
 

1 
 

Title: Monitoring social distancing and SARS-CoV-2 transmission in Brazil 
using cell phone mobility data 

Authors: Silvano Barbosa de Oliveira†1,2, Victor Bertollo Gomes Pôrto†1, Fabiana Ganem1,3, 
Fabio Macedo Mendes,2 Maria Almiron4, Wanderson Kleber de Oliveira1, Francieli Fontana 

Sutile Tardetti Fantinato1, Walquiria Aparecida Ferreira de Almeida1, Abel Pereira de Macedo 5 
Borges Junior5, Hector Natan Batista Pinheiro5, Raíza dos Santos Oliveira5, Jason R. Andrews6, 

Nuno R Faria7,8, Marcelo Barreto Lopes9, Wildo Navegantes de Araújo2, Fredi A. Diaz-
Quijano10, Helder I. Nakaya11,12, Julio Croda13,14,15*. 

Affiliations: 
1National Immunization Program, Department of Immunization and Communicable Diseases, 10 
Secretariat of Health Surveillance, Ministry of Health, Brasília, Brazil. 
2University of Brasilia, Brasília, Brazil. 
3Programa de Doctorado en Metodología de la Investigación Biomédica y Salud Pública, 
Universidad Autónoma de Barcelona, Barcelona, Spain. 
4Panamerican Health Organization, Brasilia, Brazil. 15 
5Inloco Company, Recife, Brazil. 
6Division of Infectious Diseases and Geographic Medicine, Stanford University School of 
Medicine, Stanford, CA, USA. 
7Department of Zoology, University of Oxford, United Kingdom. 
8Instituto Medicina Tropical, University of São Paulo, Brazil. 20 
9 Arbor Research Collaborative for Health, Ann Arbor, USA. 
10University of São Paulo, School of Public Health, Department of Epidemiology, Laboratório de 
Inferência Causal em Epidemiologia, São Paulo, SP, Brazil. 
11Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, 
University of São Paulo, São Paulo, Brazil  25 
12 Scientific Platform Pasteur USP, São Paulo, Brazil. 
13School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil. 
14Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, 
New Haven, United States of America. 
15Oswaldo Cruz Foundation, Mato Grosso do Sul, Campo Grande, MS, Brazil. 30 

*Correspondence to: julio.croda@fiocruz.br 
† These authors contributed equally to this work 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20082172doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.30.20082172
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 
 

Abstract: Social distancing measures have emerged as the predominant intervention for 
containing the spread of COVID-19, but evaluating adherence and effectiveness remains a 
challenge. We assessed the relationship between aggregated mobility data collected from mobile 
phone users and the time-dependent reproduction number R(t), using severe acute respiratory 
illness (SARI) cases reported by São Paulo and Rio de Janeiro. We found that the proportion of 5 
individuals staying home all day (isolation index) had a strong inverse correlation with R(t) 
(rho<-0.7) and was predictive of COVID-19 transmissibility (p<0.0001). Furthermore, indexs of 
46.7% had the highest accuracy (93.9%) to predict R(t) below one. This metric can be monitored 
in real time to assess adherence to social distancing measures and predict their effectiveness for 
controlling SARS-CoV-2 transmission. 10 
 
One Sentence Summary: Mobility data to monitoring social distancing in the COVID-19 
outbreak  
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Main Text 
 
The coronavirus diseases 2019 (COVID-19) pandemic has caused more than 2,900,000 cases and 
200,000 deaths worldwide as of April 26, 2020(1). In the absence of vaccines and effective 
pharmacological interventions, social distancing measures are critical to mitigate the impact on 5 
healthcare systems and allow time for a public health response around the globe(2, 3).  
 
