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Abstract
Due to the heterogeneity among the States in the US, predicting COVID-19 trends and quantitatively

assessing the effects of government testing capability and control measures need to be done via a State-by-
State approach. We develop a comprehensive model for COVID-19 incorporating time delays and popula-
tion movements. With key parameter values determined by empirical data, the model enables the most likely
epidemic scenarios to be predicted for each State, which are indicative of whether testing services and con-
trol measures are vigorous enough to contain the disease. We find that government control measures play
a more important role than testing in suppressing the epidemic. The vast disparities in the epidemic trends
among the States imply the need for long-term placement of control measures to fully contain COVID-19.
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INTRODUCTION

On about April 3, 2020, the United States registered the largest number of confirmed patients
with the 2019 novel coronavirus (COVID-19) among all countries in the world: over 260,000 with
the number of deaths exceeding 6,600. As of April 16, there had been over 641,000 cases and
over 31,000 deaths. This development is rather astonishing, considering that there were only a few
confirmed cases two months ago, when a massive outbreak in China had occurred. In fact, from
the end of January, for various reasons the number of reported cases in the US increased quite
slowly for a stretched period of time. The onset of an exponential increase in the US occurred
in the middle of March, where it became apparent that COVID-19 began the phase of community
spreading. In response, the White House issued a nationwide social-distancing order on March 16.
Statewide stay-at-home or shelter-in-place orders were given by the governors of various States
at different time (at the time of writing, there are still seven States that have not issued such an
order). To quantitatively predict the effectiveness of the federal and State government measures to
control COVID-19 spreading in the United States is utterly urgent. (Here we use “State” to denote
a State in the US to distinguish it from a “state” as in an epidemic state.)

The United States differs from other countries in that the circumstances under which COVID-
19 spreads vary dramatically among different States: not only are the levels of travel restriction
orders dissimilar, but other factors affecting the disease spreading such as the population, medical
resources, and social/political attitudes are also distinct among the States. A quantitative assess-
ment of the effects of the control measures taken by the government to contain the COVID-19
pandemic thus needs to be carried out on a State-by-State basis. A complication is that each in-
dividual State is not a closed system: people move into and out of the State on a daily basis.
This presents a tremendous challenge to modeling, as the existing data analyses and models for
COVID-19 were mainly for the setting of a closed system [1–23] without considering the inbound
and outbound population movements. [An introductory description of the recent work on data
analysis and modeling of COVID-19 is presented in Supplementary Note (SN) 1.] In this paper,
we meet this challenge by developing a coupled, dual-system spreading model. In particular, to
predict the epidemic trend for any specific target State in the US, we treat the target system (A)
as one under influences from another, much larger system (B) that represents all the other States.
Because the size of B is much larger than that of A, in terms of the spreading dynamics, system
B can be regarded as a closed system. From the standpoint of nonlinear physics, the influences
of system B on system A can be viewed as a perturbation or background noise, while the effects
of A on B can be neglected. The perturbation can be estimated based on the population of the
target State and the empirical human movement data. The backbone of this unidirectionally cou-
pled system is our recently developed, non-Markovian, five-state spreading model incorporating
various time delays that are characteristic of COVID-19, which has been demonstrated to have the
power to accurately predict the epidemic trends in China, South Korea, Italy, Iran, and the United
Kingdom [24].

We select ten representative States in the US and aim to predict, for each State, how two key
parameters affect the size of the final infected population and the epidemic duration: one char-
acterizing the testing capability of the State, which essentially determines the fraction of undocu-
mented infected population, and another quantifying the strength of the government actions. Using
the daily number of confirmed cases up to March 29 to estimate the basic parameters, the model
can generate a number of distinct epidemic trajectories into the future for each State. A compar-
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ison with the available data after March 29 enables us to pin down the specific scenario(s) for
each State, attesting to the predictive power of the model. The predicted scenarios vary among
the States and they are indicative of whether testing services and control measures are vigorous
enough to fully contain the spreading of COVID-19. Systematic simulations reveal that, while
sufficient testing can be beneficial, the control measures play a more important role in suppressing
the epidemic, where strict government actions can reduce the epidemic duration and size in an
exponential manner. An alarming result is that the length of the epidemic duration can differ by
as much as one year among the States, posing a grave challenge to the government efforts in sup-
pressing the pandemic and implying the continuous need for long-term and vigorous enforcement
of the current control measures.

RESULTS

We present prediction results from our generalized, dual coupled system, five-state model (de-
scribed in Methods) for ten States: New York (the current epicenter), Washington (the previous
epicenter), New Jersey, California, Michigan, Florida, Illinois, Massachusetts, Louisiana, and Ari-
zona. (Source of data - Center for Systems Science and Engineering at Johns Hopkins Univer-
sity [25]). State-wise, up to March 29, the first nine States in this list had the top nine largest
numbers of confirmed cases among the 50 States. The last State in the list, Arizona, is the home
State of one of the co-authors. We use the daily number of confirmed cases up to March 29 to
estimate the model parameters. For each State, we generate a number of epidemic scenarios and
use the empirical data after March 29 to determine the most likely one(s). Detailed results for Ari-
zona, Washington, and New York are described below, while the results for the remaining seven
States are presented as SNs. In all the cases, each State is an open system with the influences of
the rest of the country treated as a perturbation. Predictions of the epidemic trend of the entire
country are also included as an SN. (Because the US is effectively a closed system, in this case the
generalized coupling model is not necessary; instead, the single system, five-state model that we
have developed recently [24] suffices.) For quantitatively assessing the effects of interstate travel
on the epidemic through comparison, we also include results from the closed system model for
two States: New York and Arizona.

In addition to predicting the most likely epidemic scenario(s) for each State, we seek to quan-
titatively assess the impacts of the government testing capability and control measures such as the
nationwide social-distancing and the statewide stay-at-home or shelter-in-place orders that result
in an exponential decrease in the human social and movement activities. Quantitatively, for any
State, the collective effects of these measures can be described by two parameters: the exponential
decay rates of the activities associated with interstate and intrastate travel, denoted by linter and
lintra, respectively, where a larger rate corresponds to more stringent control measures. The values
of the two parameters characterizing the control measures can be estimated based on the available
epidemic data [24]. Another key parameter is the fraction of undocumented infections, denoted
as h, the role of which in the COVID-19 epidemic has been studied recently in the framework of
the closed system, five-state model [24]. The value of h is determined by the testing and surveil-
lance capability of the State. For clarity, we organize our results in terms of different combinations
of linter, lintra, and h, leading to distinct epidemic scenarios under government imposed control
measures.

The human movement data for the populations into and out of a given State suggest that the
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interstate and intrastate activity decay rates are approximately equal (Methods): linter ⇡ lintra ⌘ l.
For choosing reasonable values of l, we use data from China to gain insights. In particular, the
control measures imposed by the Chinese government were extremely stringent, where the human
social activities are reduced to about 20% of the normal level after seven days of lockdown [24],
giving rise to l ⇡ 0.24. In the US, the government measures are not as stringent as in China,
so we set l = 0.18, corresponding to a seven day reduction of about 30% in the social activities
from the beginning of the implementation of the control measures. For comparison, we also
simulate the hypothetical case of more strict control measures: l = 0.24. To set the possible
values of h for New York and other States in the US, we note that in China, due to the widespread
government actions with extensive and sufficient testing and surveillance capabilities, most cases
of infection were claimed to have been detected and reported, leading to an extremely low value
of h: h = 0.012 as reported by the Chinese government (a recent work [26] reporting a substantial
fraction of undocumented infections based on data from the early phase of the epidemic in China
notwithstanding). In the US, due to lack of sufficient testing, the value of h can be much larger.
While it is not possible to obtain an accurate estimate of the value of h for the US, it is not
unreasonable that it can be at least 50%. We thus simulate two situations: h = 0.5 and 0.8. Taken
together, for each of the ten States and the US as a whole, we carry out systematic simulations for
four combinations of (h, l): (0.5,0.18), (0.5,0.24), (0.8,0.18), and (0.8,0.24).

We focus on the time evolution of three quantities that are the key dynamical variables of our
coupled five-state model (Methods): (i) the population of the individuals in the “hidden” state
who have been infected but who are asymptomatic or show only mild symptoms, denoted as
H(t), (ii) the population of infected individuals who show clear symptoms, denoted as I(t), and
(iii) the population of confirmed individuals, denoted as J(t). In general, H(t) and I(t) exhibit a
“humped” structure: with time they increase from zero, reach a maximum, and then decay to zero.
The inflection point occurs when I(t) reaches maximum, and the epidemic is deemed over when
I(t) has approached zero. The number of confirmed cases, J(t), is a non-decreasing function of
time and reaches a constant value as I(t) approaches zero. The epidemic duration is measured
by the date on which the H-state and I-state populations reach zero. The epidemic size can be
characterized by the constant value of the final number of confirmed cases. To make quantitative
predictions, it is necessary to have the values of the initial number of individuals in the hidden
state and the infection rate, i.e., the probability for an individual in the susceptible state to switch
to the H state, which can be estimated through an optimization procedure [24]. The values of the
two parameters so obtained are denoted as H⇤(0) and b⇤.

