The Utility of rRT-PCR in Diagnosis and Assessment of Case-fatality rates of COVID-19 In the Iranian Population – Positive Test Results are a Marker for Illness Severity

Authors:

Ghasem Janbabaei MD^{1,2}, Eric J. Brandt, MD^{3,4}, Reza Golpira, MD MPH⁵, Alireza Raeisi MD^{6,7}, Jafar Sadegh Tabrizi MD, Ph.D^{8,9}, Hamid Reza Safikhani MD¹⁰, Mohammad Taghi Talebian, MD¹¹, Siamak Mirab Samiee PhD¹², Alireza Biglar PhD¹³, Reza Malekzadeh MD*^{14,15}, Arya Mani MD*, ^{4,16,17}

Affiliations:

¹Curative Affairs Deputy, Ministry of Health and Medical Education, Tehran, Iran.

²Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran.

³National Clinician Scholars Program, Yale University School of Medicine, New Haven, CT

⁴Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT

⁵Rajaie Cardiovascular Medical and Research center, Iran University of Medical Sciences, Tehran, Iran.

⁶School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

⁷Health Deputy, Ministry of Health and Medical Education, Tehran, Iran.

⁸Health Services Management Research center, School of Health Management and Medical Informatics, Tabriz university of Medical sciences, Tabriz, Iran.

⁹Primary Health Care Network Management Center, Ministry of Health and Medical Education, Tehran, Iran ¹⁰Information Technology Office, Ministry of Health and Medical Education, Tehran, Iran

¹¹Department of Emergency Medicine, Tehran University of Medical Sciences, Tehran, Iran

¹²National Reference Laboratories. Ministry of Health, Tehran, Iran

¹³Pasteur Institute of Iran, Tehran, Iran

¹⁴Digestive Disease Research Center, Digestive Disease Institute, Shariati Hospital, Tehran University of Medical Sciences Tehran, Iran.

¹⁵Deputy for Research and Innovation, Ministry of Health and Medical Education, Tehran Iran

¹⁶Yale Cardiovascular Research Center, Department of Medicine, Yale University School of Medicine, Yale university, New Haven, CT, USA.

¹⁷Department of Genetics, Yale University School of Medicine, Yale University, New Haven, CT.

*Contributed equally, co-senior authorship

Corresponding author:

Arya Mani

Email: <u>Arya.Mani@yale.edu</u> Address: Department of Medicine & Genetics Yale University 300 George Street, New Haven, CT 06520 Tel: (203)737-2837 Fax: (203)785-7560

Funding:

This publication was made possible by CTSA Grant Number TL1 TR001864 from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Conflicts of interest/competing interests: n/a

Availability of data and material: aggregated data tables for analyses available upon request

Code availability: n/a

Abstract

The utility of PCR-based testing in characterizing patients with COVID-19 and the severity of their disease remains unknown. We performed an observational study among patients presenting to hospitals in Iran who were tested for 2019-nCoV viral RNA by rRT-PCR between the fourth week of February 2020 to the fourth week of March 2020. Frequency of symptoms, comorbidities, intubation, and mortality rates were compared between COVID-19 positive vs. negative patients. 96103 patients were tested from 879 hospitals. 18754 (19.5%) tested positive for COVID-19. Positive testing was more frequent in those 50 years or older. The prevalence of cough (54.5% vs. 49.7%), fever (49.5% vs. 44.7%), and respiratory distress (43.0% vs. 39.0%) but not hypoxia (46.9% vs. 56.7%) was higher in COVID-19 positive vs. negative patients (p<0.001 for all). More patients had cardiovascular diseases (10.6% vs. 9.5%, p<0.001) and type 2 diabetes mellitus (10.8% vs. 8.7%, p<0.001) among COVID-19 positive vs. negative patients. There were fewer patients with cancer (1.1%, vs. 1.4%, p<0.001), asthma (1.9% vs. 2.5%, p<0.001), or pregnant (0.4% vs. 0.6%, =0.001) in COVID-19 positive vs. negative groups. COVID-19 positive vs. negative patients required more intubation (7.7% vs. 5.2%, p<0.001) and had higher mortality (14.6% vs. 6.3%, p<0.001). Odds ratios for death of positive vs negative patients range from 2.01 to 3.10 across all age groups. In conclusion, COVID-19 testpositive vs. test-negative patients had more severe symptoms and comorbidities, required higher intubation, and had higher mortality. rRT-PCR positive result provided diagnosis and a marker of disease severity in Iranians.

KEYWORDS

Iran, COVID-19, PCR, testing, pandemic

INTRODUCTION

Following the spread of the 2019 novel coronavirus (SARS-COV-2) in Asia, the first documented case of COVID-19 in Iran was made on February 12, 2020 in the City of Qom. The Deputy for Health and Curative Affairs at the Iranian Ministry of Health and Medical Education (MOHME) responded urgently by compiling World Health Organization (WHO) guidelines for COVID-19 prevention, diagnosis and treatment. The MOHME designed and launched its National Mobilization Plan Against COVID-19 in a collaborative effort between the Ministry's Deputy for Health and Curative Affairs, military organizations, non-governmental organizations (NGOs), and other volunteers.

Relying on a centralized health care system, the health-care authorities of Iran initiated a coordinated effort to implement preventive measures and to diagnose and treat patients with COVID-19. Close to 1,000 comprehensive health centers functioning 16 and 24 hours per day, seven days of the week were designated to provide specific COVID-19 services according to a standard protocol. Immediate in-person education was provided to first line responders throughout the country in preparation for the spread of the coronavirus. Instruction for screening, diagnosis and treatment of COVID-19 was provided through widely available electronic National Health care system. An interactive website linked to medical records was designed and made widely accessible to the public for self-screening of the general population. The website can be accessed using national identification number and birth date and provides medical advice according to individual's responses to specific disease-related questions.

In this process, it soon became apparent that without an efficient tool for the diagnosis there is a little to no chance to harness this fatal pandemic. Real-time reverse transcriptase–polymerase chain reaction (rRT-PCR) of nasopharyngeal swabs is widely used to confirm the clinical diagnosis, but significant false negative results have created concerns about its utility[1]. Additionally, it is unclear what presenting symptoms and comorbidities are more common amongst COVID-19 positive vs. negative patients.

Therefore, we completed a study to compare the frequency of presenting symptoms, comorbidities, mechanical ventilation, or death between COVID-19 positive and negative patients hospitalized with acute respiratory illness.

METHODS

Study population

We performed an observational study using data collected from patient registry records of individual hospitals in 879 designated hospitals from all 31 provinces of Iran between the fourth week of February to the fourth week of March.