There is growing evidence that a significant reduction in new locally-transmitted cases have been 
achieved in Asia and Europe following restrictions on urban mobility and travel(2–6). To reduce 
the peak of transmission, starting in March of 2020, the Brazilian states of São Paulo and Rio de 10 
Janeiro in Brazil, with a population of 63 million people, implemented non-pharmacological 
interventions and recommended social distancing measures. This implied reductions in public 
gatherings; the closure of schools, universities, and businesses such as restaurants, bars and 
gyms; and the institution of remote or virtual work for older adults and individuals with 
underlying medical conditions. In light of these public health interventions only essential 15 
services (i.e., grocery stores, emergency health service) remained open. To prevent the expansion 
of COVID-19 epidemic, the non-pharmacological measures have to bring the time-dependent 
reproduction number (R(t)) to less than 1. This  requires a 50-60% reduction of a baseline R(t) 
between 2 and 2.5(2).  
 20 
Using data from hospitalization due to severe acute respiratory illness (SARI) as a proxy for 
severe cases of COVID-19, we recently reported an important decline in the R(t) in the 
metropolitan area of São Paulo after the implementation of social distancing measures(7). 
Although R(t) is a useful tool to monitor the epidemic, it is subject to significant delays in 
notification. In Brazil, a time lag of 8 days exists between the date of onset of symptoms and the 25 
date of notification of a SARI case(8). Given this time, relying solely on the measurement of R(t) 
bears a likely risk of introducing significant delays in detecting changes in the epidemic 
dynamics. In an epidemic with cases doubling in 5.2 days(9), a delay of 1-2 weeks in the 
implementation of effective social distancing would overwhelm the capacity of the healthcare 
system, resulting in a growing number of excess deaths(10–13). Thus, a timelier metric for 30 
COVID-19 transmission potential is required to evaluate social distancing interventions. 
 
The wide-ranging usage of mobile phone provides an unique opportunity to monitor and control 
the spread of infectious diseases(14–17). Mobile phones with geolocation enablement can track 
movement in a timely and precise manner.  To our knowledge, no study thus far has assessed the 35 
use of mobile phones for this purpose in Brazil. Monitoring human activity through mobile 
aggregated data can permit measurement of the effectiveness of social distancing measures in 
reducing transmissibility of the SARS-CoV2 virus(18). Nonetheless, the association between 
urban mobility and COVID-19 transmissibility has not yet been established. In this study, we 
assessed the relationship between social isolation measures, by using human urban movement 40 
data and the transmissibility of COVID-19. 
 
From February 1st to April 10th, 2020 a total of 21,426 hospitalizations in 853 hospitals (58%) 
due to SARI were reported in the São Paulo (SP) state. A clinical diagnosis of COVID-19 was 
confirmed by molecular testing for 4,111 (19% of total SARI cases), 16,892 (79%) remained as 45 
suspected COVID-19 cases and 423 (2%) were confirmed for other respiratory virus diseases in 
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SP state. During the same period the RJ state had reported 2,540 hospitalizations in 320 hospitals 
(62%) due to SARI, 402 (16%) were confirmed by molecular testing for COVID-19, 2,090 
(82%) remained as suspected and 48 (2%) have been confirmed for other respiratory viruses 
(Fig. 1A and 1D). Most SARI cases in SP and RJ have not been tested due to the shortage of 
SARS-CoV2 real-time polymerase cycle reaction (RT-PCR) diagnostic screening. In 2019, 5 
during the same period, 1,550 and 220 SARI cases were reported in SP and RJ, respectively. 
This corresponds to 1,282% and 1,054% increase in SARI cases in SP and RJ respectively 
between the same periods in 2019 and 2020.  
 
