples (Figures 2A 
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and Table S1). We identified and quantified 1380 and 1641 proteins in urine 

samples from COVID-19 and two recovery person in total, which was 

significantly lower than that of healthy controls (Figure 2B and 2C, Tables S2 

and S3). 

There were 1008 proteins being commonly identified and quantified among 

the healthy controls, COVID-19 patients and recovered patients. However, 211 

and 63 proteins were uniquely expressed in COVID-19 patients and recovery 

samples, respectively (Figure 2D). The average abundance of the identified 

proteins for each group spanned about 6 orders of magnitude, with lower 

abundance for the COVID-19 samples compared with healthy and recovery 

ones (Figure 2E). To check whether the SARS-CoV-2 proteins were present in 

the urine sample, we added SARS-CoV-2 protein sequences to the human 

proteome database, and no related proteins were identified. Low abundances 

of SARS-CoV-2 or its fragments in the urine or the relatively normal renal 

filtration function of the patients might explain the absence of SARS-CoV-2 

protein in the urine samples. 

Urine proteomics differentiates COVID-19 patients from healthy people  

To assess the quantitative variation and accuracy of the MS datasets, each 

urine sample of COVID-19 patients and the respective recovered samples were 

technically repeated twice. The absolute quantitative information iBAQ value 

was used for further comparison and analysis. The correlation coefficiency (R2) 

of the two replicates for each sample was higher than 0.80 (Figure S4), 

indicating the MS data were acquired with high degree of consistency and 

reproducibility in this study. 

Due to the differences in sample size and operation during the sample 

processing, we found significant quantitative variations among different 

samples (Figure S5A). Therefore, the median values of iBAQ for each sample 

dataset were normalized equally to reduce the potential biases before 

quantitatively comparing the samples under COVID-19 with healthy conditions 
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(Figure S5B). We also used the ComBat [23] to adjust for batch effects in 

datasets where the batch covariate was known. We found that the correlation 

of samples within the healthy and recovery groups were higher than that 

between the healthy and patient groups (Figure S6).  

We found that patients and healthy people can be divided into two 

categories based on our cluster analysis (Figure 3), indicating the distinctive 

molecular characteristics between healthy and COVID-19 conditions. 

Interestingly, the urine samples of two recovery patients were clustered with 

healthy people (Figure 3). We also found that normal control individual H5 and 

H6 were “incorrectly” clustered with the M-COVID patients. Nevertheless, the 

M-COVID and S-COVID samples were clustered into separated groups except 

for one M-COVID patient (P3) with both hypertension and diabetes. The 

differences between M-COVID and S-COVID urine proteome samples might 

reflect different physiological responses of the COVID-19 infection at the 

proteome level.  

Molecular features of urine proteome for the pathogenesis of severe 

COVID-19 patients 

Despite only 6 COVID-19 urine samples were tested, our results showed a clear 

distinction between healthy control and COVID-19 patient urine proteomes. We 

used the fold change ≥2 and p-value﹤0.05 as filters to find the differentially 

expressed proteins between mild and severe diseases compared to the healthy 

control, respectively. There were 86 and 83 significantly up-regulated proteins, 

and 100 and 172 significantly down-regulated proteins in mild and severe 

COVID-19 samples, respectively (Figure 4A and 4B, Tables 4 and 5). To 

eliminate the confounding effects of the individual characteristics such as age 

or comorbidities, we also compared recovery samples with healthy controls and 

identified 278 differentially expressed proteins, including 152 up-regulated and 

126 down-regulated proteins (Figure 4C and Table S6), which were excluded 

in the further analysis. We identified 95 unique changed proteins for severe type 
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disease, 44 for mild type and 75 overlapped ones for both types of COVID-19 

(Figure 4D). GO analysis of these changed urinary molecular features implied 

that the COVID-19 could result in the dysregulation of immune response, viral 

process, response to hypoxia, complement activation and platelet 

degranulation (Figure 4E).  