Case identification

As of the fourth week of March 2020, millions of individuals were screened either by phone or by self-evaluation using interactive websites. Screening including questions about specific symptoms, including fever, chills, cough, sore throat, respiratory distress, and their potential contact with individuals with suspected COVID-19 infection. All individuals were provided with information for prevention, modes of disease transmission and means of personal protection. Individuals identified as possible COVID-19 cases were referred to specialized health-care centers for COVID-19 testing. Simultaneously, these centers received a text message to contact the suspected patients for the initiation of diagnosis, home therapy, and subsequent

follow-ups or referral to specialized centers. Those deemed as high risk for acquiring the disease, including those with T2D and hypertension, obesity, immunodeficiency, malignant disorders undergoing immune suppressive therapy, and pregnant women were prioritized. At the specialized health-care centers patients with severe respiratory distress and/or oxygen saturation below 93%, reduced levels of consciousness, or intractable cough were sent to COVID-19 referral hospitals for hospitalization. All hospitalized COVID-19 positive patients were put on a triple therapy treatment protocol that included Hydroxychloroquine (400 mg loading dose, followed by 200 mg twice a day), Lopinavir-Ritonavir (Kaletra), and Ribavirin for 2 weeks. Hemodynamically stable patients with mild symptoms were placed on Hydroxychloroquine and discharged to home quarantine. All data were entered into a computerized database at the National MOH COVID-19 Database.

Assay

Diagnosis of COVID-19 was made based on the presence of viral RNA by real-time reverse-transcriptase– polymerase-chain-reaction (rRT-PCR) assays in accordance with the protocol established by the WHO[2] at the Pasteur Institute of Iran and at the National Reference Laboratories.

Study design, definitions, and diagnosis

Data extracted includes clinical symptoms or signs, comorbidities, ventilator use, and mortality. Radiologic assessments included computed tomography (CT) of the chest, which were not available at the time of preparation of this manuscript.

Symptoms or signs included cough, fever, respiratory distress, hypoxia, myalgia, and reduced level of consciousness. Fever was defined as a forehead temperature \geq 37.6°C. Hypoxia was defined as oxygen saturation (PO²) <93%. Reduced level of consciousness was defined as reduced levels of responsiveness to verbal and noxious stimuli from obtundation to coma. Presence of other symptoms, including shivering, loss of smell (anosmia) and taste (ageusia), abdominal pain, nausea, and vomiting were documented by some centers but not systematically inquired.

Comorbidities include Type 2 diabetes mellitus(T2D), cardiovascular disease, acute kidney injury, asthma, currently pregnant, chronic renal failure, cancer, and history of HIV/AIDS. Type 2 diabetes mellitus (T2D) was defined as fasting blood glucose \geq 126 mg/dl or use of oral glycemic mediations or insulin. Cardiovascular disease was defined as history of known coronary artery disease by catheterization, history of congestive heart failure according to diagnosis codes, or ejection fraction less than 45%. Acute kidney injury was defined as a drop in glomerular filtration rate (GFR) of 25%. Chronic kidney disease was defined as GFR <60 mL/min/1.73 m². Cancer is defined as active malignancy. Data on the number HIV positive or cancer patients on active therapy is not available.

Intubation was defined as requiring use of a ventilator at any time during hospitalization. Mortality was defined by in-hospital death.

Study oversight

The study was initiated by The Deputy for Health and Curative affairs at the Iranian Ministry of Health and Medical Education (MOHME) and approved by the institutional review boards of the participating hospitals (<u>http://ethics.research.ac.ir/IndexEn.php</u>). Data collection and analysis was supervised by the Department for Research and Innovation Ministry of Health and Medical Education, Tehran, Iran. The authors have reviewed the data and the manuscript and attest to the accuracy of the data and the adherence to the protocols of the NEJM.org. *Statistical Analysis*

Comparisons between COVID-19 positive to negative patients were made using odds ratios. Cells containing <5 counts were excluded from odds ratio calculations. Comparisons between groups were made using χ^2 test or Fisher Exact test (when any cell contained ≤ 10 samples). A 2-tailed p-value <0.05 was considered statistically significant. We conducted data analysis March through April 2020. Data were analyzed using Excel v16.35 (Microsoft) and Stata 16 (StataCorp, LLC).

RESULTS

Population Characteristics

A total of 96103 individuals were hospitalized with acute respiratory illness. 18754 (19.5%) tested positive for SARS-CoV-2 by rRT-PC (Table 1; see Supplementary Table 1 for cases by province). The mean age of COVID-19 positive and COVID-19 negative patients were 55.2 and 50.9 years, respectively. There were more men than women among COVID-19 positive patients (61% vs. 39%).

Among children under 10 years and 10 to 20 years, 3.6% and 6.8% were COVID-19 positive, respectively (Table 1). The percent positive increased to 11.3% and 17.4% in subjects 20-30 and 30-40 years old, respectively. Above age 40, positive results were present in about 20% of cases (range: 20.8% to 22.3%).

A total of 52666 (54.8%) of the 96103 hospitalized patients were discharged home. 10277 (19.5%) of these 52666 patients were COVID-19 positive (Supplementary Table 1).

Symptoms and signs

COVID-19 positive patients showed higher incidence of cough, fever, respiratory distress, and myalgia (Table 2, Fig. 1). Whereas, there was a lower incidence of hypoxia and reduced level of consciousness. Directionality of symptoms was similar across all age groups, although differences between COVID-19 positive vs. negative patients were less apparent in the age groups <20 years old (Fig. 1). Additionally, as age increased the frequency of cough, fever, hypoxia decreased while respiratory distress tended to increase (Supplementary Table 2).

Comorbidities

T2D and cardiovascular diseases were the two major comorbidities more prevalent among COVID-19 positive compared to COVID-19 negative patients with acute respiratory disease (Table 2. Fig. 1, Supplementary Table 3). There were no significant differences in the rate of HIV/AIDS, chronic kidney disease, chronic anemia, acute kidney injury, hemodialysis treatment and congenital diseases between the two groups. Strikingly there were fewer patients with asthma, cancer, or pregnancy in COVID-19 positive compared to COVID-19 negative patients (Table 2. Fig. 1).

Intubation/ventilator use

A total of 1450 (7.7%) COVID-19 positive and 3999 (5.2%) COVID-19 negative individuals received ventilatory support (p<0.001) (Supplementary Table 4), which translates to an absolute difference of 26% (Table 2, Fig 2). There were higher number of COVID-19 positive vs. negative patients requiring ventilatory support in all age groups.

Mortality

Frequency of death was higher among COVID-19 positive (n=2740, 14.6%) vs. COVID-19 negative patients (n=4898, 6.3%) (Table 3). The odds ratios for death for COVID-19 positive vs. negative patients was higher across all age groups (Table 3 and Fig. 2).

DISCUSSION

An urgent collaborative response from multiple Iranian agencies resulted in a rapid symptom screening of a large portion of the country's population. Among these about 100,000 cases of concern were identified, about 1-in-5 of whom were tested positive for COVID-19 with rRT-PCR. Notably, cases that were COVID-19 positive were more likely to have cough, fever, respiratory distress, and myalgia, but lower level of hypoxia. Positive cases were also more likely to have cardiovascular disease or T2D but less likely to have asthma, cancer, or be pregnant. COVID-19 testing was associated with increased odds for intubation of 1.5 and death of 2.5 times compared to those with negative testing.

