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Abstract  

 

Background: After more than four months into the coronavirus disease (COVID-19) epidemic, 

over 347,500 people had died worldwide. The current study aims to evaluate how mitigating 

interventions affected the epidemic process in the 30 largest metropolitan areas in the US and 

whether temperature played a role in the epidemic process.  

Methods: Publicly available data for the time series of COVID-19 cases and deaths and weather 

were analyzed at the metropolitan level. The time-varying reproductive numbers (Rt) based on 

retrospective moving average were used to explore the trends. Student t tests were used to 

compare temperature and peak Rt cross-sectionally.  

Results: We found that virus transmissibility, measured by instantaneous reproduction number 

(Rt), had declined since the end of March for all areas and almost all of them reached a Rt of 1 or 

below after April 15, 2020. However, the Rts remained around 1 for most areas since then and 

some small and short rebounds were presented in some areas, suggesting a persistent epidemic in 

those areas. The timing of the main decline was concurrent with the implementation of 

mitigating interventions. Cities with warm temperature also tended to have a lower peak Rt than 

that of cities with cold temperature. However, large geographic variations existed.   

Conclusions: Aggressive interventions might have mitigated the current epidemic of COVID-19, 

while temperature might have some weak effects on the virus transmission. We may need to 

prepare for a possible return of the coronavirus outbreak.         
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Introduction 

The coronavirus disease (COVID-19) pandemic caused by the novel severe acute respiratory 

syndrome (SARS) associated coronavirus (SARS-CoV2) infection [1] has not only affected more 

than 5.5 million people and caused over 347,500 deaths worldwide 

(https://coronavirus.jhu.edu/map.html, accessed May 26, 2020), but also induced significant 

anxiety among the public [2]. Many people raised concerns about whether the stringent 

interventions were over-reacted, and whether a second wave of outbreak was possible.  In the 

2003 SARS epidemic, the virus went away after June 2003 and never came back[3]. Will this 

happen to SARS-CoV2? 

There are several major differences between 2003 SARS coronavirus and 2019 SARS CoV2 [3, 

4]. The 2003 coronavirus had much higher virulence, resulting in higher hospitalizations and 

mortality rates than the 2019 coronavirus.  The transmission of the 2003 coronavirus almost 

exclusively occurred among symptomatic cases[5], while the 2019 coronavirus can cause a large 

percent of asymptomatic cases who can also transmit virus [6, 7]. Furthermore, the 2019 

coronavirus is also circulating in the southern hemisphere where the current temperature is 

warmer than that of northern hemisphere. By late 2020, it is possible the coronavirus may 

circulate back to the northern hemisphere, leading to a second wave of epidemic[8]. Therefore, it 

is important to empirically evaluate the effects of mitigating interventions and examine whether 

temperature may affect the virus transmissibility and virulence.  

One key measure of virus transmissibility during an epidemic is effective reproduction number 

(R), the average number of secondary cases infected by a primary case [9-11]. Based on the 

susceptible-infectious-removed (SIR) model, the reproduction number can be conceptualized as 

(number of contacts)*(infectivity per contact)*(generation interval), where generation interval 
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refers to the average duration between the time when a primary case becoming infectious and the 

time when secondary cases being infected[10]. Clearly, interventions such as social distancing, 

stay-at-home rule, school or office closures, and prohibiting large gatherings will reduce the 

number of contacts, thus reducing R. On the other hand, a lower virus infectivity can also reduce 

R, assuming the number of contacts remains unchanged. Therefore, exploring the changes of R 

over time and across different regions can shed new lights on the impact of interventions and 

environmental factors during the epidemic.  

A few studies have used time varying Rt to explore the effects of intervention on the epidemic 

process[12-16]. For example, one recent study found significant effects of nonpharmaceutical 

interventions on the transmissibility of SARS-CoV2, measured by Rt, in Hongkong[16]. 

However, few studies examined the impact of environmental factors on the COVID-19 epidemic. 

A few unpublished manuscripts have examined the association between temperature and 

COVID-19 case counts and found no or a negative but weak association[17-19]. However, their 

studies were based on case counts among different countries, which subjected to myriads of 

confounding effects due to different diagnostic criteria, availability of detection kits and 

reporting biases.    