To identify specific proteins to distinguish the mild from severe type of 

COVID-19 patients, we clustered the commonly identified proteins for all of 

these four datasets into 16 significant discrete clusters with the quantified 

values (Figure S7) through mFuzz [24]. We chose the cluster 2 and 11 as 

severe COVID-19 up-changed from mild COVID-19 (Figure 5A). Combined the 

filter results and significantly changed proteins from figure 4D, we identified 56 

unique proteins conforming to the criteria. These proteins were highly 

associated with the complement activation, regulation of immune response, 

cellular oxidant detoxification, cellular response to hypoxia and oxidative stress-

induced apoptosis, which might reflect the pathogenesis of the severe COVID-

19. These results are consistent with the recent reported sera proteomics [20]. 

We also chose the cluster 1 and 12 as the down-regulated filter of the severe 

COVID-19 from mild COVID-19 as well (Figure 5C). These filtered proteins 

were highly associated with the platelet degranulation, glucose metabolic 

process, protein metabolic process and lipid metabolic and transport pathways.  

The molecular features used to distinguish the patient type (M and S) in our 

classifier (Figure 5B and 5D, Tables S4-5) contain several potential biomarkers 

which were highly associated with the clinical characteristics of mild and severe 

COVID-19. For example, the hypoxia up-regulated protein 1 (HYOU1) 

belonging to cluster 2 was more than three-fold higher in the severe COVID-19 

(Figure 5B). HYOU1 plays a pivotal role in cyto-protective cellular mechanisms 

triggered by oxygen deprivation and is highly expressed in tissues such as liver 

and pancreas that contain well-developed endoplasmic reticulum and also 

regulates large amounts of secretory proteins [25, 26]. Patients with hypoxia 

warrant more attention to their intravascular coagulation, such as the elevated 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.02.20088666doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.02.20088666


levels of D-dimer, a blood marker of excess clotting. It was reported that the 

heparin could boost patients’ low oxygen levels regardless of whether they were 

struggling to breathe [27]. In this study, we found that the heparin cofactor 2 

(SERPIND1) belonging to cluster 10 was specially up-regulated more than four-

fold higher in the mild and two-fold higher in the severe COVID-19 (Table S4). 

SERPIND1, also known as heparin cofactor II, is a glycoprotein in human 

plasma that inhibits thrombin and chymotrypsin, and the rate of inhibition of 

thrombin is rapidly increased by Dermatan sulfate (DS), heparin (H) and 

glycosaminoglycans (GAG) [28, 29]. We speculated that the SERPIND1 could 

be the protective response to reduce the risk of excess intravascular 

coagulation in the COVID-10 patients. 

We also found that the cyclic AMP-responsive element-binding protein 3-

like protein 3 (CREB3L3) belonging to cluster 10 (Figure S7) was specially up-

regulated in the M-COVID (Table S4). In acute inflammatory response, 

CREB3L3 may activate expression of acute phase response (APR) genes, 

which was activated in response to cAMP stimulation [30]. This might be the 

protective mechanism for body to fight against the virus. 

For the down-regulated molecular clusters, the proteins related with platelet 

degranulation was also reported in the sera proteomics recently [20]. 

Additionally, the down-regulated pathway of lipid metabolic and transport in the 

COVID-19 patients caused our attention. The cholesterol homeostasis was 

reported to impact COVID-19 prognosis, virus entry and the antiviral therapies 

[31]. In our data, the lipid metabolism and transporting, including the cholesterol 

homeostasis, were down-regulated in the S-COVID (Figure 5D and Table S5). 

The proteins NPC intracellular cholesterol transporter 2 (NPC2), 

apolipoproteins A1 (APOA1), and Cubilin (CUBN) were changed with the 

similar trends (Figure 5D). These results indicated that after the SARS-CoV-2 

infection, the lipoprotein-mediated cholesterol uptake and transporting was 

disordered. Our study suggests that more characteristic molecular changes at 

protein levels can be used to build a predictive filter for the prospective 
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identification of severe cases and shed light on the understanding of COVID-

19 pathophysiology.   