The pandemic of COVID-19 has caused devastation in many countries and continues to spread throughout the world. The early diagnosis of the disease in the population is the most efficient way to prevent further spread of this disease and is a necessary step toward its eradication. To this date several types of testing have been generated but none have been perfect. Real-time reverse transcriptase–polymerase chain reaction (rRT-PCR) of nasopharyngeal swabs, targeting the open reading frame *lab* gene of SARS-CoV-2 have been widely used to confirm the clinical diagnosis[3]. Unfortunately, PCR amplification of virus RNA from nasal swabs have shown low sensitivities in detecting viral infection[1]. While Bronchoalveolar lavage fluid specimens have shown greater than 90% Sensitivity in detecting viral RNA by rRT-PCR rates (14 of 15; 93%), the method is not practical in normal settings and is associated with high risk of disease transmission to the health care providers. At this point rRT-PCR of the virus RNA from nasal swabs remain the most practical way for diagnosis of the disease. Therefore, we examined its utility in disease diagnosis and as a marker of disease severity in more than 90,000 suspicious cases in Iran. By comparing signs and symptoms and complications of COVID-19 test positive patients with those negative for the test we demonstrate here the utility of this test as a marker of disease severity.

Those positive for COVID-19 in our study had differential symptoms compared to COVID-19 negative cases. One would expect that COVID-19 patient would be more likely to present with all viral type symptoms. This was mostly true in our study. However, in opposition to previous reports[4], oxygen desaturation was not more common among COVID-19 positive vs. negative patients. Instead, other clinical findings of fever, cough, and respiratory distress were associated with positive testing. This suggests that hypoxia should not be the only symptom that increases clinician suspicion for COVID-19

Those positive for COVID-19 in our study were more likely to have cardiovascular disease, diabetes, and had higher rates of intubation and death compared to COVID-19 test-negative patients. This may reflect greater virus replication and higher viral load in severe cases as previously shown[5], which expectedly results in easier detection of viral genome and increased disease severity. Interesting, the rates of intubation and death were higher in COVID-19 test-positive vs. test-negative patients in all age groups, including children and adolescents. Earlier studies from China had shown higher rate of disease and its complications among patients older than 65[6]. Our data indicates that COVID-19 has disproportionately affected young individuals in Iran

compared to other countries. This may reflect the unique population structure of Iran, which is significantly younger compared to most other countries (World Population Prospects 2019,

<u>https://population.un.org/wpp/</u>). In addition, limited access to study drugs and modern therapies due to the economic sanction may have partially accounted for the increased death rate in the younger generations [7]. High prevalence of T2D and metabolic syndrome in Iranians youth may have also increased susceptibility to disease and its complications.[8] Accordingly, there were more patients with T2D in COVID-19 test-positive vs. negative groups. An association between T2D and poor outcome in patients with COVID-19 has been previously reported [9, 10].

Our data also identifies cardiovascular disease as a comorbidity that increases the susceptibility to COVID-19. One intriguing finding of our study is the reduced number of patients that are COVID-19 test positive among those with HIV/AIDS, asthma, cancer, and pregnant women. Based on data from the trials of antiretroviral therapy in Adults Hospitalized patients with severe COVID-19[4] it is unlikely that HIV patients benefited from antiretroviral drugs. It has been hypothesized that a subgroup of patients with severe COVID-19 might suffer from cytokine storm [11]. It is, therefore, more likely that impaired immune system in HIV patients reduces the frequency of cytokine storm. Alternatively, the lower disease rates among higher risk groups is due to a lower threshold for testing in these populations or an increased adherence to social distance among those with known immunocompromising diseases. Information on what percentage of the patients with cancer were being treated with immune suppressive therapy is therefore critical but lacking at this point. In addition, data on lymphocyte count, plasma CRP, IL-6 and TNF was not available when our data were compiled and is being actively collected. Undoubtedly, establishing as to whether cytokine storm underlies disease pathogenesis in severe COVID-19 can have important therapeutic implications.

As with many other countries in the world, lack of experience has undoubtedly led to shortcomings and errors in facing this pandemic. However, considering the structure of the society that promotes high social contacts and many public events that have occurred since the begin of the COVID-19 pandemic mortality in Iran has been significantly lower than anticipated. One possible factor that has limited the number of deaths is the existence of a centralized health care system that has allowed health care authorities to allocate more hospitals and beds and issue uniform guidelines for therapy and use of resources for COVID-19 patients. Accordingly, in contrast to many other countries no shortage of ventilators in Iran has been encountered.

Our study has limitations that confines interpretation. Our data does not include the chest CT-scan results of patients with acute respiratory illness. Access to this data given the probability of false negative PCR results is particularly important. Additionally, the data analyzed in our study were aggregated and hence adjustment for multiple covariates due to lack of access to patient level data could not be carried out. Nevertheless, the higher rate of mortality in patients tested positive vs. those tested negatives suggests that the PCR-based testing has been a relatively suitable method for the screening of high-risk patients.

CONCLUSION

Our experience suggests that use of rRT-PCR diagnostic method allows better identification of high-risk patients and early utilization of advanced therapeutic measures. Lessons from Iranian experience of COVID-19

should hopefully assist other countries in reducing the fatalities and the economic burden of this pandemic and facilitate preparedness for future pandemics.

ACKNOWLEDGEMENTS

We would like to acknowledge all clinicians, nurses, and healthcare workers in 879 hospitals in Iran for their unlimited devotion to the care of Iranian COVID-19 patients while sacrificing their health and lives. We like to thank Dr. Saeed Namaki, the Minister of health for his leadership and dedication to the care of COVID-19 patients and Drs. Tayeb Ghadimi, and. Abdolkhalegh Keshavarzi, Mr. Reza Mahmoudi Lamouki, and Bagherzadeh for their help with the data preparation, management and analysis.

REFERENCES

- Wang, W., et al., Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA, 2020.
- 2. Organization., W.H., Coronavirus

disease (COVID-19) technical guidance:

laboratory testing for 2019-nCoV in

humans. <u>https://www</u> .who .int/ emergencies/diseases/ novel -coronavirus-2019/technical-guidance/ laboratory -guidance).

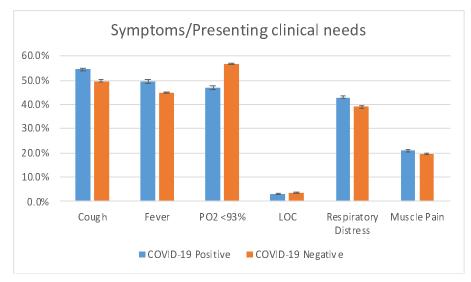
- 3. Wang, D., et al., *Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China.* JAMA, 2020.
- Cao, B., et al., A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med, 2020.
- 5. Liu, Y., et al., Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis, 2020.
- Li, Q., et al., Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med, 2020. 382(13): p. 1199-1207.
- Aloosh, M., A. Salavati, and A. Aloosh, *Economic sanctions threaten population health: the case of Iran*. Public Health, 2019. 169: p. 10-13.
- Khashayar, P., et al., Metabolic Syndrome and Cardiovascular Risk Factors in a National Sample of Adolescent Population in the Middle East and North Africa: The CASPIAN III Study. Int J Endocrinol, 2013. 2013: p. 702095.

