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Abstract

Background The global impact of COVID-19 and the country-specific re-
sponses to the pandemic provide an unparalleled opportunity to learn about dif-
ferent patterns of the outbreak and interventions. We model the global pattern of
trajectories of reported COVID-19 cases during the primary response period, with
the aim of learning from the past to prepare for the future.

Methods Using Bayesian methods, we analyse the response to the COVID-19
outbreak for 158 countries for the period 22 January to 9 June 2020. This encom-
passes the period in which many countries imposed a variety of response measures
and initial relaxation strategies. Instead of modelling specific intervention types and
timings for each country explicitly, we adopt a stochastic epidemiological model in-
cluding a feedback mechanism on virus transmission to capture complex nonlinear
dynamics arising from continuous changes in community behaviour in response to
rising case numbers. We analyse the overall effect of interventions and community
responses across diverse regions. This approach mitigates explicit consideration of
issues such as period of infectivity and public adherence to government restrictions.

Results Countries with the largest cumulative case tallies are characterised by a
delayed response, whereas countries that avoid substantial community transmission
during the period of study responded quickly. Countries that recovered rapidly
also have a higher case identification rate and small numbers of undocumented
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community transmission at the early stages of the outbreak. We also demonstrate
that uncertainty in numbers of undocumented infections dramatically impacts the
risk of second waves. Our approach is also effective at pre-empting potential second
waves and flare-ups.

Conclusions We demonstrate the utility of modelling to interpret community
behaviour in the early epidemic stages. Two lessons learnt that are important
for the future are: i) countries that imposed strict containment measures early
in the epidemic fared better with respect to numbers of reported cases; and ii)
broader testing is required early in the epidemic to understand the magnitude of
undocumented infections and recover rapidly. We conclude that clear patterns of
containment are essential prior to relaxation of restrictions and show that modelling
can provide insights to this end.

Background

The world is at war with the coronavirus disease 2019 (COVID-19) [1], which was officially
declared a pandemic by the World Health Organization (WHO) on 11 March 2020 [2].
From early cases reported in December 2019 (Hubei, China), severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) spread rapidly throughout the world [3, 4]. The
challenge faced by healthcare systems worldwide cannot be understated [5–8]. Within four
months of the first reported cases, more than two and a half million cases were confirmed
with over two hundred thousand deaths globally [9, 10], and most countries had taken a
range of extreme measures to stop the spread. More than six months on, the pandemic is
far from over but many countries have cautiously started to relax restrictions. A unique
feature of the COVID-19 pandemic has been the rapid and widespread availability of data
though online platforms [11–13]. These data enable the analysis of various patterns of
outbreak containment over this period, and provide an unparalleled opportunity to learn
how we might respond to a potential second surge of COVID-19 or future pandemics. To
this end, it is important to learn from the past in order to prepare for the future.

Travel restrictions, increased hygiene education, social distancing, school and business
closures, and complete lockdowns [1,8,14] are examples of non-pharmaceutical interven-
tion (NPI) strategies that many countries have introduced to slow transmission rates
and relieve pressure on healthcare systems in the absence of a vaccine or treatment for
COVID-19 [15]. Modelling and simulation are at the forefront of determining the ef-
ficacy of these measures in reducing SARS-CoV-2 transmission and quantifying risk of
future outbreaks along with their potential severity [16–19]. Understanding of these ef-
fects is crucial given the potential deleterious sociological and economic impacts of many
NPIs [1, 20–22].

The global modelling community has responded rapidly to the COVID-19 situation
and has provided insight into the transmissibility of SARS-CoV-2 [23–25], global risk
of spread through transport networks [10, 26], forecasting and prediction [27–29], and
evaluation of interventions [18, 30]. A variety of modelling strategies have been applied.
Techniques include: empirical approaches such as phenomenological growth curves [29];
data-driven, statistical approaches using non-linear autoregressive models [31]; and mech-
anistic models based on epidemiological theory [32] with various extensions [33,34].

Our aim is to learn about the global pattern of behaviour among countries based on
the trajectories of reported cases, recoveries and fatalities as provided by Johns Hopkins
University [9, 10]. Although there are acknowledged drawbacks in relying on reported
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cases, we argue that such data will be the main source of information for government
and health managers in future scenarios. In light of our aim, we also avoid imposing the
specific complex history of intervention measures for each country, but instead include
a novel regulatory mechanism that captures the changes in community behaviour in
response to rising confirmed cases. This is achieved by including a feedback loop in the
transmission process which enables complex nonlinear dynamics arising form continuous
changes in community responses over time. Through model calibration, we are able to
infer the country specific response timing and strength. As a result, we are able to analyse
the overall effect of interventions and community responses across diverse regions. This
approach also mitigates explicit consideration of issues such as period of infectivity and
public adherence to government restrictions.

Within a Bayesian framework, we characterise the response of 158 countries to the
COVID-19 outbreak for the period 22 January to 9 June 2020. We focus on this time-
frame since it encompasses the period during which initial measures were imposed by
these countries and excludes the period in which countries started to relax restrictions.
Our characterisation is a broad assessment of the global response to the COVID-19 pan-
demic, and reflects how countries in early phases of outbreak may have adjusted their
strategies to reduce the time to recovery. In particular, we find that very large outbreaks
are characterised by a delayed response to rising confirmed case numbers before signifi-
cant reductions in transmission rates occur. Countries that observed a decrease in active
cases during the early period of study (e.g., China and South Korea) are characterised by
high case identification rates; the result of highly effective identification and quarantine
programs. We also find that, for many countries, the transmission rates in the later pe-
riod of the study are declining. However, large unobserved infected population counts are
also estimated. Our analysis confirms that a multifaceted approach that includes NPIs,
increased testing, contact tracing, isolation and quarantine measures are effective in re-
ducing the severity of COVID-19 outbreaks world-wide. We also demonstrate, using data
up to 9 June 2020, that the unknown magnitude of undocumented cases substantively
impacts uncertainty in risks of subsequent increases after recovery. We conclude that
wider testing is also essential to reduce this uncertainty in the asymptomatic infected
populations to reliably evaluate risk of second waves of COVID-19. This is essential as
restrictions are eased around the world.