In this study, we will compare the magnitude and changes of time-varying (instantaneous) 

effective reproduction numbers (Rt) among 30 largest metropolitan areas in the US. We 

hypothesize that stringent interventions are effective in curbing the epidemic, but temperature 

may also facilitate the decline of the epidemic in some regions.    

Methods 

Data source 
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We obtained daily COVID-19 cases and deaths at the US county level from the data repository 

provided by New York Times (https://github.com/nytimes/covid-19-data, accessed on May 

26,2020). We further limited those counties to the 30 largest metropolitan areas (Table 1). All 

cases and deaths were summarized at the metropolitan level. The sizes of total population and 

people aged 65 or above for each metropolitan area were obtained from census bureau website. 

Information about stay-at-home rule for each state was scraped from popular news media. The 

historical daily average temperature was obtained from national climate data online 

(https://www7.ncdc.noaa.gov/CDO), mostly based on temperature collected from stations at each 

metropolitan’s main airport. 

Reproduction number and serial interval 

The time varying reproduction number (Rt) was proposed by Cori A. et al. [11, 20]. This 

approach assumes the occurrence of secondary cases follows a Poisson distribution, conditioning 

on the time position in the whole infectious period of the primary case. The overall Rt at time t of 

the epidemic is the average number of secondary cases for all prior infected cases who are still 

infectious at a time window (t-s, t). The estimate is based on current secondary cases, not the 

future infections. Therefore, it can be viewed as instantaneous Rt. To smooth the estimates, a 

weighted average of Rt over a sliding window is used (e.g., one week window). Consequently, 

we used a 7-day moving average of prior temperature when assessing the association between Rt 

and temperature. 

The estimation of Rt also depends on the estimation of virus infectivity profile that is 

approximated from the distribution of generation interval. Since it is difficult to accurately 

estimate the generation interval, serial interval is often used in calculating Rt [11]. The serial 

interval refers to the average duration between symptom onset of a primary case and symptom 
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onset of secondary cases. In this study, we assumed the serial interval had a gamma distribution 

with mean=4.7 days and standard deviation = 2.9 days [21, 22], similar to that of recent 

studies[15]. This serial interval was applied to all regions throughout the whole study period to 

ensure the compatibility of Rt across regions. However, different regions at different time might 

have different serial intervals due to interventions and other environmental and social factors.  

We also performed sensitivity analysis with a shorter serial interval (mean = 3.95, standard 

deviation=4.75 [23] and a longer interval (mean = 7.5, standard deviation = 3.4) [4]. The patterns 

of Rt were similar, except for different estimated Rt values (average peak Rt 1-4 for shorter 

duration, and 2-9 for longer duration).       

Statistical analysis 

Descriptive statistics and bivariate associations were reported. Student t-tests were used for 

comparisons. The sizes of total population and people aged 65 or older, and the percent of 

positive tests at each date were used for adjustment.  R package EpiEstim was used [11] to 

estimate the instantaneous reproduction numbers over time. The association between temperature 

and Rt was explored cross-sectionally at the peak of Rt and also at some arbitral dates. 

We adopted two time scales in the analysis. The first was calendar date to present the trends of 

reproduction numbers for all metropolitan areas, starting from the date with at least 10 total 

reported cases. Staggered entrances into the outbreak were preserved. The second scale was the 

time since the beginning of the outbreak, regardless what calendar date the outbreak happened. 

This was to compare the declining patterns of Rt across metropolitan areas. We also realigned the 

time scale from the peak of the outbreak. The first two weeks of Rt estimates were excluded, as 

the first week Rt were zeros, and the second week estimates were too variable due to small 

number of cases.  
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P value less than 0.05 was considered statistically significant. However, there were many 

statistical comparisons involved. Although we did not adjust for multiple comparisons, we were 

cautious about over interpretations and conducted statistical tests only between prior selected 

pairs (e.g., southern versus northern metropolitan areas).  

Ethics statement 

In this study, the author has no financial and conflict of interest to disclose. The ethics approval 

was exempted for this study, as no human subjects were involved, and all data were publicly 

available. The statistical codes and data will be available online (https://tinyurl.com/ybhdcjqu).  