Implemented social distancing Measures 10 
 

Starting on March 13, 2020, two days after the World Health Organization declared COVID-19 
as a pandemic, the states of São Paulo and Rio de Janeiro implemented a series of non-
pharmacological interventions. These measures were implemented gradually in both states, some 
of these interventions are described on Figure 1. To investigate the impact of social distancing 15 
measures in SARS-CoV-2 transmission, we compared daily aggregated mobility data for São 
Paulo and Rio de Janeiro with R estimates obtained from SARI data. Here, we calculate an 
“isolation index” as a ratio between the number of people staying at home on a given day divided 
by the number of cell-phone users living in the state or city (see Material and Methods). First, 
we find that the mean isolation index from February 1st to April 10th was 40.2%, ranging from 20 
18.5% to 69.4%. In São Paulo state, mean isolation index ranged from 13.5% to 67.9% and in 
the Rio de Janeiro State from 16.6% to 69.4%, with no significant difference observed between 
the two states (p-value = 0.210). Second, after the start of interventions we observe a sharp and 
significant increase in the isolation index and a corresponding decrease in the R(t)  (Figs. 1B and 
1E). Overall, we find that temporal periods with R(t)  ≥1 had a mean isolation index below 25 
29.3% (SD = 8.2%) while those with R(t) <1 had a mean isolation index above 53.4% (SD = 
3.0%) (Figs. 1C and 1F). 
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Fig. 1. Impact of interventions in the reduction of severe acute respiratory transmission 
São Paulo and Rio de Janeiro states, Brazil. A and D: epidemic curve of SARI cases by date 
of onset of symptoms for São Paulo and Rio de Janeiro, respectively; B and E: Daily Time 
dependent reproductive number (R(t)) (grey) and isolation index (orange) (curves smoothed by 5 
Kalman Filtering method), SP and RJ respectively; C and F: boxplot showing the median, 
interquartile range and range of the association between of R(t) and isolation index categories. 
SP1: March 13, 2020, SP recommended reduction in public gatherings events and closure of 
schools; SP2: March 20, 2020, SP declares Public Calamity and prohibits religious ceremonies; 
SP3: March 22, SP establishes quarantine in the entire state, closure of night clubs, shopping 10 
centers, gyms, bars, restaurants and bakeries; RJ1: March 13, 2020, RJ recommended remote 
work, suspended public gathering events, closed schools, and entertainment establishments, 
prohibited the access of  visitors to prisons and to COVID-19 hospitalized patients; RJ2: March 
16, 2020, RJ prohibited the access to tourist places, including beaches and public pools, 
restricted public transport such as bus lines, airlines and cruise ships coming from states or 15 
countries with COVID-19 circulation, closed bars and restaurants, closed gyms, shopping centers 
and similar establishments and set restrictions on public transportation; RJ3:  March 20, 2020, RJ 
declared Public Calamity due to the COVID-19 pandemic 
 

Mobility data predicted the time-dependent reproduction number R(t) 20 

We next conducted cross-correlation analyses with different lag days and the Granger test to 
investigate if the isolation index measure obtained from mobility data is able to predict R(t). 
After the intervention began, it was also observed a gradual decrease in R(t) (Fig. 1B and 1E). 
Furthermore, using SARI cases, cross-correlation analyses showed that isolation was highly 
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correlated with R(t) (rho<-0.7) in a lag period of up to five days in SP and RJ. Considering only 
COVID-19 confirmed cases, the R(t) and isolation index were moderately correlated (rho >-0.7) 
using a lag period from -2 to 0 (Fig. 2A and B). 

 

 5 
Fig. 2. Cross-correlation (rho) between isolation index and reproductive number (R(t) estimated 
using SARI (purple circles)  and confirmed COVID-19 (red circles) cases in São Paulo (A) and 
Rio de Janeiro (B). 
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The isolation score exhibited an area under the ROC curve 93.8% (95% CI: 88% - 99.5%) to 
predict R values under 1.0 (Fig. 3A). We obtained the best accuracy with score values close to 
50%. Particularly, we observed the highest accuracy (93.9%) with the cut-off of 46.7%, and cut-
offs higher than 50% exhibited specificity greater than 93% (Fig. 3B). Furthermore, 88.9% of the 
areas with at least 50% isolation score had an R <1. In contrast, 90.3% of the observations with 5 
an isolation score <50% had an R ≥1. The isolation scores, for both states combined, when 
greater than 50%, were associated with a mean R of 0.9 (ranging from 0.6 to 1.1) (Fig. 1C and 
1F). Scores between 25-50% had a mean R of 1.4 R (ranging from 0.7 to 2.6). On the other hand, 
isolation scores lower than 25% exhibited a mean R of 1.9 (ranging from 1.2 to 2.6). 

 10 

 
Fig. 3. A. Receiver operating characteristic curve of isolation index for prediction of R(t)<1. B. 
Sensitivity, Specificity and Accuracy of isolation index cut-offs to predict R(t)<1. 
 
To investigate the effectiveness of interventions in areas with different human development 15 
indexes (HDI), we analyzed the isolation score time series for the 10 largest cities in the states of 
São Paulo and Rio de Janeiro stratified by HDI(19). We found no significant difference between 
the groups (Fig. 4). To validate the findings, we aggregated 20 cities in two groups stratified by 
HDI (lower and higher values). We observed the same trend and strong correlation, regardless of 
the group (higher and lower HDI) (Fig. S1A). Interestingly, we found an identical cut-off point 20 
of isolation index (50%) which was correlated with R(t) values below 1 (Fig. S1B).  
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Fig. 4. Isolation index time series for the 10 largest cities in the states of São Paulo (SP) and Rio 
de Janeiro (RJ). SP1, SP2, SP3, RJ1, RJ2 and RJ3 correspond to intervention dates (See Fig. 1 
legend) 5 