Methods

Data summary

Daily counts of reported confirmed COVID-19 cases, recoveries and deaths for each coun-
try are obtained from the Johns Hopkins University coronavirus resource center [11]. We
refer the reader to the Discussion section for comments on this data source. Population
data for each country for 2020 were obtained from United Nations Population Division
estimates [35].

Our analysis is performed over three different time periods: i) 22 January–30 March;
and ii) 22 January–13 April; and iii) 22 January–9 June. These periods are selected as
they broadly represent the time period of the initial outbreak of COVID-19; covering the
initial exponential growth period, the epidemic peak, and subsequent recovery period of
many countries worldwide. In particular, we use these time points to look at the changes
in key model parameters relating to a countries responses over time.
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Countries are included in the analysis for a give time period provided the cumulative
number of confirmed COVID-19 cases exceeded 100 at least one day prior to the end of
the particular analysis period. This condition is enforced to ensure sufficient mixing and
that enough days of daily counts are observed for sensible model fitting and parameter
inferences. Using these inclusion criteria, we obtain N = 98 countries for the period of 22
January–30 March, N = 121 countries for period of 22 January to 13 April, and N = 158
countries for the period 22 January–9 June.

Analysis summary

For each country, i = 1, 2, . . . , N , the Johns Hopkins University maintains a time-series,
Di = [{Ct,i, Rt,i, Dt,i}T≥t≥0], where Ct,i, Rt,i, and Dt,i are, respectively, the cumulative
confirmed cases, case recoveries and case deaths on day t for country i, t = 0 is the first
day such that Ct,i ≥ 100 and t = T is the end of the study period. Since it is known
that there are variations in reporting protocols across countries and time as well as data
curation challenges [12], caution is necessary in the interpretation of our analysis across
all countries over time.

Bayesian parameter inference is applied over three time periods. The first period, 22
January to 30 March, is used to assess the community response to the initial outbreak
of COVID-19. This time period is chosen as it reflects the period when many countries
had not yet introduced any interventions, and those that did introduce such measures
had not yet seen the effect of them. Our analysis for this period represents a reflection
on how countries initially responded to the pandemic.

Our second analysis period, including data up to 13 April, encompasses the time
period in which the efficacy of the community response starts to become evident. For
several countries, a decline in daily cases is observed. Therefore, this period allows us
to investigate how different strategies impacted the overall cumulative case numbers and
the time to recovery.

Our third analysis considers the period up to the 9 June, in which many countries
had started to relax restrictions. Furthermore, the epicentre of the pandemic had shifted
from Europe to the Americas. We note the shift in parameter estimates for recovering
European countries and those countries of South America that were observing exponential
growth in daily cases. We also consider in this analysis the prevention of second waves,
and highlight the sensitivity of the system dynamics to the uncertainty in unobserved
infectious individuals.

Mathematical model

Our model is a stochastic epidemiological compartmental model that describes the spread
of COVID-19 within a single country over the time period t ∈ (0, T ]. The assumed well-
mixed population of size P is comprised of six compartments: susceptible, St; infectious,
It; confirmed active cases, At; case recoveries, Rt; case fatalities, Dt; and unconfirmed
recoveries, Ru

t . Here, the population that is susceptible to the SARS-CoV-2 infection, St,
can be infected by infectious individuals, It. Importantly, It represents the unobserved
infectious population, including both symptomatic and asymptomatic infections. The
active confirmed cases, At, are those who have tested positive for COVID-19 but have
not yet recovered or died. It is assumed that individuals in At are isolated from the
susceptible community (e.g., self-isolated, quarantined, or hospitalised) and no longer
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contribute to new infections; importantly, At need not be symptomatic, but may have
been identified as a result of contact tracing protocols or community wide testing. Rt

and Dt are, respectively, the population of confirmed cases that recover or die; these
sub-populations correspond to the recoveries and deaths reported in the Johns Hopkins
University data. Lastly, Ru

t is the population of infected individuals that recover or die
without being tested for COVID-19; these individuals no longer spread the infection but
do not contribute to the reported recovery and fatality counts. The cumulative confirmed
cases, as reported by the Johns Hopkins University, can be obtained by Ct = At+Rt+Dt.

The true values of St, It, and Ru
t are not observable in reality and are latent variables

in our model. As a result, strategies for managing the spread of the virus, such as NPIs,
are informed by the observed populations At, Rt, and Dt. Furthermore, media coverage,
official government information, and health authority reports based on these observed
quantities may also affect the behaviour of individuals. For example, frequent reports on
growing case numbers may increase voluntary self-isolation; conversely, media coverage
that downplays the risk of infection may lead to widespread non-compliance with health
advice or government regulations. We model this dynamic by treating the transmission
rate as a non-linear function of the observable populations, g(At, Rt, Dt), thus introducing
a feedback loop.