- Yang, X., et al., Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med, 2020.
- Guan, W.J., et al., *Clinical Characteristics of Coronavirus Disease 2019 in China*. N Engl J Med, 2020.
- Mehta, P., et al., *COVID-19: consider cytokine storm syndromes and immunosuppression*. Lancet, 2020. **395**(10229): p. 1033-1034.

Table1: Total number and percent of COVID-19 positive patients in different age groups

Age Groups	n	COVID-19 Positive	%
0 to 10 years	2224	81	3.6%
10 to 20 years	2094	145	6.9%
20 to 30 years	7391	836	11.3%
30 to 40 years	14679	2553	17.4%
40 to 50 years	15778	3274	20.8%
50 to 60 years	17422	3878	22.3%
60 to 70 years	16544	3664	22.1%
70 to 80 years	11500	2543	22.1%
80 years and over	8471	1779	21.0%
Overall	96103	18754	19.5%

Table 2: Frequency of presenting symptoms and signs, comorbidities, intubation, and death in COVID-19

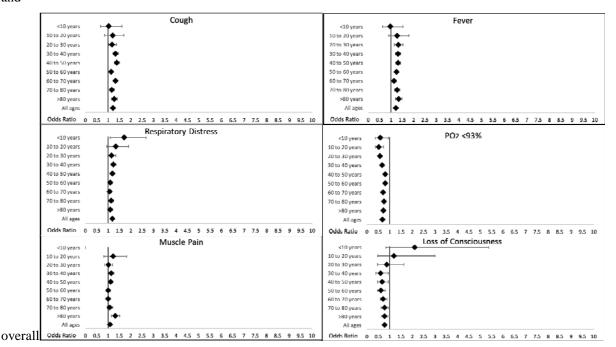

 positive vs negative patients

	Prevalence of	Prevalence of	% among those
	covariate	covariate	reporting
	among	among	covariates with
	COVID-19	COVID-19	positive COVID-
	Positive	Negative	19 result
Symptoms and signs			
Cough	54.5%	49.7%	21.0%
Fever	49.5%	44.7%	21.2%
PO2 <93%	46.9%	56.7%	16.7%
Reduced levels of Consciousness	2.8%	3.6%	16.0%
Respiratory Distress	43.0%	39.0%	21.1%
Myalgia	20.9%	19.6%	20.6%
Comorbidities			
Age (years)	55.2	50.9	
Asthma	1.9%	2.5%	16.0%
Pregnant	0.4%	0.6%	13.7%
Cardiovascular Disease	10.6%	9.5%	21.3%
Chronic kidney disease	0.4%	0.4%	19.6%
Chronic Anemia	0.7%	0.7%	19.8%
Acute Kidney Injury	1.6%	1.6%	19.4%
Cancer	1.1%	1.4%	15.3%
Type 2 Diabetes Mellitus	10.8%	8.7%	23.0%
Chronic Neurologic Disease	0.9%	1.0%	18.1%
AIDS/HIV	0.0%	0.1%	12.0%
Congenital Diseases	0.3%	0.3%	21.3%
Hemodialysis	0.7%	0.7%	18.1%
Ventilator Need			
Intubation	7.7%	5.2%	26.6%
Outcome			
Death	14.6%	6.3%	35.9%

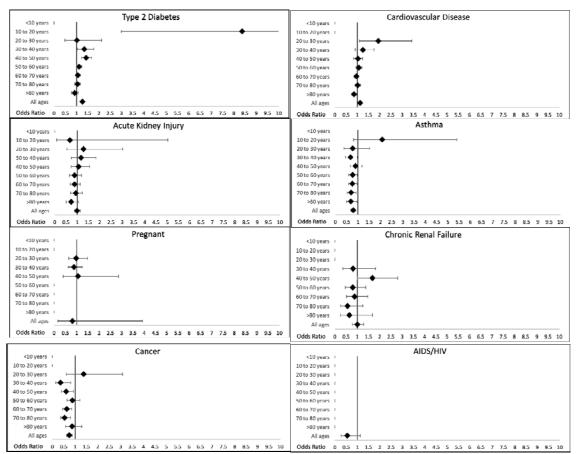
Age Groups	Death among	Death among	Death rate	Death rate	Positive cases	OR (95% CI)	p- value*	*Note:
Groups	COVID	COVID	among	among	among		value	where
	positive	negative	positive	negative	deaths			there
	(n)	(n)	cases	cases				were
<10 years	5	51	6.2%	2.4%	8.9%	2.70 (1.05,	0.051*	cells with
						6.95)		<10
10 to 20	8	36	5.5%	1.8%	18.2%	3.10 (1.41,	0.009*	counts
years						6.81)		the
20 to 30	30	84	3.6%	1.3%	26.3%	2.86 (1.88,	< 0.001	Fisher
years						4.37)		Exact
30 to 40	93	203	3.6%	1.7%	31.4%	2.22 (1.73,	< 0.001	test
years						2.85)		was
40 to 50	205	402	6.3%	3.2%	33.8%	2.01 (1.69,	< 0.001	used,
years						2.39)		all
50 to 60	427	712	11.0%	5.3%	37.5%	2.23 (1.97,	< 0.001	other
years						2.53)		tests
60 to 70	661	1146	18.0%	8.9%	36.6%	2.25 (2.03,	< 0.001	are $\chi 2$
years						2.50)		
70 to 80	681	1144	26.8%	12.8%	37.3%	2.50 (2.24,	< 0.001	
years						2.78)		
>80 years	630	1120	35.4%	16.7%	36.0%	2.73 (2.43,	< 0.001	
						3.06)		
All ages	2740	4898	14.6%	6.3%	35.9%	2.53 (2.41,	< 0.001	
						2.66)		

 Table 3 Death counts and rate by COVID-19 testing results.