 

DISCUSSION 

The COVID-19 pandemic caused by SARS-CoV-2 is not only putting huge 

pressure on global healthcare, but also having a devastating impact on the 

economy and society. Although much effort towards COVID-19 diagnostics and 

treatment has been made, the mortality of this infectious disease has not been 

significantly improved because of the limited mechanistic understanding of the 

pathogenesis [2, 32]. Patients progress into the S-COVID often face very limited 

treatment options [8, 9]. Imaging technology, such as CT has been widely used 

to diagnose the COVID-19 patients, but suffers from high cost and demand for 

technical expertise, which is only accessible to those who live in developed 

countries. There is an urgent need for low-cost and reliable diagnostic 

techniques to estimate and predict the transition of severe COVID-19 patients 

from mild COVID-19 ones.  

Urine is one of the most frequently studied biomaterials for biomarkers of 

human diseases in proteomics study because of its accessibility. It is less 

complex and has a relatively lower dynamic range with less technical 

challenges compared to blood [33-36]. Recently, it was demonstrated to 

effectively predict lung cancer [21]. Here, we assayed human urine samples 

from 32 healthy donors, three M-COVID, three S-COVID patients and two 

COVID-19 recovery person. Our study demonstrated that urine profiling could 

separate the healthy control from COVID-19 patients and also tell recovery 

person from COVID-19. Specific proteome features for M-COVID and S-COVID 

patients were detected in the urine samples. This is the first study to establish 

a link between the urine proteome and the understanding of the COVID-19 

pathophysiology. Though the number of samples collected in this study was 

small, the obtained findings are consistent with the previous blood study [20], 
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which supports the accuracy of our results. Our new findings would have 

potential implications for clinical diagnosis and treatment. We concluded that 

urine proteome is an important source that warrants more attentions for the 

understanding of COVID-19. 

Given the possibility of using proteome as a diagnostic tool we have shown, 

we are also aware of several limitations in our COVID-19 urine proteomics 

study. First, only limited number of COVID-19 patient samples were included in 

our proteomics study, future study to include more samples will likely mitigate 

the possible sampling bias. Second, the current COVID-19 patients were only 

categorized as M-COVID and S-COVID. We could not obtain intermediate type 

of COVID-19 patient samples to improve the resolution to predict the trend and 

progress of atypical pneumonia caused by SARS-CoV-2 due to the limited 

number of patients. Third, the batch effect of the sample processing and 

proteomics analysis may cause some deviations. Some healthy control 

datasets were generated before, though with the similar experiment processes. 

We recommended that the urine proteomics researches of the healthy, COVID-

19 and their corresponding recovery samples were performed meanwhile if 

possible. Fourth, patients were subjected to different antiviral drug treatments, 

compounded with their age, preexisting health conditions as well as wide range 

of days of onset symptoms, it might cause some bias to the conclusion at this 

stage.  

Altogether, our data demonstrate that a urine proteome-based proteomics 

study can reliably and sensitively differentiate COVID-19 patients from healthy 

people. It might be able to serve as a powerful tool to help scientists and 

clinicians fight the COVID-19 pandemic. 

 

MATERIALS AND METHODS 

Urine samples 

All COVID-19 patients were diagnosed according to the Diagnosis and 

management plan of pneumonia with new coronavirus infection (Trial Version 
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6) in the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China, 

between February 18 and March 3, 2020. According to the Diagnosis standards, 

those patients were classified as clinically severe type infection empirically 

based on a set of clinical characteristics, such as dyspnea, respiratory rate (RR 

≥ 30 times/min), mean oxygen saturation (≤ 93%, resting state) or arterial blood 

oxygen partial pressure/oxygen concentration (PaO2/FiO2 ≤ 300 mmHg), and/or 

lung infiltrates > 50% within 24–48 hours. The patients classified as mild type 

infection were mainly manifested with the symptoms of fever, non-pneumonia 

or mild pneumonia cases. A total of 7 urine specimens from COVID-19 patients 

were collected. One of them was discarded because of severe renal failure. 