Results 

The basic characteristics of metropolitan areas were presented in Table 1. All metropolitan areas 

had at least 1.5 million people in 2019 and over 1,000 confirmed cases.  As of May 25, 2020, the 

reported case-fatality rates varied from 1.28 per 100 cases in Salt Lake City, UT to 11.65 per 100 

cases in Detroit, MI. However, since there were large variations in case ascertainment criteria 

and availability of detection kits among different regions, comparing case-fatality rates was 

unreliable. Meanwhile, since about 80% of deaths occurred among elderly people[24], we 

compared the ratios of deaths to the size of elderly population among metropolitan areas. The 

ratios were generally lower in areas with warm weather (mean 0.09, range 0.02- to 0.22 per 100 

elderly), and higher in areas with cold temperature (mean: 0.24, range 0.05 to 0.63 per 100 

elderly) (p for difference = 0.007).    

The trends of Rt for 30 metropolitan areas were shown in Figure 1a-1d, grouped by geographic 

locations and temperature conditions. Overall, the instantaneous Rts in all areas reached peaks or 

some stable points after two to three weeks, decreased significantly since the end of March, and 
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most areas reached a Rt of 1 or less after April 15. However, some small and short rebounds 

were presented in some areas. This might be due to case reporting and detection issues, but could 

also indicate some true rebounds. In addition, the Rts remained around 1 for most areas, 

suggesting a persistent epidemic in those areas. It is of note that around the week of March 25, 

many schools were closed and many companies started offering employees working from home. 

The US government has issued COVID-19 coping guideline to all US citizens, and many states 

also issued stay-at-home rules (see Appendix Table 1).  

Figure 1a compared Rt trends between typical northeastern cities and southern cities. Boston, 

Chicago, New York and Philadelphia started the epidemic earlier, had higher peak Rts than that 

of Miami, Orlando, Houston, and Los Angeles. After some initial increases (though peaked at 

different dates), all northern cities declined sharply after the mid-March. In addition, the 

trajectories of Houston and Los Angeles were similar with initial peaks at around March 18, 

somewhat decreased and then were stable around March 25. For Miami and Orland, the Rts were 

quite stable during the week of March 25, and declined sharply after about March 28. However, 

the slopes of decline, when aligned by the time since the peak Rt, were similar except a few 

spikes in Houston and Los Angeles (Appendix Figure 1a).  

On the other hand, the Rt curves were indistinguishable between upper midwestern cities and 

other southern cities (Figure 1b). Upper midwestern cities except Pittsburg all had earlier 

interventions in the mid-March (Appendix Table 1 for dates stay-at-home rules issued), while 

Minneapolis-St. Paul area had some rebounds over the course of epidemic. In addition, the west 

coastal cities had an early start of the epidemic, and Rt curves were less volatile than that of other 

cities during the study period (Figure 1c).  The unusually high Rt in Salt Lake City in the early 

epidemic may be due to a small number of cases during that period (Figure 1d).  
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Furthermore, after realigning the starting time from their respective outbreak peaks for all 

metropolitan areas, the overall declining patterns were similar across all regions (Appendix 

Figure 1a-d). 

To evaluate the association between Rt and temperature across regions, we compared the highest 

Rt (occurred after the first two weeks) among them (Figure 2), most cities had a peak Rt between 

1 and 5. At the low temperature, peak Rts varied significantly. Cities with cold average 

temperature generally had higher Rts than those with warm temperature. However, upper 

midwestern cities such as Minneapolis-St. Paul, Milwaukee, and Columbus had much lower 

peak Rts than the rest of cities. The average peak of Rts in Boston, Chicago, New York, and 

Philadelphia were marginally (but not statistically significant) higher than that of Houston, Los 

Angeles, Orlando and Miami (average peak Rt 4.01 vs. 3.15, p = 0.07). In addition, we also 

arbitrarily examined the Rt patterns on the 15th day after the outbreak and on March 24, 2020 

when most interventions had not fully executed (Appendix Figure 2a and 2b). These cross-

sectional analyses demonstrated similar patterns to that of peak Rt.  