Simulation of different interventions scenarios with isolation indexs above 50% 

Assuming the R(t) values associated with isolation indexs above 50% we next simulated 
different lengths of social distancing interventions, 30, 60 and 90 days (see Materials and 
Methods). An intervention of only 30 days was able to reverted the intensive care units (ICU) 
demand curve only in those scenarios with the lowest values of R(t), and was also associated 10 
with a quick rebound of the ICU demand curve far above the existing capacity (Figure 5). 
Prolonging the intervention to 60 days managed to revert the curve in most scenarios and 
delayed the second epidemic wave. An intervention of 90 days substantially delayed the second 
epidemic wave in all scenarios, although it had minimal impact on the height of both curves. 
According to our simulation, Rio de Janeiro state is able to stay below the ICU bed capacity 15 
threshold in the first epidemic wave in all scenarios. Conversely,  São Paulo state needs to 
steadily increase its capacity in order to manage the first epidemic curve. Lower values of R(t) 
were associated with smaller epidemic waves during the intervention but higher second epidemic 
waves (Figure 5). 
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Fig. 5.  Simulations of intensive care unit (ICU) demand according to different lengths of 
social distancing interventions for the states of São Paulo (top row) and Rio de Janeiro 
(bottom row). A, B and C: simulations for the São Paulo state assuming R values associated 
with isolation scores above 50% during  30, 60 and 90 days of intervention respectively; D, E 5 
and F: simulations for the Rio de Janeiro state assuming R(t)  values associated with isolation 
scores above 50% during t 30, 60 and 90 days of intervention respectively. For each scenario we 
plotted the mean, minimum and maximum R(t) values in the >50% isolation score category. The 
red horizontal line corresponds to ICU capacity for each state. 

Discussion 10 

Individual-based control efforts of COVID-19 can be challenging to implement due to the high 
infectiousness, relatively mild and moderate symptoms and pre symptomatic transmission23–25. 
Consequently, social distancing measures are required to control COVID-19 in most scenarios. 
Here, we demonstrated that the initial social distancing measures adopted by the states of São 
Paulo and Rio de Janeiro successfully reduced R(t) < 1 by decreasing mobility across 15 
populations with lower and higher development index. We further demonstrated a strong 
correlation between the social isolation index and R(t), and showed that isolation indexs above 
50% lead to R(t)<1 in most cases (89%). Our findings suggest that the isolation index can be 
used to monitor the effectiveness of social distancing measures and guide further interventions. 
By using aggregated mobility data, public health officials and policymakers can monitor in real 20 
time regional differences in social distancing intervention effectiveness and propose specific 
actions to reduce the transmission in specific locations(20). 
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Individual-based control efforts for COVID-19 can be challenging to implement due to the high 
infectiousness, relatively mild and moderate symptoms and pre-symptomatic transmission (21–
23). Consequently, social distancing measures are required to control COVID-19 in most 
scenarios.  5 
 
The structural impacts of social distancing should also be considered while managing its impact 
on disease transmission and, consequently, the healthcare systems’ capacity. A previous analysis 
demonstrated that social distancing adopted during the Spanish flu pandemic was associated with 
better economic outcomes(24).  However, society dynamics have changed dramatically during 10 
the past 102 years, and a continued monitorization of the COVID-19 socioeconomic impact is 
urgently needed. Suboptimal interventions for COVID-19 could be potentially catastrophic to 
public health and lead to a significant number of deaths. Thus, finding the optimal “therapeutic 
dosage” of such interventions is crucial, and requires a reliable and timely tool to monitor its 
effects. 15 
 