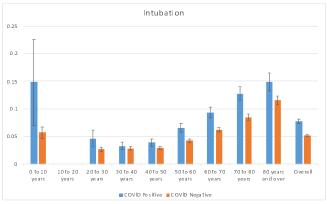
Figure 1: Overall frequency and Odds ratios by age for overall symptoms, signs, and comorbidities between COVID-19 positive and negative individuals hospitalized for acute respiratory illnesses A: Comparison of overall symptoms and signs between COVID-19 positive and negative individuals hospitalized for acute respiratory illnesses



B: Comparison of overall comorbidities at the time of presentation between COVID-19 positive and negative individuals hospitalized for acute respiratory illnesses


C: Odds ratio for COVID-19 positive vs negative patients of presenting symptoms and signs by age groups

and


B: Odds ratio for COVID-19 positive vs negative patients of presenting comorbidities by age groups and

overall

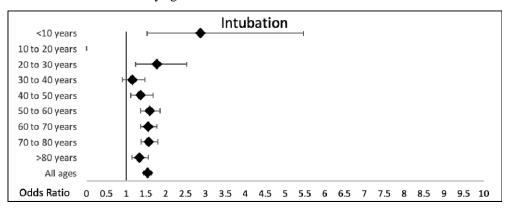
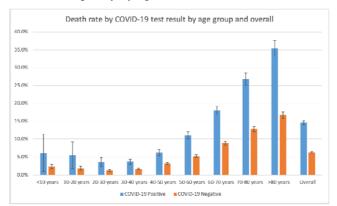
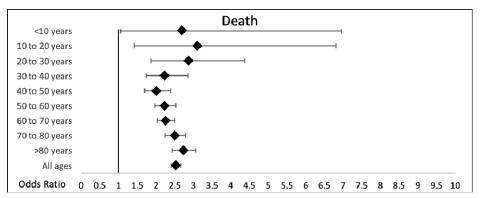


Figure 2: Percentage and odds ratio for intubation and death by COVID-19 results


A: Intubation frequency by age


B: Intubation odds ratios by age

C: Death frequency by age

D: Death odds ratios by age

Supplementary Appendix

Supplementary Figure 1: Frequency of symptoms and signs by age groups in COVID-19 Positive vs. Negative patients

Supplementary Figure 2: Frequency of comorbidities by age groups in COVID-19 Positive vs. Negative patients

Supplementary table 1- List of total admission for acute respiratory illness during designated month in 31 provinces of Iran and the change in number of admissions between 2 days to one day prior to the completion of the study

Province	Suspicious cases	Outbreak	Hospitalized	Admitted day- 1	Admitted day-2	Change
Qom Province	4873	3.7708	1969	33	91	-58
Gilan	8019	3.1687	848	86	106	-20
Semnan	1877	2.6724	420	37	60	-23
Mazandaran Province	8038	2.4479	4498	128	301	-173
Golestan province	4264	2.2819	1344	47	56	-9
Yazd Province	2278	2.0008	881	50	110	-60
Tehran Province	22549	1.6995	8957	770	805	-35
Central Province	2254	1.5768	646	42	63	-21
Qazvin Province	1884	1.4791	319	42	48	-6
Isfahan province	6606	1.29	3351	156	246	-90
Zanjan Province	1230	1.1632	370	58	60	-2
Lorestan Province	1870	1.0621	303	71	68	3
Alborz Province	2637	0.9722	1051	88	110	-22
South Khorasan province	696	0.9052	113	15	36	-21
Ilam Province	517	0.8911	278	22	18	4
Bushehr Province	959	0.8243	649	15	24	-9
Ardebil province	987	0.7769	463	30	38	-8
Khorasan Razavi Province	4584	0.7124	1218	122	196	-74
North Khorasan Province	612	0.7091	130	15	22	-7
Fars province	3197	0.659	668	89	114	-25
Hamedan province	1112	0.6324	639	27	55	-28
East Azerbaijan Province	2414	0.6174	1644	77	87	-10
Khuzestan province	2720	0.5774	1025	75	105	-30
Hormozgan Province	980	0.5517	76	13	24	-11
Kurdistan province	809	0.5047	182	24	34	-10
Kermanshah province	905	0.4635	204	18	35	-17
West Azerbaijan Province	1416	0.4337	386	78	64	14
Kerman province	1356	0.4285	281	45	39	6
Chahar Mahal Bakhtiari	386	0.4073	69	10	13	-3
Province						
Sistan and Baluchestan Province	1051	0.3787	181	28	29	-1
Kohkiluyeh and Boyer Ahmad	219	0.3071	100	4	7	-3
Province						
Total	93299	36.3658	33263	2315	3064	-749

A: Cough				
Age Groups	% among positive	% among negative	Odds Ratio (95% CI)	p-value
	cases	cases		
<10 years	55.6%	54.8%	1.03 (0.66, 1.61)	0.897
10 to 20 years	61.4%	57.1%	1.19 (0.84, 1.69)	0.315
20 to 30 years	59.4%	55.4%	1.18 (1.02, 1.36)	0.030
30 to 40 years	59.3%	52.5%	1.32 (1.21, 1.44)	0.000
40 to 50 years	60.1%	52.1%	1.38 (1.28, 1.50)	0.000
50 to 60 years	53.6%	50.5%	1.13 (1.06, 1.22)	0.001
60 to 70 years	53.7%	46.8%	1.32 (1.23, 1.42)	0.000
70 to 80 years	48.7%	45.0%	1.16 (1.06, 1.27)	0.001
>80 years	46.4%	40.6%	1.27 (1.14, 1.41)	0.000
All ages	54.5%	49.7%	1.21 (1.18, 1.25)	0.000
B: Fever				
Age Groups	% among positive	% among negative	Odds Ratio (95% CI)	p-value
	cases	cases		
<10 years	56.8%	57.4%	0.97 (0.62, 1.52)	0.907
10 to 20 years	59.3%	53.6%	1.26 (0.90, 1.78)	0.181
20 to 30 years	54.8%	47.9%	1.32 (1.14, 1.52)	0.000
30 to 40 years	51.7%	45.0%	1.31 (1.20, 1.42)	0.000
40 to 50 years	51.4%	44.6%	1.31 (1.21, 1.42)	0.000
50 to 60 years	49.2%	43.9%	1.24 (1.15, 1.33)	0.000
60 to 70 years	46.4%	43.3%	1.13 (1.05, 1.22)	0.001
70 to 80 years	48.2%	42.3%	1.27 (1.16, 1.38)	0.000
>80 years	48.6%	41.4%	1.34 (1.20, 1.48)	0.000
All ages	49.5%	44.7%	1.22 (1.18, 1.26)	0.000
C: Intubation				
Age Groups	% among positive	% among negative	Odds Ratio (95% CI)	p-value*
	cases	cases		
<10 years	14.8%	5.7%	2.88 (1.52, 5.46)	0.001
10 to 20 years				
20 to 30 years	4.7%	2.7%	1.77 (1.24, 2.52)	0.001
30 to 40 years	3.3%	2.9%	1.15 (0.91, 1.47)	0.244
40 to 50 years	3.9%	2.9%	1.36 (1.11, 1.68)	0.003
50 to 60 years	6.5%	4.2%	1.59 (1.36, 1.85)	0.000
60 to 70 years	9.3%	6.2%	1.55 (1.36, 1.77)	0.000