Epidemic scenario for the State of Arizona

The starting date of COVID-19 epidemic in Arizona was March 5 (excluding a few sporadic
cases before this date). The State population is about 7.28 millions. Figure 1(a) shows that, for
h = 0.5 and l = 0.18, the inflection point should occur on April 5 with the peak I value of about
2,600 and the epidemic will end around September 20 with 5,200 final confirmed cases. For the
same value of h but l = 0.24, the inflection point would occur three days earlier with the peak I
value reduced by about 600, as shown in Fig. 1(b). In this case, the epidemic will be over three
months earlier: on June 20, with 2,800 final confirmed cases - a reduction of about 46%. The
results for h = 0.8 and l = 0.18 are shown in Fig. 1(c): inflection point occurring on April 7,
peak I value of about 2,800, ending date of epidemic around the middle of March 2021, and with
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FIG. 1. Predicted COVID-19 epidemic scenarios in Arizona as an open system. Shown are H(t) (dashed
orange curve), I(t) (green dot-dashed curve), and J(t) (solid purple curve) from March 5 to September 21,
2020 predicted by the coupled dual system, five-state model. The parameter settings are (a) h = 0.5 and
l = 0.18, (b) h = 0.5 and l = 0.24, (c) h = 0.8 and l = 0.18, and (d) h = 0.8 and l = 0.24. For (a) and (b),
optimization of the model equations gives H⇤(0) = 90 and b⇤ = 0.27. For (c) and (d), the corresponding
values are H⇤(0) = 260 and b⇤ = 0.24. The inset in each panel shows the predicted H(t) and I(t) towards
the end of the epidemic. The open blue circles are the actual data of J(t) available up to the time of writing.
A comparison between the predicted and actual daily number of confirmed cases indicates (c) as the most
likely scenario for Arizona at the present, where 80% of the cases remain unchecked and the government
control measures are not as strict.

about 8,800 final confirmed cases (one fifth of the actual infections). For h = 0.8 but l = 0.24, the
inflection point would occur around April 3 with the peak I value of 2,100, as shown in Fig. 1(d).
Comparing with the case in Fig. 1(b) where tests are more extensive (h = 0.5) but the restriction
measures are more strict (l = 0.24), we see that, even when the test scale is significantly reduced
(h = 0.8), if more stringent control measures are imposed, the epidemic would only be slightly
worse: delay of inflection by one day, increase in the peak I value by 100, one month longer in
duration, and an approximate 17% increase in the number of final confirmed cases. Comparing
with the real data of daily number of confirmed cases, we see that scenario (c) is the most likely
current scenario for Arizona. Overall, the results for Arizona indicate the need to impose the
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strictest possible control measures, especially when extensive testing is not available.
If Arizona was closed to traffic into and out of the State, simulation results (SN 2) reveal similar

effects of the population movements on the epidemic quantities as those for the State of New York:
small changes in the inflection occurrence time and peak I value but non-negligible impacts on the
epidemic duration and the final infection size. For example, for the most likely current scenario
(i.e., h = 0.8 and l = 0.18), interstate travel will make the epidemic about half month longer and
increase the final number of confirmed cases by about 1,200. This means that, even for Arizona
where the epidemic is relatively mild, interstate travel poses a not-so-insignificant burden in State’s
efforts to control the epidemic.

Epidemic scenarios for the State of Washington

The State of Washington is unique because the first case of COVID-19 in the US occurred there
and it was the epicenter in the early phase of the epidemic. However, the spreading subsided and
stabilized quickly while outbreaks in other parts of the country occurred. Our model correctly
predicts this rather unusual behavior, as follows.

In January and through most of February, there were a few cases in Washington State, a “non-
epidemic” situation to which our model is not applicable. We use the daily number of confirmed
cases from February 26 to March 29 to estimate the model parameters. The State population is
approximately N = 7.6⇥ 106. Figure 2 shows four distinct epidemic scenarios. In particular,
Fig. 2(a) shows that, for h = 0.5 and l = 0.18, the inflection point will occur on about April 3
with the peaked infected population of about 8,000. The epidemic will last through August 2
and the final number of confirmed cases will be about 13,000. For the same value of h (0.5), if
the government measures are more stringent (l = 0.24), as shown in Fig. 2(b), the occurrence
of the inflection point will be two days earlier, the peak value of I(t) would be about 7,500, the
epidemic would be approximately two months shorter (ending date around June 10), and about
11,000 cases will be finally confirmed - a 15% decrease as compared with the case of l = 0.18 in
Fig. 2(a). Now assume much reduced government testing and surveillance, resulting in h = 0.8.
Figure 2(c) shows that, for l = 0.18, the inflection point will occur on April 4 with the peak I(t)
value of 9,000, the ending date of the epidemic will be about December 4, and the final size of
the confirmed population will be 17,000 (so altogether 85,000 people would be infected). Now
suppose a more restrictive set of measures: l = 0.24. In this case, the inflection point will occur
on April 2. Comparing with the case in Fig. 2(b), we see that the peak I value of 8,500 represents
only a small increase, and the epidemic duration will be about one month longer (ending date on
July 3) with 12,500 confirmed cases.

Comparing the projected J(t) with the current data, we find that Figs. 2(a) and 2(d) represent
the most likely scenarios for State of Washington at the present. This is intriguing because the
two cases differ markedly in terms of the State testing capability and strength of control measures.
Another result is that the epidemic scale of this early epicenter is projected to be at least one
order of magnitude smaller than that of the current epicenter New York. A plausible explanation
for these phenomena lies in the relatively low value of the infection rate obtained through data
based optimization (Methods): b⇤ = 0.18 for Figs. 2(a) and 2(b), and b⇤ = 0.16 for Figs. 2(c)
and 2(d), which should be compared with the respective values of about 0.25 for other States.
The “abnormally” low values of b, which may result from relatively low level of human activities
in the State of Washington, make the impacts of testing and control measures less significant in
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FIG. 2. Predicted COVID-19 epidemic scenarios in Washington State as an open system. Legends are the
same as those in Fig. 1. The time period covered is from February 26 to September 13, 2020. The parameter
settings are (a) h = 0.5 and l = 0.18, (b) h = 0.5 and l = 0.24, (c) h = 0.8 and l = 0.18, and (d) h = 0.8
and l = 0.24. For (a) and (b), optimization of the model equations gives H⇤(0) = 530 and b⇤ = 0.18. For
(c) and (d), the corresponding values are H⇤(0) = 1250 and b⇤ = 0.16. The optimally estimated values of
the infection rate are markedly smaller than those of New York as indicated in the caption of Fig. 3. The
inset in each panel shows the predicted behaviors of H(t) and I(t) towards the end of the epidemic. A
comparison between the predicted and actual daily number of confirmed cases indicates (a) and (d) as the
most likely scenarios for Washington at the present.

comparison with other States.

Epidemic scenarios for the State of New York

At the time of writing, New York State is the epicenter of COVID-19 in the US with the largest
number of confirmed cases and most deaths among all 50 States. The starting date of simulating
the epidemic in the State is March 2 and the population of the State is approximately 19 millions.
Figure 3 presents the predicted outcomes of four scenarios. In Fig. 3(a), the fraction of undoc-
umented infection is 50% (h = 0.5) and the control measures imposed by the State government
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FIG. 3. Prediction of COVID-19 epidemic scenarios in New York State. Legends are the same as those in
Fig. 1. The parameter values are: (a) h = 0.5 and l = 0.18, (b) h = 0.5 and l = 0.24, (c) h = 0.8 and
l = 0.18, and (d) h = 0.8 and l = 0.24. For (a) and (b), the optimal estimates of the number of initial
hidden population and the inflection rate are H⇤(0) = 3400 and b⇤ = 0.27. For (c) and (d), these values
are H⇤(0) = 8600 and b⇤ = 0.25. The inset in each panel shows the diminishing trend of H(t) and I(t)
during the last stage of the epidemic. A comparison of the model generated J(t) with the real data indicates
that none of the scenarios fits with the current trend in the State of New York. See text and SN 3 for an
explanation.

are relatively less stringent (l = 0.18). In this case, the inflection point will occur around April 8
when the infected population I(t) is peaked at the value of approximately 300,000. Because the
mean time delay from I state to J state is set as seven days, the population of newly confirmed
patients will be peaked around April 15, the epidemic will be over on about November 21, and
the final number of confirmed cases would be about 550,000. In Fig. 3(b), h is still 50% but more
stringent control measures are assumed: l = 0.24. In this case, the inflection point will occur
on about April 5 with the peaked value of I(t) about 240,000. Under the stringent measures, the
epidemic will be over around August 1 with the final number of confirmed cases about 330,000.
Figure 3(c) shows that, for h = 0.8 and l = 0.18, the inflection point will occur around April
9 with the peaked infected population 350,000. The final number of confirmed cases would be
750,000 and the epidemic would last into 2021 to end around May 30. Because only 20% of
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the infections are documented, the actual infected population would be about 3.75 millions. Fig-
ure 3(d) shows that, for h = 0.8 and l = 0.24, the inflection point will occur around April 6 with
the peaked infected population 270,000. In this case, the epidemic will last until September 6
with the total number of confirmed cases about 400,000. Comparing Fig. 3(c) with Fig. 3(a), we
see that, if the control measures are not as stringent (l = 0.18), insufficient tests and surveillance
leading to an increase in the value of h from 50% to 80% will have devastating consequences:
the epidemic duration will be significantly longer (six more months) and the number of confirmed
cases will be 36% higher. However, if the government measures are stringent (l = 0.24), as can
be seen by comparing Figs. 3(d) with Fig. 3(b), the same increase in the value of h would result in
only one extra day in the arrival of the inflection point, a month delay in the duration, and about
20% increase in the number of confirmed cases. These results indicate that, relative to testing and
surveillance, imposing more stringent control measures would be more effective at containing the
disease spreading.