A schematic of this system that highlights the state transitions and the feedback loop
is given in Fig. 1. The resulting dynamics can be described by the differential equations,

dSt

dt
= −g(At, Rt, Dt)StIt/P,

dIt
dt

= −(γ + ηβ)It + g(At, Rt, Dt)StIt/P,

dRu
t

dt
= ηβIt,

dAt

dt
= γIt − (β + δ)At,

dRt

dt
= βAt,

dDt

dt
= δAt,

(1)

where g(·) > 0 is the non-linear transmission rate function, γ > 0 is the identification
rate, β > 0 is the case recovery rate, δ > 0 is the case fatality rate, and η > 0 is the latent
removal rate relative to the case recovery rate. The initial conditions for the observables,
A0, R0, D0, are obtained from the Johns Hopkins University data. To capture uncertainty
in community spread at early time we set the initial infectious population to I0 = κA0,
where κ > 0 is the relative number of unobserved cases. Finally, we assume initially
Ru

0 = 0, hence S0 = P − C0 − I0. Although we present Equation (1) as a deterministic
system for ease of interpretation, we apply a stochastic equivalent that is a discrete-state
continuous-time Markov process. The tau-leaping stochastic simulation scheme [36] is
applied to generate approximate sample-paths of this model. See the Supplementary
Material for the full stochastic formulation.

The novel component of our approach is the feedback mechanism that provides a
general framework to describe how communities change their behaviour as case numbers
rise. This is similar to the influence of media reports that have been the subject of study
for other infections diseases, such as influenza and HIV [37, 38]. However, our approach
includes a parameter governing the strength of the response.
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Figure 1: Schematic of epidemic model including a regulatory mechanism inducing a
feedback loop. State transitions are marked by arrows with superscripts indicating re-
spective rate parameters. Here, observable quantities can inform individual behaviour to
inhibit transmission in the latent SIR model.

We define a reporting function,

U(At, Rt, Dt) = wAAt + wRRt + wDDt, (2)

where the weights wA, wR, wD ≥ 0, represent the relative weighting of the COVID-19
data in contributing to information that influences individual behaviour, introduction of
NPIs, and subsequent compliance with government regulation or health advice. In the
context of this work, the weights wA, wR, and wD have a very important interpretation,
but we first need to present more details of the feedback mechanism.

We consider a nonlinear transmission rate of the form,

g(At, Rt, Dt) = α0 + αf(U(At, Rt, Dt)), (3)

where the response function, f(·) ∈ [0, 1], is a decreasing function with respect to U(·), α
is the controllable transmission rate such that αf(·) is a transmission rate that decreases
as the reporting function increases and α0 is the residual transmission rate as f(·) → 0.
Note that α0 < g(·) ≤ α0 + α. The strength of the response s = (1− f(·))× 100% is the
percentage reduction in community transmission, excluding residual transmission α0.

For the response function we assume the form

f(U(·)) =
1

1 + U(·)n
, (4)

where the parameter n ≥ 0 controls the rate of decrease with respect to the reporting
function. This form is selected for two reasons. Firstly, it is a generalisation of techniques
that capture the influence of media reports during epidemics [37]. Secondly, the weights
from Equation (2) have an important interpretation. This can been seen by noting
that values for At, Rt and Dt that satisfy the condition U(At, Rt, Dt) = 1, indicate the
threshold case numbers that leads to a response strength of 50%, that is, f(U(·)) = 1/2
leading to g(·) = α0 +α/2. The effect of varying slope parameter, n, and the weights are
shown in Fig. 2.
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Figure 2: Effect of parameters on the response function. (A) The effect of the slope
parameter n. Note, as n increases, the faster f(·) → 0. For any n we have f(·) = 1/2
(dashed black), at the point U(·) = 1 (dotted black). (B) The effect of weights on the
response function for the special case wA = wR = wD = w > 0 for constant n = 5. Note
the point at which f(·) = 1/2 corresponds to At +Rt +Dt = 1/w. That is, as w increases
the lower the number of cases are required to influence the community to reduce the
spread.

Furthermore, if U(·) = 0, that is no cases are reported (or the weights wA = wR =
wD = 0, indicating the community does not perceive any risk), then the model reduces
to a standard SIR model in the unobserved population with transmission rate parameter
α0 + α.

As shown in Fig. 2(A), for lower n ≤ 1 the shape of f(U(·)) starts to decline rapidly
leveling out. Increasing n > 1 results in a decreasing sigmoid curve with an inflection
point at the critical values of U(·) = 1 in which a population response strength reaches
50%. For example, small n describes a population that does not significantly reduce the
transmission rate until the U(·) is large. Conversely, larger n describes a population that
acts decisively as a response that rapidly reduces transmission around U(·) = 1. Large
values of weights wA, wR, wD correspond to lower acceptable thresholds of cases, including
active, recovery and death counts. Lower weights lead to delayed responses. In this
respect, the parameter n relates to the rate of intervention introduction and the weights
relate to decision thresholds and subsequent compliance. Importantly, our approach does
not distinguish between different NPIs and voluntary population behaviour, but rather
models the net effect that reporting has on transmission rates.

When wA = wR = wD = w > 0, then the reporting function depends only on the
cumulative incidence of COVID-19, U(At, Rt, Dt) = (At + Rt + Dt)w = wCt. This form
of reporting function is useful for modelling the response to the initial wave of COVID-19
since it is proportional to the incidence risk for the entire population. Of course, other
reporting functions could be considered. For example, since Ct can only increase, the
model dynamics cannot capture the effects of relaxing intervention restrictions. Therefore,
for the results presented in this manuscript, we will focus on the reporting function with
wR = wD = 0, that is, U(At, Rt, Dt) = wAAt. Since At will increase and decline over to
course of an outbreak, the model can exhibit oscillatory behaviour that is essential for
understanding the potential for second waves.
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Bayesian analysis

Parameter inference

Depending on the choice of response function, our model has between 8 and 11 parameters
to be estimated: two transmission rates, α0 and α, where α can be regulated but α0 cannot
(i.e., residual unavoidable transmission); case recovery rate β; case identification rate γ;
case death rate δ; relative latent recovery rate η; response slope parameter n; the initial
infected scale factor κ; and the weights of the reporting function wA, wR, and wD. For
this manuscript we assume wR = wD = 0 (see Supplementary Material for sensitivity
analysis for the general case).