Patients with underlying diseases except renal dysfunction are indicated in 

Figure 1A. The patients are aged from 59 to 78 years old (Figure 1A). Among 

the six analyzed samples, two of them are female.  

A total of 32 urine specimens from healthy controls (CTL, n=32) were 

collected at Beijing Proteome Research Center, Beijing, China. The midstream 

of the morning urine was obtained for this study. Healthy controls are aged from 

22 to 39 years old without any underlying disease. Among them, 11 are female 

(Figure S1).  

All participants have provided signed informed consent and samples were 

collected with ethics approval from institutional review board (IRB) from the Fifth 

Medical Center of Chinese PLA General Hospital and Beijing Proteome 

Research Center. Our research strictly followed the standards indicated by the 

Declaration of Helsinki.  

Proteomics sample preparation and LC-MS/MS analysis 

Human urine proteomics samples were prepared as described previously with 

slight modification [21, 33-36]. Briefly, 1 mL urine samples were centrifuged at 

2,000 g for 4 min to remove cell debris before reduced with 5 mM dithiotheitol 

(DTT) at 56℃ for 30 min, which could also inactivate the virus. The treated 

samples were alkylated with 10 mM iodoacetamide in dark at room temperature 

for 30 min. The supernatant was loaded into a 10 kDa ultrafiltration tube and 
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the larger molecular weight proteins (proteome) were separated from the 

endogenous peptides (peptidome) by centrifugation. Proteome samples were 

digested with trypsin at 37℃ for 14h then the digestion reaction was terminated 

by 1% formic acid (FA). The digested peptides were desalted through a 

StageTip [37, 38] and dried before LC-MS/MS analysis.  

The dried peptides were dissolved with 20 μL loading buffer (1% formic 

acid, FA; 1% acetonitrile, ACN). 6 μL sample was taken for LC-MS/MS analysis 

on an Orbitrap Fusion Lumos coupled with EASY-nLC 1200 (Thermo Fisher 

Scientific, Waltham, MA, USA). 

The samples were loaded onto a self-packed trap column (2 cm × 150 μm) 

and then separated by a capillary column (15 cm × 150 μm), both packed with 

C18 reverse phase particle (1.9 μm, Phenomenex, Torrance, California, USA). 

The peptides were eluted with a 120 min nonlinear gradient: 6% B for 10 min, 

9-14% B for 15 min, 14-30% B for 50 min, 30-40% B for 30 min, 40-95% B for 

3 min, 95% B for 7 min, 95-6% B for 1 min, 6% B for 4 min (Buffer A, 0.1% FA 

in ddH2O; Buffer B, 0.1% FA and 80% ACN in ddH2O; flow rate, ~600 nL/min). 

The parameters for MS detecting were as follows: The full MS survey 

scans were performed in the ultra-high-field Orbitrap analyzer at a resolution of 

120,000 and trap size of 500,000 ions over a mass range from 300 to 1,400 

m/z. MS/MS scan were detected in IonTrap and the 20 most intense peptide 

ions with charge states 2 to 7 were subjected to fragmentation via higher energy 

collision-induced dissociation (1×104 AGC target, 35 ms maximum ion time).  

Data processing and label-free quantification 

The raw files were searched with MaxQuant software (v1.5.3.0) against the 

database composed of Human fasta downloaded from Swiss-Prot (version 

released in 2020.02) and the SARS-CoV-2 virus fasta downloaded from NCBI 

(RefSeq GCF_009858895.2). Mass tolerance of the first search for precursor 

ions was set to 20 ppm. Full cleavage by trypsin was set and a maximum of two 

missed cleavages was allowed. The protein identification must met the 

following criteria: (1) the peptide length≥7 amino acids; (2) the FDR≤1% at the 
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PSM, peptide and protein levels.  