Checking against the available data to date, we find that none of the four scenarios in Fig. 3
matches the real COVID-19 trend in the State of New York. This is due to a highly localized
or “singular” behavior: most infections in the State have occurred in New York City. Indeed, if
we treat New York City as an independent “State” system, a good match between some predicted
scenario(s) and the empirical data arises. Detailed results are presented in SN 3.

FIG. 4. Effect of varying government control measures on epidemic suppression in New York State. (a,b)
For h = 0.5 and h = 0.8, respectively, the ending date versus l. (c,d) For h = 0.5 and h = 0.8, respectively,
the peak populations of H and I as well as the final population J of confirmed cases versus l.
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Because of the severity of the epidemic in New York, it is of interest to assess the impact
of control measures in a systematic manner. Because these measures are imposed by the State
government, we consider the State of New York and calculate the epidemic duration and the final
sizes of the three key populations versus l. Figure 4(a) shows, for h = 0.5, the epidemic ending
date versus l. It can be seen that strengthening the measures can lead to an exponential shortening
in the duration of the epidemic. The corresponding results for h = 0.8 are shown in Fig. 4(b).
Figures 4(c) and 4(d) show, for h = 0.5 and h = 0.8, respectively, the peak H and I populations
as well as the final size J of the confirmed cases versus l, where more stringent government
measures can lead to an exponential decrease in the final size of the confirmed population. In
terms of specific numbers, a loose set of control measures, e.g., l = 0.16, will result in 800,000
(h = 0.5) or 1.1 million (h = 0.8) confirmed cases for the State of New York. However, a stringent
set of measures, say l = 0.28, would reduce the corresponding number to about 300,000 for both
h = 0.5 and h = 0.8. That is, if the government measures are sufficiently strict, the size of the
tested population becomes an insignificant factor determining the epidemic trend.

How do the daily population movements into and out of the State affect the epidemic trend?
To address this question, we simulate the closed five-state model for the State of New York and
compare the results (SN 4) with those in Fig. 3. We find that the population movements have
relatively small effects on the occurrence time of the inflection point and the peak value of the
I-state population, but can have a dramatic effect on the epidemic duration and the final size. For
example, for h = 0.8 and l = 0.18, the population movements can make the duration four months
longer but can reduce the final size of the confirmed population by about 15,000. This means that,
without a complete lockdown of the entire State of New York, the travelers out of the State will
spread the virus to the rest of the country, leading to a prolonged epidemic duration for the US
and the State itself. This conclusion is also supported by simulation results of the closed model
but for the entire country (SN 5), which demonstrate a similar epidemic trend as that of New York
for every parameter setting tested. The implication is that, while COVID-19 has already begun to
spread in other States throughout the country, a complete lockdown of the epicenter would still be
beneficial or even necessary. Merely practicing social distancing and imposing stay-at-home order
are not sufficient!

Effects of interstate and intrastate travel restrictions

The results obtained so far are under the assumption that interstate and intrastate travel restric-
tions generate the same rate of reduction in the social activities: linter = lintra. In reality the two
rates can be different. To systematically assess the effect of this difference, we fix one rate and cal-
culate the epidemic duration and size as a function of the other rate for the States of New York and
Arizona. Figures 5(a) and 5(b) show, for lintra = 0.18 and linter = 0.18, respectively, the ending
date of the epidemic in New York versus linter and lintra. The corresponding results for Arizona
are shown in Figs. 5(c) and 5(d). The inset in each panel shows the date of the occurrence of the
inflection point. From Figs. 5(a) and 5(c), we see that tighter restrictions on the interstate traffic
leading to an increase in the value of linter affect little the occurrence of the inflection point but
have some effect on the epidemic duration. Because of the ongoing large scale outbreak in New
York, imposing heavier restriction on interstate traffic only has an incremental effect on reducing
the duration, as shown in Fig. 5(a). However, for Arizona, because the outbreak is not severe, a
stronger restriction on interstate traffic is more effective at shortening the epidemic, as shown in
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FIG. 5. Impact of interstate and intrastate traffic restriction on epidemic duration in New York and Arizona.
(a) For New York, the ending dates of H (orange) and I (green) versus the interstate traffic reduction rate
linter for lintra = 0.18. (b) For New York, the ending dates versus the intrastate traffic reduction rate linra

for linter = 0.18. In (a,b), the fraction of undocumented inflections is h = 0.5 and the optimized model
parameter values are H⇤(0) = 3400 and b⇤ = 0.27. (c,d) The corresponding results for Arizona for h = 0.5,
H⇤(0) = 90, and b⇤ = 0.27. For both States, the effects of interstate traffic restriction are relatively small
(a,c), but the intrastate traffic restriction leads to an exponential shortening of the epidemic duration. Inset:
date of occurrence of inflection point in terms of the peak values of H (orange) and I (green).

Fig. 5(b). For both New York and Arizona, tightening the restriction on intrastate traffic can have
an exponential effect on shortening the duration, as shown in Figs. 5(b) and 5(d), respectively,
although the effect on advancing the occurrence of the inflection point is small (insets). Similar
results have been obtained on the effects of the interstate or intrastate traffic restrictions on the epi-
demic size for New York and Arizona (SN 6). These results justify and demonstrate the benefits
for the State government to issue strict stay-at-home or shelter-in-place orders to limit intrastate
activities.

Epidemic scenarios for seven other States

Predicted scenarios for seven other States: New Jersey, California, Michigan, Florida, Illinois,
Massachusetts, and Louisiana are presented in SNs 7-13, respectively. The results for the ten
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States and the US are summarized in Supplementary Table 1.

DISCUSSION

The number of confirmed cases in the United States has exceeded a quarter of global cases and
the epidemic is evolving rapidly in some States. Unlike countries such as China where the orders
of the central government are uniformly and strictly followed in the entire country, there is vast
heterogeneity among the States in the US in terms of population movements and the government
restriction orders, leading to drastically varying epidemic dynamics in different States. As a result,
prediction of the COVID-19 epidemics in the US needs to be done in a State-by-State manner. A
complication is that, because of the daily interstate population movements, each individual State is
effectively an open system, rendering inapplicable the recently developed non-Markovian model
for a closed system [24]. We have developed a generalized, non-Markovian epidemic model for
COVID-19 in an open setting, taking into account population movements into and out of the
system.

The main goal is to predict, for each of the ten States selected for this study (the nine States
with the most severe COVID-19 epidemics in the early stage, plus the State of Arizona), the most
likely epidemic scenario(s) based on the currently available data. In particular, for any given State,
we have used the daily number of confirmed cases up to March 29 to estimate the two key model
parameters: the initial population of hidden state and the infection rate, enabling the model to gen-
erate possible epidemic trajectories into the future. Comparing the trajectories with the available
data up to the time of writing (April 12) allows us to identify the most likely epidemic scenario(s)
for the State. For all ten States except the State of New York, at least one such epidemic scenario
can be identified. The difficulty with New York State has been resolved by noting the existence
of a singular and highly localized spot: New York City, into which vast majority of the cases in
the State fall, generating an exceptionally high degree of heterogeneity in the State and rendering
inaccurate model prediction of the entire State. The situation is similar to attempting to predict
the possible epidemic scenarios for the entire country of USA, which is not feasible due to the
highly heterogeneous pattern of outbreaks. Indeed, simulation of New York City alone as an in-
dependent system has generated two most likely scenarios that match with the data. The difficulty
with New York State and our successful resolution have thus provided further justification for
the State-by-State prediction approach. All these results have not only validated our model, but
also demonstrated its predictive power. The most likely epidemic scenario(s) for any given State
is (are) indicative of whether testing services and control measures are vigorous enough to fully
contain the spreading of COVID-19, providing guidance for improvement.

Another goal is to evaluate the effects of government imposed control measures on the epi-
demic trends through various scenarios. We have reported results from model predictions of the
ten States that differ in their testing and surveillance capabilities. The measures imposed by the
States to control COVID-19 also vary, which can be characterized by the exponential rates of
reduction in the interstate and intrastate human activities. Our finding is that, with insufficient
testing capability leading to a larger fraction of undocumented cases (e.g., 80% versus 50%) and
with strict control measures, the occurrence of the inflection point will be delayed for a few days,
the peak infected and documented population will increase by 20%, the epidemic duration will be
prolonged for as long as half year, and the final infected population can increase by 70%. How-
ever, relaxing the control measures can have more devastating consequences. For example, a loose
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restriction measure (e.g., social-distancing only without stay-at-home order) can lead to a delay in
the occurrence of the inflection point by ten days, a 40% increase in the peak infection, epidemic
duration of over one year, and a more than five-fold increase in the size of the final infections
(documented or undocumented). Simulation results incorporating uncertainties in the prediction
still support the above conclusions (SN 13). We also find that imposing intrastate movement re-
striction can suppress exponentially the epidemic in both its duration and size, regardless of the
current epidemic trend of the State. A comparison among the predicted scenarios for different
States reveals a difference in the occurrence of the inflection point of about ten days but a stretch
in the epidemic duration for as long as one year. Especially, simulations treating the State of New
York as an open or a closed system reveal that, if the system is open, the final confirmed cases
would be reduced by 15,000 but the duration can be longer by four months. This is because, a
fraction of the reduced infected population in New York would diffuse into other States, making
the epidemic of the whole country longer. Interstate travel thus poses a significant threat to States
such as Arizona, where the epidemic is much less severe. This suggests the necessity of a complete
lockdown of New York, the current epicenter, to significantly shorten the epidemic in the US as a
whole. Our findings suggest that the duration of such strict lockdown should be no less than one
year.