Using the COVID-19 time-series data, Di, for each country i ∈ [1, 2, . . . , N ], we infer
model parameters within a Bayesian framework. For notational convenience, we will
omit the subscript i for the remainder of this section. We sample the joint posterior
distribution for θ = [α0, α, β, γ, δ, η, n, κ, wA],

p(θ | D) ∝ p(D | θ)p(θ), (5)

where p(D | θ) is the likelihood function and p(θ) is the prior distribution. To exactly
evaluate the likelihood would require the solution to the Kolmogorov forward equation,
which in turn requires matrix exponentiation of prohibitively large dimension. The eval-
uation is further complicated, as the unobserved populations St, It, and Ru

t , need to be
integrated out. Therefore, the likelihood function is intractable and we rely on adap-
tive sequential Monte Carlo for approximate Bayesian computation (SMC-ABC) [39–42]
to obtain approximate posterior samples (Supplementary Material). We use indepen-
dent uniform priors, α0 ∼ U(0, 1), α ∼ U(0, 1), β ∼ U(0, 1), γ ∼ U(0, 1), δ ∼ U(0, 1),
η ∼ U(0, 1), n ∼ U(0, 20), κ ∼ U(0, 100), and log10wA ∼ U(−6,−2).

Assessment of model fit and prediction

The highly variable nature of the COVID-19 pandemic makes it notoriously difficult to
accurately model [27, 28]. The purpose of our modelling is not to provide daily case
predictions of forecasts, but rather we wish to capture the dynamic effects of changes in
community behaviour during the COVID-19 outbreak. As a result, our model needs to
be able to capture the overall trend in COVID-19 daily cases over time.

Model fit is assessed though sampling the posterior predictive distribution

p(Ds | D) =

∫
p(Ds | θ)p(θ | D) dθ, (6)

where Ds is simulated data as generated by the model. We compute the 50% and 95%
credible interval (CrI) of p(Ds | D) through generating a single model simulation for each
posterior sample generated by the SMC-ABC sampler and computing quantiles of the
simulation state distribution at each observation time.

The posterior predictive distribution is also employed to asses the risk of second waves.
After fitting the model up to 9 June, we continue to forward simulate posterior predictive
samples to obtain credible intervals for oscillatory behaviour that relate to localised flare-
ups and second waves.
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Parameter point estimation and uncertainty quantification

Parameter point estimates are also obtained by choosing the posterior sample that results
in the lowest average discrepancy with the observed data (See Supplementary Material).
Parameter uncertainty is reported using 95% CrI for the marginal approximate Bayesian
posterior distributions (See Supplementary Material). We emphasise that this uncertainty
quantification encompasses all plausible parameter combinations within the achieved ac-
ceptance threshold of the ABC-SMC method, rather than the average discrepancy level
of the point estimate.

Results

Assessment of model fit

We perform a posterior predictive check to evaluate model fit (See Methods). For most
countries the 95% CrI contains the daily case, recovery and death data (See Supplemen-
tary Material). Exceptions to this are usually consistent with reporting delay effects,
such as weekly seasonality as evident in the daily cases for Germany (Fig. S13). While
other spikes in daily numbers (e.g., Recoveries in Germany Fig. S13(H)), the model does
capture overall trends well with many daily numbers remaining within the 95% credible
interval. For example, the possible decline in daily cases numbers for the United States
(Fig. S19(G)) is captured by the lower bound of the 95% credible interval, however,
the uncertainty of this trend on 13 Apr is indicated by the increasing upper bound. In
some extreme cases, such as changes in reporting methodology from China on 13 Febru-
ary [43](Fig. S12), subsequent consisted inaccuracies occur (Fig. S12). We discuss poten-
tial model improvements to account for this in the Discussion section. Notwithstanding
this, our model appears to capture the overall trends in the trajectories to facilitate a
broad comparative analysis of global responses to COVID-19 during this period.

Our approach of taking the posterior sample with the lowest expected data discrep-
ancy is effective in this respect (See Seupplementary Material). Example model outputs
using this point estimate are provided in Fig. 3 (See Supplementary Material for other
examples). In particular, compare Fig. 3(A)–(B) with Fig. S19(G)–(I). Despite further in-
creases in daily cases being highly plausible on the 13 April, we exclude these trajectories
from the response analysis.

9

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.04.30.20085662doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20085662
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Figure 3: Examples of model fit using parameter point estimates: (A)–(B) United States,
(C)–(D) Germany, (E)–(F) Australia, (G)–(H) United Kingdom, (I)–(J) South Korea,
and (K)–(L) New Zealand. Vertical bars indicate daily reported cases (yellow) and deaths
(red). The 50% (dark shaded region) and 95% credible intervals (light shaded region) of
the posterior predictive distributions are plotted against the observational data. Credible
intervals are computed using n = 100 stochastic simulations for the given point estimate.
Full posterior predictive distributions are presented in the Supplementary Material.