Discussion 

Overall, since the end of March, the instantaneous reproduction number (Rt) declined over time 

similarly in 30 largest metropolitan areas, and after April 15, Rts in almost all areas reached 1 or 

below. Since then, the Rts remained around 1 in most areas and there were a few small and short 

rebounds in some regions, suggesting the epidemic was persistent in those areas. The main 

decline was concurrent with the implementation of aggressive interventions in the US, 

suggesting stringent interventions were effective in halting the epidemic. However, there were 

large geographic variations in the Rt patterns, partly due to different levels of interventions, 

geographic altitudes, and partly might be due to temperature variations.  
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Without effective interventions, the peak of epidemic will reach higher and the epidemic process 

will last longer [25]. Thus, the reproduction numbers will not decline until a large proportion of 

susceptible people are infected. For example, during the week of March 25, Rts in Houston, 

Miami, and Orlando were relatively stable (Figure 1a). After the end of March, due to national 

efforts in mitigating the epidemic, all Rt curves started declining. The state of Florida, however, 

did not officially issue the stay-at-home rule until April 3, 2020, where the curves already 

declined significantly. This posed some difficulties in assessing the intervention effects precisely. 

On the other hand, a few cities demonstrated some significant impact of interventions on 

mitigating the epidemic. For example, some upper midwestern cities (e.g., Minneapolis-St. Paul 

and Milwaukee) implemented interventions earlier, had lower peak Rts, and their Rts started 

declining early, while cities like Pittsburg and Detroit had much higher Rt at the beginning, and 

Rt declined later. Even for cities like Chicago and New York, the intervention effects were 

evident based on the sharp decline of Rt since the mid-March, despite they had much higher Rts 

in the beginning of epidemic.  

It has been suggested that like many other respiratory virus infections, a seasonal pattern may 

exist for SARS like coronavirus [26, 27]. However, as demonstrated in this study, the association 

between reproduction number and temperature was deeply confounded by interventions and 

other external factors (including altitudes and humidity). In this study, we found the peak Rts in 

warm cities were moderately lower on average than those in cold cities, suggesting that the virus 

transmissibility might be lower in warm temperature than cold temperature.    

However, our analysis warned readers about interpreting selective findings. For emerging 

epidemic like COVID-19, many things were happening simultaneously. Effective interventions 

such as travelling restriction, social distancing and stay-at-home rules will change the epidemic 
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process [25, 28, 29]. The availability of testing, diverse case ascertainment criteria, the delay of 

diagnosis and case isolation, incomplete contact tracing, the percent of asymptomatic cases, and 

the infectivity of pre-symptomatic and asymptomatic cases will profoundly affect our ability to 

understand the epidemic. In this study, we observed some small but possible negative association 

between temperature and virus transmissibility (Figure 1a and 2). However, there were large 

variations in the peak Rts among regions with lower temperature, partly due to different 

intervention effects and also might be due to cultural and social differences. It is also likely that 

other environmental factors such as living conditions may affect virus transmission. For example, 

under cold weather, most people will stay indoors and have close and more frequent contacts 

with other people. The indoor environment such as air conditioning may be conducive for virus 

transmission.    

Furthermore, the concurrent decline of Rt and increase of temperature over time are also 

confounded by the epidemic process itself. As suggested before, a significant reduction of 

susceptible people will lead to a decline of Rt. Longitudinally comparing the trend of Rt and 

temperature is difficult if the epidemic evolves rapidly, as in the current COVID-19 epidemic. 

For instance, from March to April, all the epidemic in the 30 metropolitan areas had a sharp 

decline, while the temperature in the whole US was still amenable for virus transmission.    

There were some limitations in our study. The most important limitation was the inability to 

account for the diverse detection capacities across regions (Appendix Table 1). In regions with 

lower detection capacity, not only were there fewer cases detected (especially missing those with 

no or mild symptoms), but also the eligibilities for detection were more stringent. Only those 

with symptoms might be offered for virus detection. Thus, a sudden increase in case counts 

might not be due to an actual increase of infected people, rather it reflected the increased 



12 

 

availability of detection kits. This was the main reason we had highly variable estimates of Rt in 

the beginning of epidemic, and also some small rebounds in some areas after April 15. 

Additionally, with more detection kits available, we will observe more asymptomatic or mild 

symptomatic cases. Our methods assumed the same virus infectivity between symptomatic and 

asymptomatic cases, which was likely not true.  

Methodologically, our estimation of Rt relied on many assumptions. Rt is determined by both the 

growth rate of new cases and the distribution of generation interval or serial interval [10]. We 

assumed a universal distribution of serial interval for all regions and over the whole time period. 

Serial interval may change due to interventions, regional characteristics, and the stage of 

epidemic.   More stringent interventions and stay-at-home rules may result in shorter serial 

interval because the transmission will likely occur inside the households.  