METHODS

Non-Markovian, five-state model for COVID-19 in any individual State as an open system

To model the COVID-19 epidemic in an open system, three unique features must be considered:
(1) undocumented population with no or mild symptoms, (2) non-Markovian state transitions, and
(3) time dependence due to human movements in and out of the system. Models developed in
the past few months [2–9, 27] provide insights but do not take into account the three features. If
the system is closed, it is only necessary to consider the first two features, resulting in a five-state
model [24]. Here we generalize the closed-system model to include time dependence.

Figure 6 illustrates the generalized model. An individual can be in one of the five states at each
time step: susceptible (S), hidden (H), infected (I), confirmed and isolated (J), and removed (R).
The states S, I, and R have the same meanings as in the classical SIR model for infectious disease,
but states H and J are unique for COVID-19. In particular, an individual in H has had the virus and
is infectious but is asymptomatic or only mildly symptomatic, in contrast to the I state in which
individuals show symptoms. The J state contains individuals who are confirmed with COVID-19.
Note that, individuals in the I or J state are quarantined or hospitalized, so the probability for them
to infect others can be neglected. Individuals in the R state, by definition, are not infectious. Thus,
only the H individuals are capable of infecting others [24].

The spreading dynamical process can be described, as follows. Individuals in the S state are
infected by H individuals at the rate b and switch to the H state. A fraction h of H-state individuals
recover spontaneously or die, a process that requires t3 days. The parameter h thus represents the
fraction of undocumented infections, and its value is determined by the testing capability of the
country or State. The remaining (1�h) fraction of H individuals go through a transition to the
I state after an average incubation period of t1 days - a typical non-Markovian process. With
medical treatment, individuals in the I state recover or die after t2 days. Finally, a time delay
exists for the transition from I to J: on average the I individuals will need t4 days to be confirmed.
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FIG. 6. Schematic illustration of generalized COVID-19 model for an open system. The five states are: S
(susceptible), H (hidden), I (infected), J (infected and confirmed), and R (removed: cured or died). Param-
eter b is the infection rate, and t1, t2, t3, and t4 represent the four relevant time delays between different
state pairs due to the non-Markovian nature of the epidemic. The four quantities Sin(t), Sout(t), Hin(t), and
Hout(t) represent the populations moving into and out of the S and H states of the open system.

We treat each State in the US as an open system, regarding the influences from all the other
States as perturbations, mathematically represented by the populations moving into and out of the
S and H states, denoted as Sin(t), Sout(t), Hin(t), and Hout(t), respectively, as shown in Fig. 6.
These functions are determined by the travel intensity as a function of time. Two types of travel
need to be distinguished: interstate and intrastate, with the corresponding intensity functions
linter(t) and lintra(t). Due to government imposed travel restrictions, these functions decay expo-
nentially from an initial value to a final smaller constant value. For instance, a recent estimate [15]
gives that, for several major US cities, the travel restrictions would reduce the outbound human
movements by 50%. In general, we have

linter(t) =

8
><

>:

1, t < tc,

e�linter(t�tc), tc  t  ts,

e�linter(ts�tc), t > ts,

(1)

and

lintra(t) =

8
>><

>>:

1, t < ti
c,

e�lintra(t�ti
c), ti

c  t  ti
s,

e�lintra(ti
s�ti

c), t > ti
s,

(2)

where tc and ti
c are, respectively, the starting dates of interstate and intrastate travel restrictions

and the exponential decay in the movement activities occurs between tc and ts or between ti
c and
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ti
s. The starting dates differ from State to State. For the ten States studied, the dates ti

c are listed
in Supplementary Table 2. The values of ts and ti

s are set as tc + 7 and ti
c + 7, respectively. Our

generalized five-state model for COVID-19 epidemic for any given target State in the US (an open
system) can be described by the following set of delayed integro-differential equations:

dS(t)
dt

=�Hn(t)�Sout(t)+Sin(t), (3)

F(t) = Hn(t)�Hout(t)+Hin(t), (4)
dH(t)

dt
= F(t)� (1�h)

Z t

0
f1(t)F(t � t)dt�h

Z t

0
f3(t)F(t � t)dt

�(1�h) f1(t)H(0)�h f3(t)H(0),
dI(t)

dt
= (1�h)

Z t

0
f1(t)F(t � t)dt (5)

�(1�h)
Z t

0
f2(t0)dt0

Z t�t0

0
f1(t)F(t � t0 � t)dt1

+(1�h) f1(t)H(0)� (1�h)
Z t

0
f2(t) f1(t � t)H(0)dt� f2(t)I(0),

dR(t)
dt

= h
Z t

0
f3(t)F(t � t)dt (6)

+(1�h)
Z t

0
f2(t0)dt0

Z t�t0

0
f1(t)F(t � t0 � t)dt1

+h f3(t)H(0)+(1�h)
Z t

0
f2(t) f1(t � t)H(0)dt+ f2(t)I(0),

dJ(t)
dt

= (1�h)
Z t

0
f4(t0)dt0

Z t�t0

0
f1(t)F(t � t0 � t)dt (7)

+(1�h)
Z t

0
f4(t) f1(t � t)H(0)dt,

dN
dt

= (Fin �Fout)linter(t), (8)

where the quantity Hn(t) in Eqs. (3) and (4) is the rate of increase in the H-state population:
Hn(t) = bS(t)lintraH(t)/N(t) with lintra(t)H(t) representing the active H-state population that
has not been isolated, f1(t), f2(t), f3(t), and f4(t) are the normal probability distribution func-
tions [24] of the delay time t1, t2, t3, and t4, respectively, and N(t) is the population of the State as
a function of time. The quantity F(t) is the increment of the H-state population. A term-by-term
explanation of the integro-differential equations can be found in Ref. [24]. The input and output
functions given by

Sin(t) = Finlinter(t)
Stotal(t)

Stotal(t)+Htotal(t)
, (9)

Sout(t) = Fout linter(t)
S(t)

S(t)+H(t)
, (10)

Hin(t) = Finlinter(t)
Htotal(t)

Stotal(t)+Htotal(t)
, (11)

Hout(t) = Fout linter(t)
H(t)

S(t)+H(t)
, (12)
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where the quantities Stotal(t) and Htotal(t) are the total S and H-state populations of the US ex-
cluding the target State, Fin(t) and Fout(t) are the fluxes into and out of the State, which can be
extrapolated from empirical data. To numerically solve the whole set of equations, the values of
the initial H-state population, H(0), and of the infection rate b are needed, which can be estimated
through a mathematical optimization procedure [24].

Determination of in and out population fluxes

To determine the daily fluxes Fin(t) and Fout(t), we use the commuting data from the US Census
Bureau (https://www.census.gov/topics/employment/commuting.html), which were obtained from
sampling the home and work addresses of the working population in the five-year period (2011-
2015). Our estimation method is described, as follows. Assume that the commuting population is
distributed uniformly among the States. On average, each working individual commutes 0.11 time
per day. Multiplying this number by the population of the State gives the daily average number
of people who commute. Denoting this number by Q and letting the commuting populations
from the Census Bureau’s data base be Pin/out , we obtain the ratio Cin/out = Q/Pin/out . Let Din/out
be populations in and out of the State from the data base. The daily fluxes can be obtained as
Fin/out = Cin/out ·Din/out . For the ten States studied, the flux values are listed in Supplementary
Table 3.

DATA AND CODE AVAILABILITY

All relevant data are available from the authors upon request. All relevant computer codes are
available from the authors upon request.
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Supplementary Note 1: Recent efforts in COVID-19 modeling and prediction

There have been focused recent efforts in predicting the epidemic trends of COVID-19 and the
effects of government control measures through mathematical modeling [1–23]. For example, two
control strategies, one focusing on mitigation and another on suppression, were studied and com-
pared [11] with the conclusion that, in the United Kingdom, even some best and optimal mitigation
measures can lead to a two-thirds reduction in the demand for medical diagnosis and treatment and
a 50% decrease in the number of deaths, the epidemic would still result in hundred thousands deaths
and overwhelm the intensive care system. The suggestion is that, even for countries whose health
care systems are still functional at the present, the strategy of suppression should be given a higher
priority. Another work studied the epidemic risks and trends in different cities in Spain [13] through
traffic data-driven, stochastic simulations of virus propagation and diffusion in spatial regions and
inference of the starting time of the epidemic. The results suggest that finding and isolating the in-
fected individuals at the earliest possible time as well as taking intervention measures to reduce the
infection rate are effective strategies. Simulations of traditional mathematical models in epidemi-
ology suggest the benefits of local prevention measures such as forbidding mass social gatherings,
pinning down the exposure time as an important factor in disease spreading [14]. For example, if
the basic reproduction number is two and the infection period is 14 days, if an infected individual
stays at a gathering for more than nine hours, the likelihood of infecting others is high. If the expo-
sure time exceeds 18 hours, the participants in the gathering should take strict measures to protect
themselves. The effects of travel restrictions on COVID-19 spreading were studied [15], with the
finding that the lockdown of Wuhan city in China provided a golden time between three and five
days for other regions of China to get prepared and, by the middle of February, might have sup-
pressed the scale of global pandemic by as much as 80%. It was suggested that travel restriction in
combination with individual prevention measures such as wearing facial masks leading to a reduc-
tion in the infection rate by more than 50% can suppress the epidemic. The exponential growth rate
in different regions of China in the early stage of COVID-19 epidemic was estimated [16] through
a significant level analysis, revealing an approximately uniform value for China: 2.1± 0.3 with the
finding that effective control strategies leading to dramatic changes in the collective behaviors of
the vulnerable population have a direct impact on the growth rate. A network model based on dy-
namic compartments and the SEIR (susceptible-exposed-infected-recovered) spreading dynamics
was articulated [18] to analyze the effects of travel restriction, business closure, and social dis-
tancing on the epidemic, with the finding that school closure would shield the youth population
from the disease, bar closures would be beneficial to young people and adults alike, and canceling
religious services would protect the adults and the elders.