R(t) depends on the contact-rate among individuals; but the frequency of these contacts is 
difficult to quantify in real time through conventional approaches(25). We observed an inverse 
relationship between R(t) and the isolation index for São Paulo and Rio de Janeiro States, the 
two mostly affected by the epidemic. We find that increases in the isolation index from lower 20 
than 25% to greater than 50% have lead to a reduction of R(t) from approximately 2 to values 
less than 1, such as we observed. Highly-effective social distancing could reduce COVID-19 
transmission enough to make a strategy based on contact tracing feasible, as is taking place in 
South Korea and Singapore(26, 27).  
 25 
By using the R(t) values associated with isolation indexs above 50%, we simulated social 
distancing interventions with varying time extensions. In most scenarios, interventions lasting 
between 30 to 60 days would blunt the first epidemic wave, although a shorter intervention led to 
a quick rebound and was not sufficient in scenarios with higher values of R(t) during the 
intervention. Lower values of R(t) resulted in a more effective control during the first wave, but 30 
with a caveat that the second epidemic wave was became significantly larger (albeit smaller than 
the initial peak that would have been otherwise seen in the absence of interventions). 
Furthermore, the delay in this peak allows the preparation of healthcare systems to mitigate 
health impacts by securing equipment and supplies, bolstering ICU capacity, planning for 
personnel needs and implementing infection control policies.  35 
 
Higher values of R(t) during the intervention led to more evenly distributed epidemic waves, 
which would make it possible to implement less stringent interventions during following waves. 
Although it is tempting to propose that social distancing interventions that would lead to an R(t) 
value of 1.1, such a strategy could have potentially catastrophic consequences. The reason for 40 
this is that values of social indexs below 50% are associated with a mean R(t) value of 1.4 
(ranging from 0.7 to 2.6), which was not significantly different from no intervention. Aiming at 
achieving a R(t) value of 1.1 by lowering the social isolation index could therefore lead to a 
scenario similar to the natural history of COVID-19. It is thus more effective and probably safer 
to set a goal of R(t) below 1 and implement social distancing interventions that lead to social 45 
isolation indexs above 50%. This will require close monitoring after the intervention is relaxed, 
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since it is very likely that a second intervention will be needed to flatten a second epidemic 
wave. 
 
The findings of our simulations need to be interpreted cautiously. We did not aim to precisely 
replicate the epidemic in both states but merely to simulate hypothetical scenarios, exploring 5 
different strategies. Also, our simulations are heavily influenced by the assumptions and 
parameters that were built into the model. A key assumption in our model is that infection leads 
to persistent immunity after recovery. Data on SARS-CoV-2 immunity is scarce, preliminary 
data on rhesus macaques have demonstrated immunity after an initial infection(28, 29) and 
plasma from recovered individuals was tested to neutralize the virus in vitro and in vivo(30–33). 10 
On the other hand antigenic drifts(34) as well as waning immunity might lead to the loss of herd 
immunity. If immunity is not long lasting, as has been estimated for other coronaviruses such as 
HCoV-OC43 and HCoV-HKU1, COVID-19 will likely enter a regular transmission cycle and 
become endemic(35). 
 15 
Another aspect that needs to be taken in consideration is that we simulated epidemics in entire 
states, assuming homogeneous transmission within the state. However, it is possible that 
different cities will have non synchronized COVID-19 epidemics, hence interventions will need 
to be tailored for each city or metropolitan area individually. Moreover, our assumption that only 
50% of the established ICU capacity could be used for COVID-19 might be an underestimation 20 
of the total capacity, given that during the epidemic efforts have been made to increase hospital 
capacity in both states, which could lead to the need of less stringent interventions. 
 
Another potential source of bias is that we assumed that the reporting rates were stable during the 
epidemic. If reporting rates of SARI cases increased during the initial stages of the epidemic our 25 
initial R(t) estimates would have been overestimated. Further, if the reporting rates are 
decreasing, it could mean that the decrease in R(t) that was observed would be partially a result 
of a reporting bias. Although Brazil has had changes in the reporting systems for COVID-19 
during the epidemic, the dataset which was used is based solely on hospitalized SARI cases 
which required hospitalizations. However, we used SIVEP-GRIPE data, a stable and a well-30 
established system and recommendations for its use have not changed during the epidemic, we 
believe that this is the most reliable and consistent source of data for severe cases of COVID-19 
in Brazil. We also accounted for potential bias related to reporting delays, which affect the end of 
a time series, by applying a correction factor which corresponds to the inverse of the probability 
of being reported up to the last date of data being collected. 35 
 

Another limitation of our approach is that mobility data from mobile phones are a coarse 
measure of physical distancing, which does not directly capture changes in the number, duration 
or character of human interactions. Additionally, this approach does not account for other 
behavioral changes in the population (such as hand washing, respiratory etiquette and universal 40 
mask usage) that could also alter transmission patterns and lead to changes in R(t).  
 