Characterisation of responses

We now focus on comparison of key parameters for countries of interest at each of our
analysis periods. Based on our correlation analysis, these key parameters are: the case
identification rate, γ, the relative initial undocumented infections, κ, and the response
weight parameter wA. The fast moving evolution of epidemics and pandemics such as
COVID-19 demand that model outputs and the corresponding effectiveness of mitigating
measures are regularly re-assessed. Therefore, we evaluate our parameter inferences and
point estimates for the three analysis periods. These results reveal that as the pandemic
evolves, we can learn more about the possible response histories and latent infected
populations. Figure 4 shows pairwise scatter plots for the response weight parameter wA,
identification rate γ, and initial relative undocumented infections κ for each of the three
analysis periods.

The interactions between parameters are complex, and the differences between time
periods deserves some interpretation. However, we first highlight some overarching trends
across all time periods and then discuss specific details. One clear trend is countries with
that largest numbers of cumulative cases (Fig. 4, top ten countries for cumulative cases
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Figure 4: Pairwise scatter plots of point estimates of each assessed country (grey points)
for the key parameters related to the management of an COVID-19 outbreak up to:
(A)–(C) 30 March; (D)–(F) 13 April; and (G)–(I) 9 June. (A),(D),(G) wA versus γ;
(B),(E),(H) wA versus γ; and (C),(F),(I) κ versus γ. For each time period, countries with
the ten largest confirmed case counts are highlighted (red points) along with representa-
tive countries that were recovering or managed to control the outbreak (green). Labels
identify the country by ISO-3166 alpha-3 code.

numbers indicated in red) tend to have lower response weights, typically wA ≈ 10−4.
Some more extreme cases are as low as wA ≤ 10−5, for example, the United States (USA;
Fig 4(D),(G)), Russia (RUS; Fig 4(G)) and Brazil (BRA; Fig 4(G)). Small wA indicates
a delayed response in which the transmission rate did not decline significantly until ac-
tive cases, At, increased to larger numbers. This is consistent with reported delays in
response across Europe and the United States [1]. Furthermore, low case identification
rates, γ < 0.01, and higher relative initial unobserved infections κ > 10 are also character-
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istics of countries will large cumulative confirmed case counts. Conversely, countries that
controlled the outbreak and avoided large case numbers during the period of study, such
as Australia (AUS), New Zealand (NZL), South Korea (KOR), and Taiwan (TWN) are
characterised by either rapid responses, wA > 10−3, lower relative initial cases numbers,
κ, or higher case identification rates γ.

Of course, there are exceptions to the trends and changes over time. On 30 March
(Fig. 4(A)–(F)), the top ten countries having the largest cumulative case numbers are
highlighted in red. In descending order, these are: the United States (USA), Italy (ITA),
Spain (ESP), China (CHN), Germany (DEU), France (FRA); Iran (IRN); the United
Kingdom (GBR); Switzerland (CHE); and Belgium (BEL). Of these countries, only China
was recovering, hence it is highlighted in green. We also highlight South Korea (KOR) as
the only other country in recovery during this period, and Taiwan (TWN) as substantial
community outbreak was avoided altogether. China and South Korea, countries that
recovered rapidly, are characterised by a higher identification rate (China γ = 0.96;
95% CrI [0.01,0.90]; South Korea γ = 0.28; 95% CrI [0.17,0.93]) and lower relative initial
undocumented cases (China κ = 0.13; 95% CrI [0.08,35.2]; South Korea κ = 2.56; 95% CrI
[0.50,5.93]) which is indicative of their strict testing, isolation, and tracing regimes [44,45].
Taiwan (TWN), with a high response weight (wA = 10−1.9; 95% CrI [10−5.9,10−1.1])
responded very rapidly, having established strong public health response mechanisms
after the 2003 severe acute respiratory syndrome (SARS) outbreak. This is also reflect in
a low level of initial undocumented cases κ = 6.48 (95% CrI [0.18,21.95]) for Taiwan [46].
This is in stark contrast to Iran (IRN; κ = 33.79; 95% CrI [4.7,91.41]) that experience
substantial community transmission ahead of the first reported cases. Furthermore, the
large response weight for Iran is results in almost no effective reduction in community
transmission since α0 is much larger than α (See Supplementary Material), which could
represent large gatherings within areas of pilgrimage [15,47,48].

By 13 of April, the situation changes as COVID-19 spreads to more countries and
response strategies are altered. The top ten countries having the largest cumulative case
numbers had changed to be, in descending order: The United States (USA); Spain (ESP);
Italy (ITA); France (FRA); Germany (DEU); The United Kingdom (GBR); China (CHN);
Iran (IRN); Turkey (TUR); and Belgium (BEL). By this time, Australia (AUS) and New
Zealand (NZL) were included in the ranks of countries that were starting to recover. In
Fig. 3(D)–(E), there is a substantial decrease in the response weight parameter many of
the worst affected countries (USA, wA = 10−5.2 95% CrI [10−5.7,10−3.2]; FRA, wA = 10−4.7