Models for the COVID-19 epidemic in the United States have also been developed. A metapop-
ulation model was proposed to simulate the SARS-CoV2 spread and the effects of social distancing
and travel restriction on suppressing the epidemic in the continental US [20] with the prediction of
large scale outbreak in the country within 180 days after March 13. A network-driven epidemic dy-
namic model was constructed to simulate the COVID-19 progression timeline and the effectiveness
of interventions across the US [21] with the prediction that, without control measures and travel
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restriction, about 7% of the population of the country would be infected when the epidemic peaks
at the beginning of June. If the infection rate of COVID-19 is weakened by 25%, the peak would be
delayed for about 34 days and its height would be reduced by 39%. Simulations of a model adopted
from influenza management suggested [11] the necessity to maintain the control measures until a
vaccine becomes available in about 18 months, but socially and economically this would represent
a great challenge. Intermittent implementation of social distancing according to epidemic develop-
ment can allow relaxation of control measures in relatively short time windows: in case a second
wave of epidemic begins to emerge, social distancing and family isolation of suspected infections
can be put in place again with an increasing intensity. The growth rate and reproductive number
of COVID-19 were estimated [22] between March 14 and 19 for different cities in the US, reveal-
ing a power law relationship between these quantities and the city population. The implication is
that the spreading speed in larger cities will be higher and, without control and prevention mea-
sures, a larger fraction of the population would be infected in larger cities. A dynamic model for
COVID-19 was proposed [23] for comparing containment strategies in a pandemic scenario that
the government can choose: one is a persistent control measure and another is based on adaptive
implementation of suppression strategies with intensity depending on time, where the latter can
shorten the epidemic duration to a greater extent as compared with the former. In fact, more lives
can be saved if strict control measures are implemented earlier.
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Supplementary Note 2: Epidemic scenarios in Arizona as a closed system

We simulate four distinct epidemic scenarios for the State of Arizona treated as a closed system
with different combinations of testing capability and strength of control measures. The results are
listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 5, 2020 2.5⇥ 103 September 15, 2020 4.9⇥ 103 Fig. S1(a)
Open system results April 5, 2020 2.6⇥ 103 September 20, 2020 5.3⇥ 103 main text
⌘ = 0.5, � = 0.24 April 2, 2020 2.0⇥ 103 June 18, 2020 2.7⇥ 103 Fig. S1(b)
Open system results April 2, 2020 2.0⇥ 103 June 20, 2020 2.9⇥ 103 main text
⌘ = 0.8, � = 0.18 April 6, 2020 2.6⇥ 103 March 7, 2021 7.6⇥ 103 Fig. S1(c)
Open system results April 7, 2020 2.9⇥ 103 March 16, 2021 8.9⇥ 103 main text
⌘ = 0.8, � = 0.24 April 3, 2020 2.0⇥ 103 July 18, 2020 3.0⇥ 103 Fig. S1(d)
Open system results April 3, 2020 2.1⇥ 103 July 22, 2020 3.4⇥ 103 main text

Note that, for the closed system setting, the match between J(t) and the real data is not as good
as that in the open system setting shown in the main text, indicating the necessity to model the State
of Arizona as an open system. Comparing the results for the closed and open system settings, we
see that the largest difference occurs for case (c) where testing is insufficient and control measures
are not stringent. In this case, the realistic open system will endure a longer epidemic by about
9 days and an increase of about 1200 in the final confirmed cases. For case (d) where testing
is insufficient but control measures are more strict, the differences between the closed and open
system settings are much less. These results call for vigorous enforcement of government control
measures.
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Supplementary Note 3: Epidemic scenarios in New York City as a closed system

We simulate four distinct epidemic scenarios for New York City as a closed system with dif-
ferent combinations of testing capability and strength of control measures. The City population is
about 8.51 millions. The values of the parameters H⇤(0) and �⇤ are estimated using the data of
daily number of confirmed cases on and before March 29. The results are listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 5, 2020 1.1⇥ 105 September 8, 2020 1.8⇥ 105 Fig. S2(a)
⌘ = 0.5, � = 0.24 April 3, 2020 0.9⇥ 105 July 8, 2020 1.3⇥ 105 Fig. S2(b)
⌘ = 0.8, � = 0.18 April 6, 2020 1.1⇥ 105 October 15, 2020 1.9⇥ 105 Fig. S2(c)
⌘ = 0.8, � = 0.24 April 3, 2020 0.9⇥ 105 July 24, 2020 1.3⇥ 105 Fig. S2(d)

A comparison between the projected J(t) in different panels of Fig. S2 and the available data up
to April 12 indicates that Figs. S2(b) and S2(d) represent two likely scenarios for New York City,
Note that, in both scenarios, the value of � is 0.24, which is consistent with the strict lockdown and
restriction measures imposed by the City.

4

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.24.20078774doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.24.20078774


Supplementary Note 4: Epidemic scenarios in New York State as a closed system

In the main text, the predicted epidemic scenarios for the State of New York obtained using
the realistic, dual system, coupled five-state model. To assess the effect of interstate traffic on
the epidemic, here we study the hypothetical setting where the State is treated as a closed system.
Let T

inflection

be the date of occurrence of the inflection point, I
peak

be the peaked value of I(t),
T
ending

be the ending date of the epidemic, and J
final

be the final number of confirmed cases. Four
possible epidemic scenarios are shown in Fig. S3. The results, in comparison with those for the
corresponding open system in the main text, are listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 8, 2020 3.2⇥ 105 November 19, 2020 5.8⇥ 105 Fig. S3(a)
Open system results April 8, 2020 3.0⇥ 105 November 21, 2020 5.5⇥ 105 main text
⌘ = 0.5, � = 0.24 April 5, 2020 2.5⇥ 105 August 2, 2020 3.5⇥ 105 Fig. S3(b)
Open system results April 5, 2020 2.4⇥ 105 August 1, 2020 3.3⇥ 105 main text
⌘ = 0.8, � = 0.18 April 9, 2020 3.6⇥ 105 January 16, 2021 7.6⇥ 105 Fig. S3(c)
Open system results April 9, 2020 3.5⇥ 105 May 30, 2021 7.5⇥ 105 main text
⌘ = 0.8, � = 0.24 April 6, 2020 2.8⇥ 105 September 5, 2020 4.2⇥ 105 Fig. S3(d)
Open system results April 6, 2020 2.7⇥ 105 September 6, 2020 4.0⇥ 105 main text

Comparing the predictions from the closed and open system settings, we see that the main
difference occurs in the epidemic ending time for case (c): ⌘ = 0.8 and � = 0.18, where the
undocumented infection rate is as high as 80% and the government control measures are not vig-
orous. In this case, if New York State is treated as a closed system, the epidemic would end on
January 16, 2021. However, in the open system setting, the ending date would be more than four
months later: May 30, 2021. This means that, if testing and surveillance are largely insufficient,
loose control measures would significantly prolong the epidemic due to interstate travel. Indeed,
strict implementation of the control measures would diminish the detrimental effects of interstate
travel because the predictions from the closed and open system settings are nearly identical even
for lack of sufficient testing, as for case (d). These results further highlight the importance of strict
implementation and enforcement of government control and prevention measures, corroborating
the results in Figs. 3 and 4 in the main text.
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Supplementary Note 5: Epidemic scenarios in USA as a closed system

We treat the US as a closed system, neglecting the influence of input cases from foreign coun-
tries after January 30. The total population is N = 3.3⇥108. The results of four predicted scenarios
are listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 7, 2020 9.0⇥ 105 December 14, 2020 1.7⇥ 106 Fig. S4(a)
⌘ = 0.5, � = 0.24 April 4, 2020 7.3⇥ 105 August 10, 2020 106 Fig. S4(b)
⌘ = 0.8, � = 0.18 April 9, 2020 1.1⇥ 106 July 21, 2021 2.9⇥ 106 Fig. S4(c)
⌘ = 0.8, � = 0.24 April 6, 2020 8.2⇥ 105 September 30, 2020 1.3⇥ 106 Fig. S4(d)

From the insets in different panels of Fig. S4, we note a delay in the disappearance of the H-state
population in comparison with the I-state - about seven days for cases (a,b,d) but one month for
case (c). This means that, if testing and surveillance are insufficient, the number of confirmed cases
reaching zero does not mean the end of the epidemic: there are still a non-negligible number of
hidden individuals who carry the virus, are asymptomatic, and can infect others, thereby requiring
long term placement of control measures to minimize the rise of a second outbreak. In fact, in
Wuhan city (the epicenter in China), the number of confirmed cases has been zero for a few weeks,
but the lockdown order was in place until around April 8 and social distancing and isolation orders
are still being vigorously enforced.