70 to 80 year	s 12.7%	8.5%	1.57 (1.37, 1.80)	0.000
>80 years	14.8%	11.6%	1.33 (1.15, 1.55)	0.000
All ages	7.7%	5.2%	1.54 (1.44, 1.64)	0.000
D: PO2 <93%	6			
Age Groups	% among positive	% among negative	Odds Ratio (95% CI)	p-value
	cases	cases		
<10 years	64.2%	75.3%	0.59 (0.37, 0.94)	0.024
10 to 20 year	s 64.8%	78.1%	0.52 (0.36, 0.74)	0.000
20 to 30 year	s 63.2%	75.0%	0.57 (0.49, 0.67)	0.000
30 to 40 year	s 60.9%	69.9%	0.67 (0.61, 0.73)	0.000
40 to 50 year	s 56.4%	61.7%	0.80 (0.74, 0.87)	0.000
50 to 60 year	s 48.9%	54.3%	0.80 (0.75, 0.86)	0.000
60 to 70 year	s 39.3%	47.7%	0.71 (0.66, 0.76)	0.000
70 to 80 year	s 34.5%	41.2%	0.75 (0.69, 0.82)	0.000
>80 years	28.9%	35.9%	0.73 (0.65, 0.81)	0.000
All ages	46.9%	56.7%	0.68 (0.66, 0.70)	0.000
E: Reduced L	evels of consciousness			
Age Groups	% among positive	% among negative	Odds Ratio (95% CI)	p-value*
	cases	cases		
<10 years	6.2%	3.0%	2.10 (0.82, 5.37)	0.109
10 to 20 year	s 3.4%	2.9%	1.19 (0.47, 3.01)	0.615
20 to 30 year	s 1.3%	1.5%	0.87 (0.46, 1.63)	0.659
30 to 40 year	s 0.9%	1.5%	0.60 (0.39, 0.93)	0.022
40 to 50 year	s 1.1%	1.7%	0.66 (0.47, 0.94)	0.021
50 to 60 year	s 1.5%	2.5%	0.61 (0.46, 0.81)	0.000
60 to 70 year	s 3.0%	4.1%	0.71 (0.58, 0.88)	0.001
70 to 80 year	s 5.0%	6.5%	0.77 (0.63, 0.94)	0.008
>80 years	8.3%	10.5%	0.77 (0.64, 0.93)	0.006
All ages	2.8%	3.6%	0.78 (0.71, 0.86)	0.000
F: Respirator	у			
distress				
Age Groups	% among positive	% among negative	Odds Ratio (95% CI)	p-value
	cases	cases		
<10 years	45.7%	32.9%	1.71 (1.10, 2.67)	0.017
10 to 20 year	s 36.6%	30.2%	1.33 (0.94, 1.90)	0.108
20 to 30 year	s 34.3%	31.4%	1.14 (0.98, 1.33)	0.086
30 to 40 year	s 38.0%	33.3%	1.23 (1.13, 1.34)	0.000

40 to 50 years	41.1%	37.1%	1.19 (1.10, 1.28)	0.000
50 to 60 years	41.4%	39.3%	1.09 (1.01, 1.17)	0.018
60 to 70 years	43.6%	42.0%	1.07 (0.99, 1.15)	0.081
70 to 80 years	48.6%	45.4%	1.14 (1.04, 1.24)	0.004
>80 years	52.2%	50.1%	1.08 (0.98, 1.20)	0.131
All ages	43.0%	39.0%	1.18 (1.14, 1.22)	0.000
G: Myalgia				
Age Groups	% among positive	% among negative	Odds Ratio (95% CI)	p-value*
	cases	cases		
<10 years				
10 to 20 years	22.1%	18.9%	1.22 (0.81, 1.83)	0.346
20 to 30 years	22.7%	22.5%	1.01 (0.85, 1.20)	0.915
30 to 40 years	24.4%	22.0%	1.14 (1.03, 1.26)	0.009
40 to 50 years	23.4%	21.6%	1.11 (1.01, 1.21)	0.027
50 to 60 years	20.7%	20.6%	1.01 (0.92, 1.10)	0.880
60 to 70 years	19.2%	19.2%	1.00 (0.91, 1.10)	0.985
70 to 80 years	18.8%	17.7%	1.08 (0.96, 1.21)	0.195
>80 years	18.2%	14.4%	1.32 (1.15, 1.51)	0.000
All ages	20.9%	19.6%	1.08 (1.04, 1.13)	0.000

* Note: where there were cells with <10 counts the Fisher Exact test was used, all other tests are $\chi 2$.

	creent, odds ratio, p-values r		· 12 19 tobting robuits	
A: Asthma	0/	0/	Odda Datis (050/ CD)	a
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
.10		cases		
<10 years	2.40/	1 70/	2.07 (0.00 5.20)	0.100
10 to 20 years	3.4%	1.7%	2.07 (0.80, 5.39)	0.180
20 to 30 years	1.1%	1.4%	0.76 (0.38, 1.52)	0.530
30 to 40 years	1.2%	1.8%	0.66 (0.45, 0.97)	0.034
40 to 50 years	1.8%	2.0%	0.88 (0.66, 1.17)	0.372
50 to 60 years	2.0%	2.6%	0.76 (0.59, 0.97)	0.028
60 to 70 years	2.3%	3.0%	0.75 (0.59, 0.95)	0.017
70 to 80 years	2.3%	3.3%	0.69 (0.52, 0.92)	0.010
>80 years	2.4%	3.4%	0.68 (0.49, 0.95)	0.022
All ages	1.9%	2.5%	0.78 (0.70, 0.88)	0.000
B: Pregnant				
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	alue*
		cases		
<10 years				
10 to 20 years				
20 to 30 years	3.1%	3.2%	0.98 (0.65, 1.48)	0.917
30 to 40 years	1.5%	1.7%	0.88 (0.62, 1.25)	0.484
40 to 50 years	0.2%	0.1%	1.06 (0.39, 2.86)	0.802
50 to 60 years				
60 to 70 years				
70 to 80 years				
>80 years				
All ages	0.4%	0.6%	0.81 (0.17, 3.92)	0.001
C: Cardiovascular Dise	ase			
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
-		cases		
<10 years				
10 to 20 years				
20 to 30 years	1.8%	0.9%	1.94 (1.10, 3.43)	0.020
30 to 40 years	1.8%	1.4%	1.25 (0.90, 1.74)	0.176
40 to 50 years	4.2%	4.1%	1.02 (0.84, 1.24)	0.814
50 to 60 years	9.4%	8.9%	1.07 (0.94, 1.21)	0.302
60 to 70 years	14.8%	15.4%	0.95 (0.86, 1.06)	0.379
				0.0.7

Supplement Table 3: Percent, odds ratio, p-values for comorbidities by COVID-19 testing results