We were not able to rigorously evaluate the virulence of SARS -CoV 2. Although we briefly 

compared death rates across regions, due to large and unknown delays between virus infection 

and deaths in the US, most deaths would be diagnosed several weeks before. There was also a 

delay in death certifications. Additionally, most died cases were elderly people or those with 

existing chronic conditions. Therefore, assessing the virulence should untangle the confounding 

effects by health care resource capacities, evolving treatments, and patient’s characteristics. A 

possible measure of virulence is the pattern of hospitalizations, as they are less likely affected by 

the availability of detection. After more hospitalization data are available and more 

asymptomatic and mild symptomatic cases are diagnosed, future research should focus on the 

impact of epidemic on the severity of disease and health care resource uses instead of the 

magnitude of epidemic.   
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In addition, as mentioned before, secondary data analysis based on existing aggregated data 

suffer many types of unmeasured confounding. Our data were collected by journalists which 

might lack scientific rigor. However, as stated in the New York Times data website, data were 

scraped from data portal such as those John Hopkins University COVID-19 data portal, state 

COVID-19 portal and various press conferences, and verified against each State Health 

Department. Nonetheless, although the quality of New York Times data was considered 

acceptable, the data were hastily collected and little validation was done. Biased data might lead 

to biased conclusions and wrong governmental decisions. We should call for replicated analysis 

based on more rigorously collected and validated data. Thus, our analyses were mostly 

descriptive and deliberately avoided over-interpretations through numerous comparisons 

between regions. A careful exploration of validated individual level data may shed some lights 

on these issues.  

Finally, our study has some unique strengths. First, we focus on large metropolitan areas to 

ensure enough cases and to have comparable societal structure, individual behaviors and health 

care resources. Certainly, epidemic in non-metropolitan areas should also be studied and may 

have unique patterns different from that of metropolitan areas. Epidemic in rural areas was of 

particular concern recently as rural areas often had limited health care resources to cope with the 

epidemic. Second, we explored the changes of effective reproduction number (Rt) over time and 

across regions to understand the impact of interventions and temperature on virus transmissibility. 

We presented and compared all regions to avoid selective reporting bias. To study the 

association between temperature and the epidemic process, we focus on the comparisons of Rt at 

the peak of outbreak and before interventions, presumably less confounded by interventions and 

other factors.  
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In summary, we observed a large decline of instantaneous reproduction numbers over time 

during the COVID-19 epidemic in 30 US metropolitan areas, the timing of which was concurrent 

with the implementation of mitigating interventions. Given that the whole population were naïve 

in immunity against this virus, it was likely the epidemic might last longer and more severe 

without interventions[25]. In addition, there was a possible weak negative association between 

instantaneous reproduction number and temperature. However, whether this predicts the 

coronavirus will disappear in the summer and never come back, like that of 2003 SARS 

coronavirus, is hard to tell. Given that the Rts remained around 1 for most areas since later April 

and the virus is circulating in both northern and southern hemisphere, we need to be vigilant 

about a possible second wave of outbreak later of the year.   
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Table 1: Characteristics and death rates of COVID-19 for 30 largest metropolitan areas in 
the US, as of May 25, 2020 

Metropolitan 
area 

Total 
population 

Age >=65 Cumula
tive 

cases 

Cumula
tive 

deaths 

Deaths 
per 100 
Cases 

Deaths 
per 100 

old people 
New York 16,669,277 2,789,981 185,447 11,870 6.40 0.43 

Los Angeles 10,039,107 1,493,190 46,018 2,116 4.60 0.14 
Washington DC - 

Baltimore 
9,360,001 1,370,637 64,441 2,572 3.99 0.19 

Houston 7,066,141 865,112 15,306 331 2.16 0.04 
St. Francisco - 

St. Jose 
6,463,637 991,147 11,269 388 3.44 0.04 

Chicago 6,021,020 950,164 87,730 4,012 4.57 0.42 
St Louis 5,485,267 797,415 9,696 755 7.79 0.09 
Atlanta 5,261,067 741,175 20,764 879 4.23 0.12 

Dallas-Fort 
Worth 

5,081,942 615,560 12,068 302 2.50 0.05 

Philadelphia 3,815,431 691,016 44,325 2,772 6.25 0.40 
Minneapolis-St. 