Supplementary Note 6: Impacts of interstate and intrastate travel restrictions on eventual
epidemic size in New York and Arizona

In the main text, results on the impacts of interstate and intrastate traffic restriction on the
epidemic duration in New York and Arizona are presented (Fig. 5). Here we present results on the
impacts of such travel restrictions on the final epidemic size in the two states, as shown in Fig. S5.
When a reasonable level of testing is assumed (⌘ = 0.5), the effects of interstate travel restriction
on the epidemic sizes are insignificant [Figs. S5(a) and S5(c)]. However, intrastate travel restriction
can have an exponential effect on the epidemic sizes [Figs. S5(b) and S5(d)], similar to its effect on
the epidemic duration as described in the main text.
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Supplementary Note 7: Epidemic scenarios in New Jersey as an open system

We simulate four distinct epidemic scenarios for the State of New Jersey treated as an open
system with different combinations of testing capability and strength of control measures. The
starting date of the epidemic is March 5. The population of the State is N = 8.8⇥ 106. The results
are shown in Figs. S6(a-d) and are listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 7, 2020 5.4⇥ 104 October 11, 2020 105 Fig. S6(a)
⌘ = 0.5, � = 0.24 April 4, 2020 4.4⇥ 104 July 16, 2020 6.0⇥ 104 Fig. S6(b)
⌘ = 0.8, � = 0.18 April 8, 2020 5.7⇥ 104 December 19, 2020 1.3⇥ 105 Fig. S6(c)
⌘ = 0.8, � = 0.24 April 5, 2020 4.5⇥ 104 August 14, 2020 6.7⇥ 104 Fig. S6(d)

Comparing the model predicted J(t) with the real data, we find that Figs. S6(a) and S6(c)
represent the two likely scenarios for the State of New Jersey. In both scenarios, the value of � is
0.18, indicating that the government control measures are not vigorous. The results in Figs. S6(b)
and S6(d) indicate that imposing strict government control measures can effectively suppress the
epidemic even when testing and surveillance are not sufficient.

Supplementary Note 8: Epidemic scenarios in California as an open system

We simulate four distinct epidemic scenarios for the State of California as an open system with
different combinations of testing capability and strength of control measures. The starting date of
the epidemic is February 26. The population of the State is N = 39 millions. The results are shown
in Figs. S7(a-d) and are listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 5, 2020 1.5⇥ 104 October 7, 2020 2.9⇥ 104 Fig. S7(a)
⌘ = 0.5, � = 0.24 April 2, 2020 1.2⇥ 104 July 3, 2020 1.7⇥ 104 Fig. S7(b)
⌘ = 0.8, � = 0.18 April 6, 2020 1.8⇥ 104 May 31, 2021 5.3⇥ 104 Fig. S7(c)
⌘ = 0.8, � = 0.24 April 3, 2020 1.3⇥ 104 August 13, 2020 2.1⇥ 104 Fig. S7(d)

Comparing the model predicted J(t) with the real data, we find that Fig. S7(c) represents a
likely scenario for the State of California, which indicates that both government testing services and
the control measures are not vigorous enough. Also, comparing Fig. S7(b) with Fig. S7(d) reveals
that, when the government testing and surveillance services are significantly reduced, insofar as
a stringent set of control measures is in place, the resulting epidemic would be worse but to a
relatively small extent, unequivocally pointing at the extremely important role of placing vigorous
government control measures in suppressing the epidemic.
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Supplementary Note 9: Epidemic scenarios in Michigan as an open system

We simulate four distinct epidemic scenarios for the State of Michigan as an open system with
different combinations of testing capability and strength of control measures. The starting date of
the epidemic is March 11. The population of the State is N = 9, 986, 857. The results are shown
in Figs. S8(a-d) and are listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 9, 2020 3.5⇥ 104 November 1, 2020 6.7⇥ 104 Fig. S8(a)
⌘ = 0.5, � = 0.24 April 6, 2020 2.8⇥ 104 July 17, 2020 3.8⇥ 104 Fig. S8(b)
⌘ = 0.8, � = 0.18 April 10, 2020 3.5⇥ 104 March 23, 2021 9.0⇥ 104 Fig. S8(c)
⌘ = 0.8, � = 0.24 April 7, 2020 2.7⇥ 104 August 19, 2020 4.0⇥ 104 Fig. S8(d)

Comparing the model predicted J(t) with the real data, we find that Fig. S8(d) represents a
likely scenario for the State of Michigan. Also, comparing Fig. S8(b) with Fig. S8(d) reveals the
important role of placing strict government control measures in suppressing the epidemic.

Supplementary Note 10: Epidemic scenarios in Florida as an open system

We simulate four distinct epidemic scenarios for the State of Florida as an open system with
different combinations of testing capability and strength of control measures. The starting date of
the epidemic is March 2. The population of the State is N = 21, 477, 737. The results are shown
in Figs. S9(a-d) and are listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 9, 2020 2.5⇥ 104 November 3, 2020 5.0⇥ 104 Fig. S9(a)
⌘ = 0.5, � = 0.24 April 6, 2020 2.0⇥ 104 July 14, 2020 2.8⇥ 104 Fig. S9(b)
⌘ = 0.8, � = 0.18 April 10, 2020 2.8⇥ 104 May 8, 2021 7.8⇥ 104 Fig. S9(c)
⌘ = 0.8, � = 0.24 April 7, 2020 2.1⇥ 104 August 19, 2020 3.2⇥ 104 Fig. S9(d)

Comparing the model predicted J(t) with the real data, we find that Figs. S9(b) and S9(d)
represent two likely scenarios for the State of Florida.
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Supplementary Note 11: Epidemic scenarios in Illinois as an open system

We simulate four distinct epidemic scenarios for the State of Illinois as an open system with
different combinations of testing capability and strength of control measures. The starting date of
the epidemic is February 26. The population of the State is N = 12, 671, 821. The results are
shown in Figs. S10(a-d) and are listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 6, 2020 1.8⇥ 104 October 24, 2020 3.5⇥ 104 Fig. S10(a)
⌘ = 0.5, � = 0.24 April 4, 2020 1.4⇥ 104 July 9, 2020 1.9⇥ 104 Fig. S10(b)
⌘ = 0.8, � = 0.18 April 8, 2020 1.9⇥ 104 April 21, 2021 5.4⇥ 104 Fig. S10(c)
⌘ = 0.8, � = 0.24 April 5, 2020 1.4⇥ 104 August 14, 2020 2.2⇥ 104 Fig. S10(d)

Comparing the model predicted J(t) with the real data, we find that Figs. S10(a) and S10(c)
represent two likely scenarios for the State of Illinois.

Supplementary Note 12: Epidemic scenarios in Massachusetts as an open system

We simulate four distinct epidemic scenarios for the State of Massachusetts as an open system
with different combinations of testing capability and strength of control measures. The starting
date of the epidemic is March 2. The population of the State is N = 6, 892, 503. The results are
shown in Figs. S11(a-d) and are listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 10, 2020 3.7⇥ 104 October 30, 2020 7.0⇥ 104 Fig. S11(a)
⌘ = 0.5, � = 0.24 April 7, 2020 2.9⇥ 104 July 17, 2020 4.0⇥ 104 Fig. S11(b)
⌘ = 0.8, � = 0.18 April 11, 2020 3.6⇥ 104 March 25, 2021 9.0⇥ 104 Fig. S11(c)
⌘ = 0.8, � = 0.24 April 8, 2020 2.7⇥ 104 August 19, 2020 4.1⇥ 104 Fig. S11(d)

Comparing the model predicted J(t) with the real data, we find that Fig. S11(d) represents
a likely scenario for the State of Massachusetts, suggesting that the current government control
measures are stringent.
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Supplementary Note 13: Epidemic scenarios in Louisiana as an open system

We simulate four distinct epidemic scenarios for the State of Louisiana as an open system with
different combinations of testing capability and strength of control measures. The starting date of
the epidemic is March 9. The population of the State is N = 4, 648, 794. The results are shown in
Figs. S12(a-d) and are listed in the table below.

Parameter values T
inflection

I
peak

T
ending

J
final

Figure
⌘ = 0.5, � = 0.18 April 8, 2020 2.3⇥ 104 October 4, 2020 4.2⇥ 104 Fig. S12(a)
⌘ = 0.5, � = 0.24 April 5, 2020 1.9⇥ 104 July 8, 2020 2.6⇥ 104 Fig. S12(b)
⌘ = 0.8, � = 0.18 April 10, 2020 2.6⇥ 104 February 24, 2021 6.3⇥ 104 Fig. S12(c)
⌘ = 0.8, � = 0.24 April 7, 2020 2.0⇥ 104 August 13, 2020 2.9⇥ 104 Fig. S12(d)

Comparing the model predicted J(t) with the real data, we find that Figs. S12(b) and S12(d)
represent two likely scenarios for the State of Louisiana.
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Supplementary Note 14: Uncertainty ranges of selected predictions

Due to the uncertainties in the estimated model parameters, for each scenario, the predicted
outcomes have a range. To determine the daily ranges for all cases is computationally prohibitive.
For the purpose of illustration, we present the range of predicted quantities for three examples:
New York and Arizona as an open system and the US as a closed system.