70 to 80 years	20.3%	20.0%	1.02 (0.91, 1.13)	0.776
>80 years	20.9%	23.5%	0.86 (0.76, 0.97)	0.019
All ages	10.6%	9.5%	1.13 (1.07, 1.19)	0.000
D: Chronic Renal				
Failure				
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
		cases		
<10 years				
10 to 20 years				
20 to 30 years				
30 to 40 years	0.3%	0.3%	0.81 (0.36, 1.81)	0.706
40 to 50 years	0.6%	0.4%	1.68 (1.00, 2.80)	0.047
50 to 60 years	0.4%	0.5%	0.80 (0.46, 1.37)	0.414
60 to 70 years	0.5%	0.6%	0.88 (0.52, 1.47)	0.623
70 to 80 years	0.3%	0.5%	0.56 (0.25, 1.24)	0.177
>80 years	0.3%	0.4%	0.65 (0.25, 1.68)	0.526
All ages	0.4%	0.4%	1.00 (0.78, 1.28)	0.984
E: Chronic anemia				
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
		cases		
<10 years				
10 to 20 years				
20 to 30 years				
30 to 40 years	0.4%	0.4%	0.87 (0.43, 1.78)	0.862
40 to 50 years	0.7%	0.5%	1.29 (0.81, 2.08)	0.286
50 to 60 years	0.8%	0.6%	1.43 (0.94, 2.17)	0.094
60 to 70 years	0.6%	0.8%	0.77 (0.49, 1.23)	0.272
70 to 80 years	0.8%	1.0%	0.77 (0.48, 1.26)	0.296
>80 years	1.3%	0.9%	1.42 (0.88, 2.31)	0.149
All ages	0.7%	0.7%	1.02 (0.84, 1.23)	0.869
F: Acute Kidney Injury				
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
		cases		
<10 years				
10 to 20 years	0.7%	1.0%	0.67 (0.09, 5.03)	1.000
20 to 30 years	0.7%	0.6%	1.27 (0.54, 3.02)	0.626
30 to 40 years	0.9%	0.8%	1.16 (0.74, 1.82)	0.505

40 to 50 years	1.1%	1.0%	1.06 (0.73, 1.55)	0.756
50 to 60 years	1.4%	1.6%	0.88 (0.65, 1.18)	0.398
60 to 70 years	2.2%	2.5%	0.88 (0.69, 1.13)	0.329
70 to 80 years	2.6%	2.8%	0.93 (0.71, 1.22)	0.587
>80 years	2.0%	2.7%	0.73 (0.51, 1.05)	0.093
All ages	1.6%	1.6%	0.99 (0.88, 1.13)	0.931
G: Cancer				
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
		cases		
<10 years				
10 to 20 years				
20 to 30 years	0.8%	0.6%	1.37 (0.61, 3.08)	0.480
30 to 40 years	0.2%	0.7%	0.35 (0.15, 0.81)	0.009
40 to 50 years	0.7%	1.2%	0.61 (0.39, 0.94)	0.023
50 to 60 years	1.3%	1.5%	0.88 (0.65, 1.21)	0.437
60 to 70 years	1.3%	2.0%	0.63 (0.46, 0.86)	0.003
70 to 80 years	1.2%	2.2%	0.54 (0.37, 0.79)	0.001
>80 years	1.6%	1.9%	0.86 (0.57, 1.30)	0.480
All ages	1.1%	1.4%	0.74 (0.64, 0.86)	0.000
H: Type 2 diabetes melli	tus			
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
		cases		
<10 years				
10 to 20 years	4.1%	0.5%	8.37 (3.00, 23.37)	< 0.001
20 to 30 years	1.0%	0.9%	1.01 (0.48, 2.12)	1.000
30 to 40 years	2.7%	2.0%	1.34 (1.02, 1.76)	0.033
40 to 50 years	7.2%	5.1%	1.43 (1.22, 1.67)	0.000
50 to 60 years	12.4%	11.3%	1.11 (1.00, 1.24)	0.055
60 to 70 years	16.2%	15.4%	1.06 (0.96, 1.17)	0.253
70 to 80 years	16.7%	16.2%	1.04 (0.92, 1.17)	0.541
>80 years	11.4%	12.3%	0.91 (0.78, 1.08)	0.285
All ages	10.8%	8.7%	1.26 (1.20, 1.33)	0.000
I: Chronic neurologic dis	sease			
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
		cases		
<10 years	1.2%	1.9%	0.66 (0.09, 4.84)	1.000
10 to 20 years	0.7%	1.5%	0.46 (0.06, 3.40)	0.718

20 4 - 20	0.90/	0.60/	1 21 (0 50 2 02)	0.405
20 to 30 years	0.8%	0.6%	1.31 (0.59, 2.92)	0.495
30 to 40 years	0.4%	0.8%	0.45 (0.23, 0.89)	0.019
40 to 50 years	0.6%	0.6%	0.98 (0.59, 1.63)	0.939
50 to 60 years	1.0%	0.8%	1.34 (0.92, 1.94)	0.122
60 to 70 years	0.8%	1.1%	0.76 (0.51, 1.12)	0.167
70 to 80 years	1.1%	1.2%	0.86 (0.56, 1.31)	0.468
>80 years	1.9%	1.9%	1.03 (0.70, 1.51)	0.872
All ages	0.9%	1.0%	0.91 (0.77, 1.08)	0.274
J: AIDS or HIV				
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
		cases		
<10 years				
10 to 20 years				
20 to 30 years				
30 to 40 years				
40 to 50 years				
50 to 60 years				
60 to 70 years				
70 to 80 years				
>80 years				
All ages	0.0%	0.1%	0.56 (0.28, 1.13)	0.100
K: Congenital heart disea	ase			
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
		cases		
<10 years				
10 to 20 years				
20 to 30 years				
30 to 40 years	0.3%	0.3%	0.97 (0.45, 2.09)	1.000
40 to 50 years	0.6%	0.3%	1.69 (0.98, 2.91)	0.054
50 to 60 years	0.4%	0.3%	1.30 (0.73, 2.31)	0.369
60 to 70 years	0.3%	0.2%	1.33 (0.67, 2.67)	0.414
70 to 80 years	0.2%	0.2%	1.01 (0.33, 3.06)	1.000
>80 years	0.1%	0.2%	0.27 (0.04, 2.04)	0.220
All ages	0.3%	0.3%	1.12 (0.85, 1.48)	0.426
L: Hemodialysis				
Age Groups	% among positive cases	% among negative	Odds Ratio (95% CI)	p-value*
		cases		

<10 years	1.2%	0.1%	8.92 (0.92, 86.67)	0.138
10 to 20 years	0.7%	0.5%	1.50 (0.19, 11.90)	0.513
20 to 30 years	0.1%	0.4%	0.34 (0.05, 2.52)	0.512
30 to 40 years	0.3%	0.3%	0.81 (0.36, 1.81)	0.706
40 to 50 years	0.3%	0.5%	0.65 (0.33, 1.26)	0.235
50 to 60 years	0.6%	0.8%	0.84 (0.54, 1.30)	0.430
60 to 70 years	1.1%	1.3%	0.90 (0.64, 1.27)	0.565
70 to 80 years	1.0%	1.2%	0.85 (0.56, 1.31)	0.474
>80 years	0.7%	0.9%	0.80 (0.44, 1.46)	0.466
All ages	0.7%	0.7%	0.91 (0.75, 1.11)	0.346

* Note: where there were cells with <10 counts the Fisher Exact test was used, all other tests are $\chi 2$.