95% CrI [10−5.4,10−1.3; ESP, wA = 10−4.4 95% CrI [10−4.7,10−3.9; DEU, wA = 10−4.4 95%
CrI [10−4.8,10−4.1; IRN, wA = 10−4.4 95% CrI [10−5.2,10−1.8; ITA wA = 10−4.2 95% CrI
[10−5.8,10−1.2; GBR wA = 10−4.0 95% CrI [10−5.1,10−1.1;). This indicates that, in light
of data between 31 March–13 April, the community response to the outbreak been even
more delayed than earlier data indicated. Conversely, the very high values of wA for New
Zealand (wA = 10−2.56; 95% CrI [10−5.43, 10−1.25]) demonstrates that a rapid response has
been a key factor in keeping cumulative case number low (CT < 1, 500). Many countries
in the top ten cumulative case numbers still had a larger point estimates for κ > 10
(Fig. 4(E),(F)), with the United Kingdom having the largest point estimate of κ = 42.73
(95% CrI [0.46,91.52]), which could be the result of early unobserved transmission prior
to abandonment of “herd immunity” targets in favour of social distancing, and closing of
non-essential business and schools [18,49]. Australia has a very similar characterisation to
the United Kingdom in terms of response timing (wA = 10−3.36; 95% CrI [10−3.59, 10−3.22])
but with much lower κ = 2.72 (95% CrI [0.24,2.78]) and higher γ = 0.16 (95% CrI
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[0.16.0.99]) that likely reflects fact that many of confirmed cases within Australia during
this period were imported cases and local community transmission was low [25]. During
this time period, small increases in γ for Germany (γ = 0.15; 95% CrI [0.01,0.87]), Italy
(γ = 0.10; 95% CrI [0.0,0.92]) and France (γ = 0.07; 95% CrI [0.01,0.84]), and a large
increase in γ for the United States (γ = 0.21; 95% CrI [0.0,0.89]); this is possibly a
reflection of increased testing capabilities within these countries between 31 March to
13 April [50]. Overall, there is also a decrease in κ, indicating that the number of early
undocumented infections could be lower than previously thought. Especially for Germany
with κ = 3.27 (95% CrI [0.44,38.63]).

In our final analysis period (Fig. 4(G)–(H)), 9 June, Brazil (BRA), Peru (PER),
Russia (RUS) and India (IND) have replaced Belgium (BEL), China (CHN), Iran (IRN)
and Turkey (TUR) in top ten countries for cumulative case numbers as the epicentre of
the COVID-19 pandemic shifts away from Europe. Once again, these four new countries
in the top ten cases list are characterised by low response weights (BRA, wA = 10−5.2 95%
CrI [10−5.7,10−1.1]; IND, wA = 10−4.1 95% CrI [10−5.8,10−1.0]; PER, wA = 10−3.8 95% CrI
[10−5.6,10−1.1]; RUS, wA = 10−4.9 95% CrI [10−5.6,10−4.7]), low identification rates (BRA,
γ = 0.03 95% CrI [0.01,0.90]; IND, γ = 0.01 95% CrI [0.01,0.88]; PER, γ = 0.004 95%
CrI [0.002,0.83]; RUS, γ = 0.05 95% CrI [0.02,0.92]) and high relative numbers of initial
undocumented infections (BRA, γ = 79.34 95% CrI [1.19,80.59]; IND, γ = 47.62 95% CrI
[0.95,92.97]; PER, κ = 15.47 95% CrI [0.80,89.93]; RUS, κ = 19.39 95% CrI [0.44,61.41])
. At this point in time, many of the mainland European countries were recovering and
relaxing restrictions imposed by intervention strategies, consequently the parameters for
Germany (DEU), Spain (ESP), France (FRA), and Italy (ITA) have not changed much
from the previous analysis other than a further reduction in the estimated relative initial
undocumented case numbers for Germany (κ = 0.11; 95% CrI [0.01,43.80]). While the
United Kingdom (GBR) now has higher response weight, this is unfortunately offset by a
larger initial relative number of undocumented infections. For the United States (USA),
there is a decline in the identification rate (γ = 0.14 95% CrI [0.01,0.96]).

Overall, our analysis of the first wave identifies features of how communities globally
respond to the COVID-19 pandemic without explicit modelling of specific NPIs. Globally,
we see that a delay in regulatory response (small wA) corresponds to countries having
high numbers of cumulative case numbers. Fortunately, it seems that many countries had
responded rapidly by introducing interventions when the earliest cases where identified.
However, many countries also demonstrate large values of κ, indicating that delays in
early detection have lead to a larger unobserved infectious population. As a result, the
active case curve will have taken longer to turn around. In the event of future outbreaks,
this downturn could be brought forward by increasing γ through increased identification
and quarantine/isolation capacity.

Overall Assessment of the global response to the COVID-19 out-
break

We present an overview of the relationship between model parameter estimates and the
magnitude of the COVID-19 outbreak. Here we use the point estimates computed for
121 countries for time period 22 January to 13 April. We use these estimates to evaluate
what factors have had the greatest impact on the COVID-19 outbreak evolution across
countries. For each country, we manually classify the state of the outbreak for each coun-
try on 13 April based on the trend in the daily reported cases and active case numbers.
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These stages are: the growth stage–characterised as an increasing trend in daily reported
cases numbers; the post-peak stage–characterised by declines in daily case numbers, in-
dicating the curve is flattening; the recovery stage–characterised by declines in active
case numbers. Spearman’s rank-order correlation coefficients are computed between each
parameters and observed data at T = 13 April (e.i., cumulative case numbers, CT , recov-
eries, R, and deaths, DT ). Figure 5 highlights our results from this analysis. The lower
diagonal section of Fig. 5 show the distribution of point estimates and outbreak stage
classifications, whereas the upper diagonal show the correlation coefficients.
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Figure 5: Distributions of model parameter point estimates along with observered cu-
mulative confirmed cases CT , recoveries RT and deaths DT at T = 13 April. Pairwise
scatter plots on the lower diagonal indicate the stage of the COVID-19 outbreak for that
country: growth stage (red circles), post-peak stage (purple triangles), or recovery stage
(green squares). Histograms on the diagonal show the distribution of parameters across
all countries within each outbreak stage. Spearman correlation coefficients between each
point estimate and observed case numbers with the sign and strength of the correlation
indicated by the colour-map (positive correlations in red and negative correlations in
blue).