A difficulty in assessing the uncertainties in the estimated parameter values is the lack of suf-
ficient samples or data. Our solution is to resort to the non-parametric bootstrap method [24] and
apply it to J(t). The basic assumption is that the data point J(t

i

) obeys a normal distribution. The
parameter uncertainties can be obtained through multiple sampling of the optimal model. In partic-
ular, from the data of confirmed infections J(t1), J(t2), . . . , J(tn), we first use a least squares fitting
to obtain the optimal estimates of the parameters: ⇥̂ ⌘ (✓̂1, ✓̂2), where ✓̂1 ⌘ � and ✓̂2 ⌘ H(0). Let
J(t

i

, ⇥̂) denote the model predicted data set of confirmed infections from the estimated parameter
values ⇥̂. For the normal distribution of J(t

i

, ⇥̂) at time t
i

, its mean is taken to be the actual data
point J(t

i

) and its standard deviation is approximated by that of the increments in the number of
confirmed cases within five days. We then generate S = 103 realizations of the data set J(t

i

, ⇥̂),
denoted as J⇤

k

(t
i

, ⇥̂) for t = 1, . . . , n and k = 1, . . . , S. For each data realization, the optimal
parameter values can be estimated, generating the corresponding prediction results. Repeating this
procedure for each of the S data sets gives the prediction ranges for the epidemic quantities of
interest.

The results with the prediction ranges for the three examples are shown in Figs. S13, S14, and
S15. We observe that the uncertainty ranges of the predicted quantities increase with time, as ex-
pected. The open system model generates predictions with relatively less uncertainty as compared
to those from the closed system model.
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Supplementary Table 1. Summary of prediction results for ten States (each as an open system),
for New York and Arizona (each as a closed system), and for USA as a closed system.

⌘ � H(0) � I(Peak time) I(Peak) J(End number) H(End time) I(End time)
NY

open

0.5 0.18 3400 0.27 4/08 303031 554480 11/14 11/21
0.5 0.24 3400 0.27 4/05 243468 334812 7/24 8/01
0.8 0.18 8600 0.25 4/09 347790 754604 2021/5/30 2021/4/16
0.8 0.24 8600 0.25 4/06 270263 402563 9/06 8/31

WA
open

0.5 0.18 530 0.18 4/03 8326 13441 7/25 8/02
0.5 0.24 530 0.18 4/01 7744 11087 6/01 6/10
0.8 0.18 1250 0.16 4/04 9368 16688 12/04 11/03
0.8 0.24 1250 0.16 4/02 8532 12551 7/03 6/28

AZ
open

0.5 0.18 90 0.27 4/05 2621 5271 9/12 9/20
0.5 0.24 90 0.27 4/02 2047 2857 6/12 6/20
0.8 0.18 260 0.24 4/07 2881 8869 2021/3/16 2021/2/07
0.8 0.24 260 0.24 4/03 2148 3352 7/22 7/15

NY
closed

0.5 0.18 3400 0.27 4/08 317578 583216 11/11 11/19
0.5 0.24 3400 0.27 4/05 254237 350207 7/25 8/02
0.8 0.18 8600 0.25 4/09 361411 769303 2021/1/16 12/30
0.8 0.24 8600 0.25 4/06 280625 418007 9/05 8/30

USA 0.5 0.18 20 0.26 4/07 899131 1670906 12/07 12/14
0.5 0.24 20 0.26 4/04 725190 1005647 8/02 8/10
0.8 0.18 35 0.24 4/09 1079961 2856523 2021/7/21 2021/6/21
0.8 0.24 35 0.24 4/06 821557 1260796 9/30 9/23

AZ
closed

0.5 0.18 90 0.27 4/05 2496 4895 9/08 9/15
0.5 0.24 90 0.27 4/02 1964 2721 6/10 6/18
0.8 0.18 250 0.24 4/06 2634 7603 2021/3/07 2021/1/28
0.8 0.24 250 0.24 4/03 1984 3049 7/18 7/11

NJ
open

0.5 0.18 1350 0.28 4/07 54416 100740 10/04 10/11
0.5 0.24 1350 0.28 4/04 43659 60069 7/08 7/16
0.8 0.18 3900 0.25 4/08 57358 129208 12/19 12/02
0.8 0.24 3900 0.25 4/05 44805 67057 8/14 8/09

CA
open

0.5 0.18 130 0.26 4/05 15205 28903 9/29 10/07
0.5 0.24 130 0.26 4/02 12181 16938 6/25 7/03
0.8 0.18 300 0.24 4/06 17807 53315 2021/5/31 2021/4/13
0.8 0.24 300 0.24 4/03 13353 20791 8/13 8/05

MI
open

0.5 0.18 2000 0.27 4/09 35383 67416 10/25 11/01
0.5 0.24 2000 0.27 4/06 28054 38412 7/09 7/17
0.8 0.18 5300 0.24 4/10 35148 90030 2021/3/23 2021/2/22
0.8 0.24 5300 0.24 4/07 26791 40470 8/19 8/12

FL
open

0.5 0.18 200 0.27 4/09 25450 49910 10/26 11/03
0.5 0.24 200 0.27 4/06 20000 27850 7/06 7/14
0.8 0.18 580 0.24 4/10 27639 78033 2021/5/08 2021/4/04
0.8 0.24 580 0.24 4/07 20815 32083 8/19 8/12

IL
open

0.5 0.18 70 0.27 4/06 17693 35053 10/17 10/24
0.5 0.24 70 0.27 4/04 13854 19380 7/01 7/09
0.8 0.18 200 0.24 4/08 18768 54466 2021/4/21 2021/3/20
0.8 0.24 200 0.24 4/05 14063 21868 8/14 8/07

MA
open

0.5 0.18 240 0.27 4/10 36728 69955 10/23 10/30
0.5 0.24 240 0.27 4/07 29083 40276 7/08 7/17
0.8 0.18 630 0.24 4/11 35763 90124 2021/3/25 2021/2/22
0.8 0.24 630 0.24 4/08 27297 41468 8/19 8/12

LA
open

0.5 0.18 1050 0.26 4/08 23164 42051 9/27 10/04
0.5 0.24 1050 0.26 4/05 18747 25581 6/30 7/08
0.8 0.18 2550 0.24 4/10 25515 62689 2021/2/24 2021/1/27
0.8 0.24 2550 0.24 4/07 19557 29480 8/13 8/06
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Supplementary Table 2. The dates on which travel restriction orders were issued in the ten States
studied. For each state, the date is effectively one on which an exponential decay in intrastate traffic
begins.

State Date
Arizona March 19, 2020
Washington March 23, 2020
New York March 22, 2020
New Jersey March 21, 2020
California March 19, 2020
Michigan March 23, 2020
Florida March 23, 2020
Illinois March 21, 2020
Massachusetts March 24, 2020
Louisiana March 23, 2020

Supplementary Table 3. Average daily outbound and inbound populations and the total population
for the ten States studied

State Outbound Inbound Population
Arizona 13,679 6,515 7,278,717
Washington 27,339 15,495 7,614,893
New York 55,012 133,095 19,453,561
New Jersey 133,507 71,056 8,882,190
California 21,171 19,979 39,512,223
Michigan 21,179 11,625 9,986,857
Florida 28,871 22,111 21,477,737
Illinois 48,160 45,451 12,671,821
Massachusetts 30,217 44,987 6,892,503
Louisiana 11,754 14,994 4,648,794
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Supplementary Figures