Paul 
3,654,908 580,638 13,699 766 5.59 0.13 

Cleveland - 
Akron 

3,149,448 669,206 7,701 642 8.34 0.10 

Seattle 3,074,865 444,891 11,130 687 6.17 0.15 
Boston 2,979,288 529,944 43,788 2,842 6.49 0.54 
Denver 2,967,239 419,589 15,250 908 5.95 0.22 

Miami - Fort 
Lauderdale-West 

Palm Beach 

2,716,940 467,586 17,040 633 3.71 0.14 

Charlotte 2,675,243 424,892 5,949 165 2.77 0.04 
Orlando 2,608,147 430,027 3,224 83 2.57 0.02 
Portland 2,492,412 424,694 2,545 117 4.60 0.03 

Sacramento - 
Oakland 

2,363,730 419,255 1,762 88 4.99 0.02 

Pittsburg 2,317,600 542,666 3,324 294 8.84 0.05 
Las Vegas 2,266,715 358,821 6,182 331 5.35 0.09 
Cincinnati 2,198,450 394,794 5,145 256 4.98 0.06 

Kansas 2,157,990 368,576 4,096 170 4.15 0.05 
Columbus 2,122,271 325,706 8,466 311 3.67 0.10 

Detroit 2,116,944 387,897 21,114 2,460 11.65 0.63 
Indianapolis 2,074,537 337,623 14,764 1,053 7.13 0.31 

Durham-Raleigh 1,974,709 289,249 4,213 184 4.37 0.06 
Salt Lake City 1,880,948 207,100 6,428 82 1.28 0.04 

Milwaukee 1,575,179 288,873 7,314 316 4.32 0.11 
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Figure 1a-1d: Time trends of instantaneous reproduction number for 30 US largest 
metropolitan areas 
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Figure 2: Association between maximal reproduction number and 7-day average 
temperature among US 30 metropolitan areas 
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Appendix: 

Appendix Table 1: Positive detection rates at various time by state 

State Metro areas %positive as 
of March 25, 
2020 

%positive 
as of April 
15, 2020 

Date of 
stay at 
home rule 

% positive 
at rule 
mandating 

CA Los Angeles, St. 
Francisco-St. Jose, 
Sacramento-Oakland 

12.9% 10.6% 19-Mar-20 9.5% 

CO Denver 11.8% 20.4% 11-Apr-20 19.9% 
DC Washington DC - 

Baltimore 
11.4% 19.3% 1-Apr-20 15.2% 

FL Miami-Fort Lauderdale, 
Orlando 

9.9% 10.4% 3-Apr-20 10.5% 

GA Atlanta 20.2% 23.1% 2-Apr-20 23.3% 
IL Chicago 13.1% 21.0% 21-Mar-20 12.1% 
IN Indianapolis 14.2% 18.7% 24-Mar-20 12.5% 
KS Kansas 5.1% 9.9% 30-Mar-20 7.5% 
MA Boston 9.3% 22.9% 24-Mar-20 8.4% 
MI Detroit 48.4% 31.0% 24-Mar-20 52.6% 
MN Minneapolis-St. Paul 2.5% 4.6% 27-Mar-20 2.8% 
MO St. Louis 49.1% 10.1% 3-Apr-20 9.8% 
NC Durham-Raleigh, 

Charlotte 
4.8% 7.7% 30-Mar-20 6.3% 

NV Las Vegas 7.0% 11.7% 1-Apr-20 10.0% 
NY New York 29.8% 40.4% 22-Mar-20 24.7% 
OH Cleveland, Columbus, 

Cincinnati 
4.8% 11.2% 22-Mar-20 71.5% 

OR Portland 4.6% 5.0% 23-Mar-20 5.0% 
PA Philadelphia, Pittsburg 9.1% 19.6% 1-Apr-20 12.0% 
TX Houston, Dallas-Fort 

Worth 
7.2% 10.4% 2-Apr-20 9.2% 

UT Salt Lake City 5.1% 5.4% 27-Mar-20 5.2% 
WA Seattle 9.4% 8.7% 23-Mar-20 7.8% 
WI Milwaukee 5.5% 8.6% 25-Mar-20 5.5% 
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Appendix Figure 1a – d, Declining trend of instantaneous reproduction number over time 
after the peak of epidemic, US 30 metropolitan areas 
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Appendix Figure 2a-b: Variations of instantaneous reproduction numbers across 30 US 
metropolitan areas.  
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