The two parameters with the strongest correlation with large case numbers, CT , are
the response weight parameter wA (Spearman’s ρ = −0.4357), and the relative initial
undocumented cases numbers, κ, (Spearman’s ρ = 0.4439). These parameters relate
to the response behaviour of communities at the early stages of the outbreak. Recall
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At = 1/wA is the critical number of active cases to invoke a response strength of 50%,

corresponding to a reduction in transmission rate of
α0 + α/2

α0 + α
× 100%. Therefore, a

smaller value of wA indicates a delay in community response, since larger numbers of
active cases are required to invoke a response strength of 50%. Similarly, a large values
for κ are indicative of community transmission occurring ahead of the earliest reported
cases. Furthermore, there is a strong negative correlation between the identification rate
γ and κ (Spearman’s ρ = −0.7896), indicating that countries with strong testing and
contact tracing regimes were able to minimise the amount of undocumented community
transmission at early time. The identification rate also has low negative correlation
(Spearman’s ρ = −0.2284) with the residual transmission rate, α0, meaning that countries
with stronger testing regimes also improved maximum efficacy of other interventions.
Interestingly, the response slope parameter n had only weak correlations with any other
parameters. This parameter relates to the rate of change in community behaviour was
before and after the critical At = 1/wA point (See Fig. 2 in Methods). Note the weak
positive correlation between κ and n, meaning that countries that adopted a more gradual
introduction of interventions (lower n) also had less community transmission occurring.

While the three outbreak classification stages are not well separated in all parameters,
there are a few trends to note. Countries that are in the recovery stage tend to have
lower residual transmission, α0, larger regulated transmission, α, larger case recovery
and identification rates, β and γ, lower death rates δ, and lower relative undocumented
initial infections κ. For countries still in the growth stage of the outbreak, the converse
is true. Unsurprisingly, the post-peak stage (i.e., declining daily cases, without decline
in active cases) have, on average, parameter values that sit between the recovery and
growth stages. It is important to note some countries that experienced large numbers of
cases in this analysis period are also in the post-peak or recovery stage, whereas others
in the growth stage had only small numbers of cases at this time. In some case, such as
countries of South America, this analysis could have helped highlight the importance of
interventions at early stages of the pandemic.

Avoiding second waves

As societies begin to return to normal, reliably estimating the number of undocumented
infections, including the extent of asymptomatic by infectious case, is crucial to avoid
flare-ups that potentially can lead to second waves of COVID-19 spread [51]. Recent
evidence suggests asymptomatic individuals having a substantial role in the spread of
COVID-19 [52]. Here, we demonstrate that quantification of uncertainty in the unob-
served infectious population is crucial for planning the timing of easing of restrictions.

Due to the form of our response function in our model, we can model both how com-
munities introduced and subsequently relax interventions as active case numbers reduce.
That is, as At declines then f(·) increases to simulate increase mixing of the population.
The posterior predictive distribution can start to demonstrate oscillatory behaviours, the
magnitude of which depends on the evolution of the undocumented infectious population
It. For example, Fig. 6 demonstrates this behaviour by extending simulations up to the
24 June. In both these examples, uncertainty in the daily case numbers, driven by pa-
rameter uncertainty and undocumented infectious population uncertainty, pre-empts the
small flare-ups in numbers. To obtain this behaviour, all possible evolutions of It that
are consistent with the observed daily cases must be taken into account.
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A B

Figure 6: Example of small secondary oscillations in model behaviour using the model
fit against daily case data (yellow bars) for (A) Australia and (B) South Korea up to 9
June (dashed line). The posterior predictive simulations are continues up to 24 June to
demonstrate the uncertainty in potential case increases after relaxation of restrictions.
Actual daily case numbers for the period 10–24 June (red bars) also demonstrate increases
within the credible intervals (dark blue 50% CrI; light blue 95% CrI).

The key message from this analysis is to highlight the importance of conservative
uncertainties in the future evolution of the pandemic. It is encouraging to see predictions
that indicate potential future declines in active cases counts. However, uncertainties in
the number of undocumented cases and model parameters indicate caution in predicting
the timing of consistent declines in active case numbers. Therefore, it is essential that
communities remain vigilant in fast-evolving situations such as this.

Discussion

We have applied a novel stochastic epidemiological model to characterise the response to
the first wave of the COVID-19 pandemic. We find that the worst affected countries (in
terms of confirmed case numbers), are characterised by a delayed response (small wA),
allowing case numbers to rise before interventions became effective. However, increased
testing and isolation protocols (large γ) have demonstrably reduced the longer term
impact, as demonstrated by China and South Korea. Many countries seem to be learning
from these collective experiences, with more rapid responses (large wA). Unfortunately,
we also identify that the number of undocumented cases likely substantially exceeded
the confirmed cases for many countries (large κ). It is important to emphasise that
we do not make any specific guidelines for particular countries in improving specific non-
pharmaceutical intervention (NPI) or testing strategies. However, in light of our analysis,
we advise that intervention mechanisms be mobilised rapidly without waiting for large
numbers of cases to be confirmed. This has been a key characteristic of countries that
have successfully managed the initial outbreak, such as Taiwan and New Zealand.

The data on reported daily cases from the Johns Hopkins University coronavirus re-
source center have some limitations [12]. Firstly, when aggregated at a country level,
these data do not take into account high levels of spatial heterogeneity. To account for
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potential bias, future work could consider a sensitivity analysis on the level of individual
cities or provinces where available. The delay between onset dates and reported dates
for new case also potentially introduces bias and data spikes (as noted in Methods and
Results). Lastly, the Johns Hopkins data does is not curated to distinguish between
cases acquired through local transmission as opposed to imported cases. Further mod-
elling extensions that account for details captured in alternative data sources, such as
the European Center for Disease Control and Prevention (ECDC) [13], should also be
considered.