Our findings underscore the importance of early implementation of social distancing measures to 
reduce SARS-CoV-2 transmission. The strong association observed here indicates that urban 
mobile phone-derived isolation scores are able to track temporal fluctuations in R during social 45 
distancing interventions in Brazil. If additional behavioral changes are undertaken and sustained, 
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the isolation score could provide a real-time metric to assess effectiveness of interventions. A 
major contribution of our approach is that the social isolation index data is readily available on a 
daily basis, in contrast with the R(t) measurement, which is subject to delays (up to two weeks). 
Using this index will allow for a more timely assessment of the epidemic dynamics and for 
planning of public health mitigation strategies. 5 
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 5 
Material and Methods 
 

Mobility data 

We used geolocation data collected between February 6, 2020 to April 10, 2020. Urban mobility 
patterns were extracted from unidentifiable personal information. We settled the likely home-10 
residence location based on the place most often visited during non-working hours. Device 
location data was compiled and aggregated at both city and states level by the technology 
company In Loco (São Paulo, Brazil). As of February of 2020, Brazil totaled more than 227 
million mobile phones devices in use with the states of São Paulo (66,939,000) and Rio de 
Janeiro (18,633,000) ranking first and third with the most devices in the country. In the same 15 
month, the technology company In Loco (São Paulo, Brazil) accessed geocoded information 
from 17,482,780 million users in the state of São Paulo (26%) and 5,390,130 (29%) in the state 
of Rio de Janeiro, and it reported more than 700 million monthly geolocations tracked to 
physical locations in these two states. 

 20 

An isolation index was calculated as a ratio between the number of people staying at home on a 
given day divided by the number of mobile phone users living at the same state or city, expressed 
as a percentage. Only those mobile phones with geolocation app tracking active were considered 
for the index calculation.  

 25 

Severe Acute Respiratory Illness and time-dependent reproduction number  

Brazil has a well-established surveillance system for severe acute respiratory illness (SARI), and 
notification of SARI cases has become mandatory since 2009. Since then hospitalized SARI 
cases as well as cases of influenza like illness (ILI) reported by the sentinel surveillance sites are 
registered in an electronic database, SIVEP-GRIPE. Although Brazil initially established a 30 
reporting system for mild COVID-19 cases based on the REDCap platform, this  was shifted on 
March 25, 2020 to a new reporting  system, e-SUS VE. At the same time, input of SARI cases 
into SIVEP-GRIPE database has remained consistent. We used all hospitalized SARI cases 
which were reported by the states of São Paulo (SP) and Rio de Janeiro (RJ) from the same 
period of geolocation data collected. We included SARI cases which were confirmed for 35 
COVID-19 (positive RT-PCR for SARS-CoV-2 in any respiratory sample), as well as those 
suspected without any etiological diagnosis. We excluded cases with a positive PCR for other 
respiratory viruses and that also had not been tested for COVID-19 or that tested negative. Due 
to the lack of massive testing, the inclusion of SARI cases without an etiological diagnosis was 
carried out assuming that most SARI cases were expected to be related to COVID-19 during the 40 
epidemic. The exclusion of these cases would have led to biased results due to delays in 
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ascertainment of COVID-19 cases. The epidemic curve was constructed using the date of onset 
of symptoms.  

 

To correct for reporting delays, we applied a daily correction factor based on the observed delays 
between the date of onset of symptoms and the date of data reporting. This weight corresponded 5 
to the inverse of the probability of being reported   up  to the last date of data being 
collected(18). Moreover, we restricted the analysis to patients who developed symptoms until 4 
days before the last data entry. The R(t) was calculated considering the epidemic curve and serial 
interval observed in the  COVID-19 cases in Brazil, using the R0 package available in R(19). To 
test the temporal relationship between the isolation index and R(t) time series, we used cross 10 
correlation analysis with various lag days and the Granger test (isolation index predicting R(t)).  

 

We summarized the ability of the isolation index to predict a R(t) lower than 1, by calculating the 
area under the ROC curve (AUC). Moreover, we looked for the cut-off point with the highest 
accuracy (proportion of observations with R(t)<1 and R(t)≥1, respectively above and below the 15 
index cut-off point) and supported a recommendation by rounding up that isolation index point. 