Supplement Table 4: Intubation by age group, including calculations for χ^2 testing.

Age Groups	Total number	Mean age	Intubation	No intubation	Total number	Predicted	Predicted	p-value*
<10 Positive for COVID-19	81	3	12	69	81	4.880396	76.1196	
<10 Negative for COVID-19	2143	3	122	2021	2143	129.1196	2013.88	
<10 all cases	2224	3	134	2090	2224			0.000707
10-20 Positive for COVID-19	145	16	4	141	145			
10-20 Negative for COVID-19	1949	15	84	1865	1949			
10-20 all cases	2094	15	88	2006	2094			0.518*
20-30 Positive for COVID-19	837	25	39	798	837	24.34786	812.6521	
20-30 Negative for COVID-19	6554	25	176	6378	6554	190.6521	6363.348	
20-30 all cases	7391	25	215	7176	7391			0.001373
30-40 Positive for COVID-19	2553	34	84	2469	2553	74.96035	2478.04	
30-40 Negative for COVID-19	12126	34	347	11779	12126	356.0396	11769.96	
30-40 all cases	14679	34	431	14248	14679			0.243617
40-50 Positive for COVID-19	3274	44	128	3146	3274	101.677	3172.323	
40-50 Negative for COVID-19	12504	44	362	12142	12504	388.323	12115.68	
40-50 all cases	15778	44	490	15288	15778			0.002892
50-60 Positive for COVID-19	3878	54	254	3624	3878	184.0837	3693.916	
50-60 Negative for COVID-19	13544	54	573	12971	13544	642.9163	12901.08	
50-60 all cases	17422	54	827	16595	17422			2.12E-09
60-70 Positive for COVID-19	3664	64	342	3322	3664	253.1402	3410.86	
60-70 Negative for COVID-19	12880	64	801	12079	12880	889.8598	11990.14	
60-70 all cases	16544	64	1143	15401	16544			5.37E-11
70-80 Positive for COVID-19	2543	74	323	2220	2543	239.4843	2303.516	
70-80 Negative for COVID-19	8957	73	760	8197	8957	843.5157	8113.484	
70-80 all cases	11500	74	1083	10417	11500			1.32E-10
80> Positive for COVID-19	1779	84	264	1515	1779	217.991	1561.009	
80> Negative for COVID-19	6692	85	774	5918	6692	820.009	5871.991	
80> all cases	8471	84	1038	7433	8471			0.000182
Total positive for COVID-19	18754		1450	17304	18754	1063.344	17690.66	
Total negative for COVID-19	77349		3999	73350	77349	4385.656	72963.34	
Total	96103	<u></u>	5449	90654	96103			3.57E-42
	11 .	1 10	I					

* Note: where there were cells with <10 counts the Fisher Exact test was used, all other tests are $\chi 2$.

Supplement Table 5: Death by age group, including calculations for χ^2 testing.

	Age Groups	Total	Mean	Death	Live	Total	Predicted	Predicted	p-value*	
--	------------	-------	------	-------	------	-------	-----------	-----------	----------	--

	number	age			number			
<10 Positive for COVID-19	81	3	5	76	81			
<10 Negative for COVID-19	2143	3	51	2092	2143			
<10 all cases	2224	3	56	2168	2224			0.051*
10-20 Positive for COVID-19	145	16	8	137	145			
10-20 Negative for COVID-19	1949	15	36	1913	1949			
10-20 all cases	2094	15	44	2050	2094			0.009*
20-30 Positive for COVID-19	837	25	30	807	837	12.91003	824.09	
20-30 Negative for COVID-19	6554	25	84	6470	6554	101.09	6452.91	
20-30 all cases	7391	25	114	7277	7391			3.57E-07
30-40 Positive for COVID-19	2553	34	93	2460	2553	51.48089	2501.519	
30-40 Negative for COVID-19	12126	34	203	11923	12126	244.5191	11881.48	
30-40 all cases	14679	34	296	14383	14679			1.26E-10
40-50 Positive for COVID-19	3274	44	205	3069	3274	125.955	3148.045	
40-50 Negative for COVID-19	12504	44	402	12102	12504	481.045	12022.96	
40-50 all cases	15778	44	607	15171	15778			7.12E-16
50-60 Positive for COVID-19	3878	54	427	3451	3878	253.5324	3624.468	
50-60 Negative for COVID-19	13544	54	712	12832	13544	885.4676	12658.53	
50-60 all cases	17422	54	1139	16283	17422			2.1E-37
						400.40.40		
60-70 Positive for COVID-19	3664	64	661	3003	3664	400.1963	3263.804	
60-70 Negative for COVID-19	12880	64	1146	11734	12880	1406.804	11473.2	
60-70 all cases	16544	64	1807	14737	16544			3.07E-55
70-80 Positive for COVID-19	2543	74	681	1862	2543	403.563	2139.437	
70-80 Negative for COVID-19	8957	73	1144	7813	8957	1421.437	7535.563	
70-80 all cases	11500	74	1825	9675	11500			2.9E-65
80> Positive for COVID-19	1779	84	630	1149	1779	367.5186	1411.481	
80> Negative for COVID-19	6692	85	1120	5572	6692	1382.481	5309.519	
80> all cases	8471	84	1750	6721	8471			5.21E-67
Total positive for COVID-19	18754		2740	16014	18754	1490.516	17263.48	
Total negative for COVID-19	77349		4898	72451	77349	6147.484	71201.52	
Total	96103		7638	88465	96103			0

Supplement Table 6:Trend in hospital discharge in 31 provinces; 1 and 2 days prior to completion of the study State

Total discharged Discharged -1 d Discharged -2 d Change

Tehran	12186	271	260	-11
Gilan	5975	15	17	2
Khorasan Razavi	2930	22	70	48
Mazandaran	2842	16	54	38
Esfahan	2755	19	29	10
Fars	2502	15	37	22
Golestan	2374	4	2	-2
Qom	2223	8	63	55
Khuzestan	1591	16	36	20
Central	1451	5	6	1
Lorestan	1450	34	29	-5
Qazvin	1392	2	8	6
Alborz	1358	9	21	12
Semnan	1344	4	19	15
Yazd	1262	12	1	-11
Kerman	993	13	13	0
Western Azerbaijan	949	2	8	6
Hormozgan	851	1	9	8
Sistan and Baluchestan	796	1	7	6
Zanjan	785	9	15	6
Kermanshah	653	8	12	4
East Azarbaijan	636	6	9	3
Kurdistan	562	2	3	1
southern Khorasan	548	NA	4	
Ardebil	452	NA	4	
Hamedan	444	1	NA	
North Khorasan	426	3	3	0
Bushehr	309	NA	2	
Chahar Mahal Bakhtiari	294	2	6	4
llam	221	6	8	2
Kohkiluye and Boyer Ahmad	112	2	2	0
TOTAL	52666	508	757	240