Our model, like any model, has fundamental assumptions that are necessarily intro-
duced. We treat each country as a single well-mixed population. While our approach does
include important features such as undocumented infections and a variable transmission
rate, more advanced analysis could be performed by considering disease spread through
a network [17, 53–55] of well-mixed populations, such as provinces, states or cities. This
would assist is capturing social factors that could also influence COVID-19 transmission,
such as spatial variation in population density and large population movement such as
those that occur during times of festival [14, 47]. We also treat each country as a closed
system, whereas realistic sources and sinks through inclusion of an international travel
network could enable us to track the impact of decisions of one country on connected
countries.

Other details of the model could also be extended. We treat active confirmed cases as
non-infectious due to quarantine and isolation. In reality, active confirmed cases can still
spread the virus to medical staff. We also apply the reasonable approximation that there
is no re-detection or re-infection, however, new evidence is questioning the validity of this
assumption [49, 52, 56]. It is also possible that seasonal effects related to climate could
also cause transmission rates to change, although the evidence suggests that this is not a
substantial effect in the pandemic stage [57]. A finer granularity of classes of susceptible
individuals (i.e., at risk), incubation periods, severity of symptoms, and climate effects
would also enable more detailed analysis for an individual country [25,28]. However, our
reduced set of classes and interactions represents a trade-off between realism and broad
applicability to worldwide data. A Bayesian hierarchical modelling approach could also
be applied to better capture heterogeneity across countries.

Our model framework is flexible through the inclusion of a response function (See
Methods) in the virus transmission mechanism and may be extended to other scenarios.
In this manuscript, we have only considered the case of a response dependent on the
number of active confirmed cases, leaving a sensitivity analysis for the more general
from for the Supplementary Material. However, this response function could be further
extended to include economical factors or be modified to be a function of state and time.
This would enable a wide range of behaviours to be explored, such as specific timings
of enforced NPIs, and subsequent lifting of restrictions when active case go below a
threshold.

Conclusions

Our work confirms that a multi-pronged approach to combat COVID-19 is essential.
Firstly, early introduction of testing and effective contact tracing protocols and quaran-
tine effectively reduces the uncertainty in the unobserved infected population (i.e., low
κ and high γ). Intervention strategies are also essential and are most effective when
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introduced early (high wA). These results demonstrate the utility of modelling combined
with high quality, immediately available data for providing insight into the eary stages
of the pandemic.

It is hoped that our work might be used to inform future responses to outbreaks of
COVID-19 or other pandemics. The message is clear: to avoid second waves we must not
be complacent in response to an outbreak as the earliest confirmed cases arise. We also
highlight the importance of wider testing to effectively reduce uncertainty in predictions
of case numbers, recoveries and deaths.

Ethics approval and consent to participate Not applicable.

Consent to publish Not applicable.

Availability of data and materials Data and analysis code used in this study
are available on GitHub https://github.com/davidwarne/covid19-auto-reg-model.
Data may also be acquired from the Johns Hopkins University coronavirus data repository
https://github.com/CSSEGISandData/COVID-19.

Competing interests The authors declare that they have no competing interests.

Funding AE is supported by a SNF grant (105218 163196). CD is supported by an
ARC Discovery Project (DP200102101). KM is supported by an ARC Laureate grant
(LF150100150). This project has been supported by the Swiss Data Science Center
(SDSC, Project BISTOM C17-12).

Author’s contributions AM, KM and DJW designed the research. AM, KM, CD and
DJW provided analytical tools. AE, CD, and DJW contributed computational tools. AE
and DJW processed data. AE and DJW performed simulations and inference. DJW
performed the analysis. AM, KM, WH, a DJW interpreted the analysis results. AM,
KM, WH, CD, AE, and DJW wrote the paper.

Acknowledgements DJW, KM and CD are members of the Australian Research
Council (ARC) Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS).
Computational resources were provided by the eResearch Office, Queensland University
of Technology.

References

[1] Cohen, J., Kupferschmidt, K.: Countries test tactics in ‘war’ against COVID-19.
Science 367(6484), 1287–1288 (2020). doi:10.1126/science.367.6484.1287

[2] World Health Organization: Coronavirus disease 2019 (COVID-19) situation report
-51. Technical documents (11 March 2020)

[3] Spiteri, G., Fielding, J., Diercke, M., Campese, C., Enouf, V., Gaymard, A., Bella,
A., Sognamiglio, P., Moros, M.J.S., Riutort, A.N., Demina, Y.V., Mahieu, R., Broas,
M., Bengnér, M., Buda, S., Schilling, J., Filleul, L., Lepoutre, A., Saura, C., Mailles,

18

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.04.30.20085662doi: medRxiv preprint 

https://github.com/davidwarne/covid19-auto-reg-model
https://github.com/CSSEGISandData/COVID-19
https://doi.org/10.1101/2020.04.30.20085662


A., Levy-Bruhl, D., Coignard, B., Bernard-Stoecklin, S., Behillil, S., van der Werf,
S., Valette, M., Lina, B., Riccardo, F., Nicastri, E., Casas, I., Larrauri, A., Castell,
M.S., Pozo, F., Maksyutov, R.A., Martin, C., Ranst, M.V., Bossuyt, N., Siira, L.,
Sane, J., Tegmark-Wisell, K., Palmérus, M., Broberg, E.K., Beauté, J., Jorgensen,
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