 

We additionally compared the R(t) for the isolation index categories (under 25%, 25 - 50% and 
greater than 50%, based on ROC curve) using Kruskal Wallis test and post-hoc analysis was 
conducted through the Dunn test for multiple comparison. We also stratified  the analysis by 20 
Human Development Index (HDI)  in order to assess for an interaction with socioeconomic 
status.  For this analysis, we used data from the 10 largest cities in the states of São Paulo (SP) 
and Rio de Janeiro (RJ) and evaluated changes in the trends of their indexs, split into two groups: 
high HDI (range from 0.786 to 0.837) and low HDI (range from 0.684 to 0.776) and compared 
the isolation indexs from February 22, 2020 to April 10, 2020 between the groups(20). 25 

 

Application in intervention-effect modeling 

To simulate different interventions scenarios we used an age stratified SEIR model which 
includes compartments for individuals requiring hospitalization and intensive care (6). We 
considered three different time frames of social distancing interventions (30, 60 and 90 days) and 30 
simulated the prevalence rate, ICU demand and number of deaths for COVID-19. During the 
intervention we used the mean, maximum and minimum reproductive numbers (R) associated 
with isolation indexs greater than 50% which were observed in our dataset. We used a Basic 
Reproductive Number (R0) equal to 2.27 at the beginning of the epidemic, which was the peak 
value for the observed R(t) series. After intervention we used an R value of 1.8, assuming that 35 
after ceasing the interventions residual changes in the population’s behavior (such as mask usage 
for example) would lead to approximately a 20% reduction in transmissibility. The remaining 
model parameters are described in Table 1. 

In all simulations, the model was seeded with a prevalence of 10-7 per population, which 
corresponds to 4.4 cases in SP and 1.65 cases in RJ, and evolved with R0 = 2.27 until reaching 40 
the cumulative mortality rate which was observed at the beginning of the intervention in each 
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state. After reaching the established threshold, the intervention starts in our model, at that point 
the reproductive number gradually changes during 8 days until reaching the pre specified R value 
associated with the intervention. This 8 days transition period was chosen based on the observed 
delay between the first intervention and reaching isolation indexs above 50% in both states. With 
this assumption, we wanted to compare how both states would evolve and how changes in 5 
demography,  capacity of the healthcare systems and the timing of the intervention would 
influence the ability to cope with the epidemic under otherwise similar conditions. Hospital and 
ICU capacities were collected from the National Registry of Health Establishment (CNES). In 
SP and RJ, 1481 and 523 hospitals were active in the month of February of 2020, respectively. 
The model assumes that 50% of the total number of ICU beds available in the public healthcare 10 
system could be allocated to COVID-19.  
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Table S1. Parameters used in the age stratified SEIR model to forecast the ICU beds demand, 
prevalence and deaths. 
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Parameter Value Source 

R0 2.270 Ganem et al(6) 

R(t) during intervention  - min 0.628  

R(t) during intervention  -  mean 0.852  

R(t) during intervention  - max 1.106  

R(t) after intervention  1.800  

Incubation period 3.69 days Li et al(36) 

Infectious period 3.47 days Li et al(36) 

Proportion of infected individuals 
hospitalized / Infection fatality ratio (IFR) 
by age group 

 Verity et al(37) 

0 - 9 years 0.00% / 0.00161%  

10 - 19 years 0.0408% / 0.00695%  

20 - 29 years 1.04% / 0.0309%  

30 - 39 years 3.43% / 0.0844%  

40 - 49 years 4.25% / 0.161%  

50 - 59 years 8.16% / 0.595%  

60 - 69 years 11.8% / 1.93%  

70 - 79 years 16.6% / 4.28%  
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>80 years 18.4% / 7.80%  

Case fatality in individuals requiring 
intensive care (CFICU) 

49%  
Novel Coronavirus 
Pneumonia Emergency 
Response 
Epidemiology 
Team(38) 

Proportion of infected individuals 
requiring intensive care 

IFR divided by CFICU  

Length of hospital admission 10  
Wang et al(39) 

Length of intensive care unit stay 7.5 Assumed 
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Fig. S1. 
A and C: Time dependent reproductive number (R(t)) and isolation index per day from the cities 
with lower and higher HDI of Rio and São Paulo, respectively; B and D: boxplot showing the 
median, interquartile range and range of R(t) stratified  by isolation index (<25%, 25-50%, 50%) 
from cities with lower and higher HDI of Rio and São Paulo, respectively. 5 
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