Supplementary Figure S1. Prediction of COVID-19 epidemic scenarios for the State of Arizona
treated as a closed system. Shown are H(t) (dashed orange curve), I(t) (green dot-dashed curve),
and J(t) (solid purple curve) from March 5 to September 21 as predicted by the closed five-state
model. The open blue circles are the actual data of J(t) available up to the time of writing. The
parameter settings are: (a) ⌘ = 0.5 and � = 0.18, (b) ⌘ = 0.5 and � = 0.24, (c) ⌘ = 0.8 and
� = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a) and (b), the optimal estimates of the number of
initial hidden population and the inflection rate are H⇤(0) = 90 and �⇤ = 0.27. For (c) and (d),
these values are H⇤(0) = 250 and �⇤ = 0.24. The inset in each panel shows the diminishing trend
of H(t) and I(t) during the last stage of the epidemic.
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Supplementary Figure S2. Prediction of COVID-19 epidemic scenarios for the City of New York
treated as a closed system. The legends are the same as those in Fig. S1. Shown are the prediction
results from the closed five-state model for the time period from March 2 to September 18. The
open blue circles are the actual data of J(t) available up to the time of writing. The parameter
settings are: (a) ⌘ = 0.5 and � = 0.18, (b) ⌘ = 0.5 and � = 0.24, (c) ⌘ = 0.8 and � = 0.18, and
(d) ⌘ = 0.8 and � = 0.24. For (a) and (b), the optimal estimates of the number of initial hidden
population and the inflection rate are H⇤(0) = 3400 and �⇤ = 0.23. For (c) and (d), these values
are H⇤(0) = 10000 and �⇤ = 0.2. The inset in each panel shows the diminishing trend of H(t) and
I(t) during the last stage of the epidemic.
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Supplementary Figure S3. Prediction of COVID-19 epidemic scenarios in New York State as a
closed system. The legends are the same as those in Fig. S1. Shown are the prediction results from
the closed five-state model. The parameter values are: (a) ⌘ = 0.5 and � = 0.18, (b) ⌘ = 0.5 and
� = 0.24, (c) ⌘ = 0.8 and � = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a) and (b), the optimal
estimates of the number of initial hidden population and the inflection rate are H⇤(0) = 3400 and
�⇤ = 0.27. For (c) and (d), these values are H⇤(0) = 8600 and �⇤ = 0.25. The inset in each panel
shows the diminishing trend of H(t) and I(t) during the last stage of the epidemic.
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Supplementary Figure S4. Prediction of COVID-19 epidemic scenarios for USA. The legends are
the same as those in Fig. S1. Shown are the prediction results from the closed five-state model for
the time period between January 20 to August 17. The open blue circles are the actual data of J(t)
available up to the time of writing. The parameter settings are: (a) ⌘ = 0.5 and � = 0.18, (b)
⌘ = 0.5 and � = 0.24, (c) ⌘ = 0.8 and � = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a) and (b), the
optimal estimates of the number of initial hidden population and the inflection rate are H⇤(0) = 20
and �⇤ = 0.26. For (c) and (d), these values are H⇤(0) = 35 and �⇤ = 0.24. The inset in each
panel shows the diminishing trend of H(t) and I(t) during the last stage of the epidemic.
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Supplementary Figure S5. Impact of interstate and intrastate traffic restriction on epidemic size
in New York and Arizona. (a) For New York, the final epidemic sizes of H (orange), I (green) and
J (purple) versus the interstate traffic reduction rate �

inter

for �
intra

= 0.18. (b) For New York, the
final sizes versus the intrastate traffic reduction rate �

intra

for �
inter

= 0.18. In (a,b), the fraction of
undocumented inflections is ⌘ = 0.5 and the optimized model parameter values are H⇤(0) = 3400
and �⇤ = 0.27. (c,d) The corresponding results for Arizona for ⌘ = 0.5, H⇤(0) = 90, and
�⇤ = 0.27. For both States, the effects of interstate traffic restriction are relatively small (a,c), but
the intrastate traffic restriction leads to an exponential decrease in the final epidemic sizes.

18

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.24.20078774doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.24.20078774


Supplementary Figure S6. Prediction of COVID-19 epidemic scenarios for the State of New
Jersey as an open system. The legends are the same as those in Fig. S1. Shown are the prediction
results for the time period from March 5 to September 21. The open blue circles are the actual data
of J(t) available up to the time of writing. The parameter settings are: (a) ⌘ = 0.5 and � = 0.18,
(b) ⌘ = 0.5 and � = 0.24, (c) ⌘ = 0.8 and � = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a)
and (b), the optimal estimates of the number of initial hidden population and the inflection rate are
H⇤(0) = 1350 and �⇤ = 0.28. For (c) and (d), these values are H⇤(0) = 3900 and �⇤ = 0.25.
The inset in each panel shows the diminishing trend of H(t) and I(t) during the last stage of the
epidemic.
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Supplementary Figure S7. Predicted COVID-19 epidemic scenarios in California as an open
system. Legends are the same as those in Fig. S1. The time period covered is from February 26
to September 13, 2020. The parameter settings are: (a) ⌘ = 0.5 and � = 0.18, (b) ⌘ = 0.5 and
� = 0.24, (c) ⌘ = 0.8 and � = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a) and (b), optimization of
the model equations gives H⇤(0) = 130 and �⇤ = 0.26. For (c) and (d), the corresponding values
are H⇤(0) = 300 and �⇤ = 0.24. The inset in each panel shows the predicted behaviors of H(t)
and I(t) towards the end of the epidemic.
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Supplementary Figure S8. Predicted COVID-19 epidemic scenarios in Michigan as an open
system. Legends are the same as those in Fig. S1. The time period covered is from March 11 to
September 28, 2020. The parameter settings are: (a) ⌘ = 0.5 and � = 0.18, (b) ⌘ = 0.5 and
� = 0.24, (c) ⌘ = 0.8 and � = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a) and (b), optimization of
the model equations gives H⇤(0) = 2000 and �⇤ = 0.27. For (c) and (d), the corresponding values
are H⇤(0) = 5300 and �⇤ = 0.24. The inset in each panel shows the predicted behaviors of H(t)
and I(t) towards the end of the epidemic.
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Supplementary Figure S9. Predicted COVID-19 epidemic scenarios in Florida as an open system.
Legends are the same as those in Fig. S3. The time period covered is from March 2 to September
18, 2020. The parameter settings are: (a) ⌘ = 0.5 and � = 0.18, (b) ⌘ = 0.5 and � = 0.24,
(c) ⌘ = 0.8 and � = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a) and (b), optimization of the
model equations gives H⇤(0) = 200 and �⇤ = 0.27. For (c) and (d), the corresponding values are
H⇤(0) = 580 and �⇤ = 0.24. The inset in each panel shows the predicted behaviors of H(t) and
I(t) towards the end of the epidemic.
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Supplementary Figure S10. Predicted COVID-19 epidemic scenarios in Illinois as an open sys-
tem. Legends are the same as those in Fig. S3. The time period covered is from February 26 to
September 13, 2020. The parameter settings are (a) ⌘ = 0.5 and � = 0.18, (b) ⌘ = 0.5 and
� = 0.24, (c) ⌘ = 0.8 and � = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a) and (b), optimization
of the model equations gives H⇤(0) = 70 and �⇤ = 0.27. For (c) and (d), the corresponding values
are H⇤(0) = 200 and �⇤ = 0.24. The inset in each panel shows the predicted behaviors of H(t)
and I(t) towards the end of the epidemic.
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Supplementary Figure S11. Predicted COVID-19 epidemic scenarios in Massachusetts as an
open system. Legends are the same as those in Fig. S3. The time period covered is from March
2 to September 18, 2020. The parameter settings are (a) ⌘ = 0.5 and � = 0.18, (b) ⌘ = 0.5 and
� = 0.24, (c) ⌘ = 0.8 and � = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a) and (b), optimization of
the model equations gives H⇤(0) = 240 and �⇤ = 0.27. For (c) and (d), the corresponding values
are H⇤(0) = 600 and �⇤ = 0.24. The inset in each panel shows the predicted behaviors of H(t)
and I(t) towards the end of the epidemic.
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Supplementary Figure S12. Predicted COVID-19 epidemic scenarios in Louisiana as an open
system. Legends are the same as those in Fig. S3. The time period covered is from March 9 to
September 25, 2020. The parameter settings are (a) ⌘ = 0.5 and � = 0.18, (b) ⌘ = 0.5 and
� = 0.24, (c) ⌘ = 0.8 and � = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a) and (b), optimization of
the model equations gives H⇤(0) = 1050 and �⇤ = 0.26. For (c) and (d), the corresponding values
are H⇤(0) = 2550 and �⇤ = 0.24. The inset in each panel shows the predicted behaviors of H(t)
and I(t) towards the end of the epidemic.
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Supplementary Figure S13. Uncertainty ranges of two representative quantities from the four
predicted scenarios for the State of New York as an open system. The quantities are J(t) (light
blue) and I(t) (light red), and the actual available daily data points of J(t) are denoted by the blue
circles. The parameter settings are (a) ⌘ = 0.5 and � = 0.18, (b) ⌘ = 0.5 and � = 0.24, (c)
⌘ = 0.8 and � = 0.18, and (d) ⌘ = 0.8 and � = 0.24. For (a) and (b), optimization of the model
equations gives H⇤(0) = 3400 and �⇤ = 0.27, where the 95% confidence intervals for the former
and latter are (2800, 4049) and (0.2565, 0.2840), respectively. For (c) and (d), the corresponding
values are H⇤(0) = 8600 and �⇤ = 0.25 with the respective 95% confidence interval (6897, 10465)
and (0.2348, 0.2659).
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Supplementary Figure S14. Uncertainty ranges of two representative quantities from the four
predicted scenarios for the State of Arizona as an open system. The legends and settings are the
same as those in Fig. S13. For (a) and (b), the optimally estimated parameter values are H⇤(0) = 90
and �⇤ = 0.27 with the respective 95% confidence intervals (78, 103) and (0.2580, 0.2820). For
(c) and (d), the corresponding values are H⇤(0) = 260 and �⇤ = 0.24 with the respective 95%
confidence interval (223, 293) and (0.2285, 0.2533).
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Supplementary Figure S15. Uncertainty ranges of two representative quantities from the four
predicted scenarios for the entire country of USA as a closed system. The legends and settings are
the same as those in Fig. S13. For (a) and (b), the optimally estimated parameter values are H⇤(0) =
20 and �⇤ = 0.26 with the respective 95% confidence intervals (12, 32) and (0.2498, 0.2715). For
(c) and (d), the corresponding values are H⇤(0) = 35 and �⇤ = 0.24 with the respective 95%
confidence interval (18, 60) and (0.2281, 0.2543).
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