The peptides were quantified by the peak area derived from their MS1 

intensity with MaxQuant software [39]. The intensity of unique and razor 

peptides was used to calculate the protein intensity. The intensity based 

absolute quantification (iBAQ) algorithm was used as protein quantification 

value [40]. In order to exclude the influence of differences in sample sizes and 

loading amounts for MS analysis, we used median value of each sample to 

normalize protein iBAQ values [41]. All missing values were substituted with the 

minimal value. 

Statistical analyses 

Overlapped 1008 proteins were used for the subsequent statistical analysis. 

Pearson correlation analysis of all datasets was realized by Perseus [42]. 

Differential proteins were filtered using R package limma (version 3.34.9). The 

significantly differentially expressed proteins were selected using the criteria of 

adjusted p value less than 0.05 and log2 FC larger than 1. Proteins were 

clustered using R package mFuzz (version 2.46.0) into 16 significant discrete 

clusters. 

Pathway analyses 

The function of differential proteins was analyzed in David Bioinformatics 

Resources (https://david.ncifcrf.gov/) and Human Protein Atlas 

(http://www.proteinatlas.org/) platforms including tissue-specific enrichment, 

molecular function, biological process, cellular component, etc. 

 

DATA AVAILABILITY 

The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) 

via the iProX partner repository[43]. The accession numbers for the mass 

spectrometry proteomics data reported in this paper are the iProX 

(https://www.iprox.org/) dataset identifier: IPX0002166000. All the data will be 

publicly released upon publication. 
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Figures and Legends 

Figure 1. Proteomics study on urine samples of COVID-19 patients. (A) 

Basic information and clinical symptoms of COVID-19 patients, including mild 

(n=3) and severe (n=3) patients. No.4 patient (P4) was with multiple metastases 

of colon cancer and died on March 3, 2020. No.1 (P1) and 6 (P6) patients 

labeled with asterisk indicated the persons providing the recovery urine 

samples. cRNA indicated that the SARS-CoV-2 nucleic acid. (B) Ground-glass 

opacity on Computed Tomography (CT) of COVID-19 patients. (C) The 

amounts of IL-6 between mild and severe COVID-19 patients. (D) Experimental 

design of urine proteomics for COVID-19 patients. Interleukin-6, IL-6.  

 

Figure 2. Identification and quantification of urine samples from COVID-

19 patients and healthy controls. (A&B&C) The accumulation curve of the 

quantified proteins from 32 healthy volunteers (A), 6 COVID-19 patients (B) and 

2 recovery patients (C). (D) The Venn diagram for the identified urine proteins 

from the healthy volunteers, COVID-19 and recovery patients. (E) The dynamic 

range of the iBAQ abundance of identified proteins from healthy volunteers, 

COVID-19 patients and recovery ones. The average abundance for each group 

was calculated. 

 

Figure 3. Distinction of healthy volunteers, COVID-19 patients and 

recovery patients in proteomic features. The clustering heatmap analyses 

differentiates healthy volunteers from COVID-19 patients and recovery ones. 

 

Figure 4. Function distribution of dysregulated proteins in COVID-19 

patients. (A&B&C) The volcano plots of the up-regulated and down-regulated 

proteins in different groups. Proteins with p-Value lower than 0.05 and fold 

change ≥ 2 were considered as significantly differential expression. (D) Venn 

diagrams of differential proteins in mild, severe COVID-19 patients and 

recovery patients compared with healthy volunteers. (E) The GO analysis of 
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dysregulated proteins in the COVID-19 patients. 

 

Figure 5. Clustering of commonly identified proteins illustrated specific 

clusters of proteins in COVID-19 patients. The numbers 1-4 stands for the 

Health, Mild, Severe and Recovery, respectively. (A) The cluster 2 and 11 

stands for the up-regulated trends uniquely in the severe type of COVID-19. (B) 

The GO analysis of the filtered proteins from panel A. (C) The cluster 1 and 12 

stands for the down-regulated trends uniquely in the severe type of COVID-19. 

(D) The GO analysis of the filtered proteins from panel C. 

 

 

Figure 1. 
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Figure 2. 

 

 

Figure 3. 
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Figure 4. 
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Figure 5. 
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