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Abstract 

The mitochondrial genome (mtDNA) is represented at variable copy number 

(CN) in human cells and plays essential roles in cellular metabolism. Previous 

studies reported inconsistent associations between mtDNA CN and 

cardiometabolic disease (CMD) traits. We determined the cross-sectional 

association of mtDNA CN measured in whole blood with several CMD traits in 

~66,100 individuals (mean age 60, 54% women, and 21% non-European 

ancestries). Cohort- and ancestry-specific association and meta-analysis were 

performed adjusting for trait-specific covariates and batch. Because white blood 

cell (WBC) count, a marker of subclinical inflammation, is associated with 

mtDNA CN level and multiple CMD traits, we further compared associations 

with and without adjustment for WBCs in a subset of individuals with WBCs. In 

meta-analysis without cell count adjustment in European ancestry (EA) 

participants (n=52,500), lower mtDNA CN was associated with higher odds of 

obesity (OR with 95% CI=1.13 (1.11, 1.16), P=3.3e-30) and hypertension 

(OR=1.05 (1.03, 1.08), P=4.0e-07). Further adjusting for WBCs in a subset of 

EA participants (N=44,100), associations became non-significant (P>0.05) for 

hypertension, attenuated for obesity (ORwithout cell counts=1.15 (1.12, 1.18) versus 

ORcell counts=1.06 (1.03, 1.08)) but strengthened for hyperlipidemia (ORwithout cell 

counts =1.03 (1.00, 1.06) versus ORcell counts =1.06 (1.03, 1.09)). The magnitude 

and directionality of most associations were consistent between participants of 
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European and other ancestries. Understanding the role of mtDNA CN in CMD 

will provide insight into the pathobiology underlying metabolic diseases. Further 

research on modifiable factors that influence mtDNA CN may help develop 

therapeutic strategies for preventing and treating metabolic diseases. 

 

Key words: mitochondrial DNA copy number, cardiometabolic disease, whole 

genome sequencing
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Introduction 

As the powerhouse of eukaryotic cells, mitochondria convert dietary calories to 

molecular energy through oxidative phosphorylation (OXPHOS).1 In addition, 

mitochondria play essential roles in cellular differentiation, proliferation, 

reprogramming, and aging.2-7 Mitochondria contain their own genome (mtDNA) 

which is a circular, double-stranded DNA molecule of 16.6 kb. mtDNA encodes 

13 key OXPHOS proteins, 22 transfer RNAs (tRNAs), and two ribosomal RNAs 

(rRNAs)1. Multiple copies of mtDNA are present per mitochondrion, and cells 

contain up to 7000 mitochondria per cell8. The mtDNA copy number (mtDNA 

CN) correlates with cellular ATP generating capacity and metabolic status,9 and 

therefore, varies greatly across tissue and cell types depending on cellular 

energy demand.1,10,11  

Several previous studies have demonstrated that mtDNA CN is lower in 

older individuals and this decrease is associated with a general decline in 

health.12-14 In age- and sex-matched case-control studies (55/29 and 147/170 

cases/controls, respectively), mtDNA CN was found to be significantly lower in 

individuals with diabetes than controls.15,16 Lower mtDNA content was also 

related to higher fasting blood glucose (FBG), hemoglobin A1c (HbA1c), and 

lipid levels including high density lipoprotein (HDL), low density lipoprotein 

(LDL), triglycerides (TRIG), and total cholesterol (TC) in both diabetic patients 

and controls.15 In addition, mtDNA content was inversely related to BMI and fat 
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accumulation in 94 healthy young individuals (mean age 30 years).17 A more 

recent study in two independent cohorts of women of European ancestry 

(n=2,278, mean age 30 years; and n=2,872, mean age 69 years), however, 

failed to detect significant associations between mtDNA CN and 

cardiometabolic risk factors including systolic blood pressure (SBP), diastolic 

blood pressure (DBP), HDL, LDL, TRIG, and glucose levels.18 

Given inconsistent findings in previous studies and the central role of 

mtDNA in metabolism, we set out to investigate the association between 

mtDNA CN and several cardiometabolic risk factors in seven US cohorts 

representing several ancestries with whole genome sequencing (WGS) and 

extensive cardiometabolic phenotyping. We also included individuals with 

Whole Exome Sequencing (WES) from the UK Biobank for validation. To 

minimize bias, we used a pre-specified plan to harmonize phenotypes and 

implement consistent procedures in quality control and statistical analysis 

across all cohorts. We performed cohort- and ancestry-specific association 

analysis between mtDNA CN and several cardiometabolic disease phenotypes. 

We also performed meta-analysis in participants of European and African 

American ancestry, and across ancestries.  

Methods 

Study participants 
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This study included up to 27,000 individuals with WGS in the NHLBI’s Trans-

Omics for Precision Medicine (TOPMed) program (67.4% women; age range 

of 20-100 years; 45.4% European, 32.6% African-American, 19.6% Hispanic 

and 2.4% Chinese ancestry) (Supplemental Table 1). Additionally, we 

included up to 39,100 participants of European ancestry from the UK Biobank 

with WES (54% women; 40-75 years; 100% Europeans) for validation 

(Supplemental Table 1). All study participants provided written informed 

consent for genetic studies. The protocols for WGS and WES were approved 

by the institutional review boards (IRB) of the participating institutions 

(Supplemental Materials).  

mtDNA copy number estimation 

mtDNA CN estimation in WGS: whole blood derived DNA was used for WGS 

through TOPMed sequencing centers. The average coverage was ~39x across 

samples. The program fastMitoCalc of the software package mitoAnalyzer was 

used to estimate mtDNA copy number across TOPMed participants.13 The 

average mtDNA CN per cell was estimated as twice the ratio of average 

coverage of mtDNA to average coverage of the nuclear DNA (nDNA). The 

coverage was defined as the number of reads that were mapped to a given 

nucleotide in the reconstructed sequence.13 
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mtDNA CN estimation in UK Bank: whole blood derived DNA was used for WES 

in UK Bank. mtDNA CN estimates were generated by customized regression 

with specific terms in Perl and R software using Exome SPB CRAM files 

(version Jul 2018) downloaded from the UK Bank data repository 

(Supplemental Materials). 

mtDNA CN estimation in ARIC using other methods: mtDNA CN estimation 

from low-pass WGS was calculated as the ratio of mitochondrial reads to the 

number of total aligned reads (Supplemental Materials). mtDNA CN estimated 

from the Affymetrix Genome-Wide Human SNP Array 6.0 was calculated using 

Genvisis 15 software package (Supplemental Materials). The participants 

whose mtDNA CN were estimated from low-pass WGS and Affymetrix 

Genome-Wide Human SNP Array 6.0 were independent to each other and were 

independent to those with TOPMed WGS in the ARIC cohort, as previously 

described19 (Supplemental Materials). 

Metabolic disease phenotypes 

All outcome variables were mapped to the examinations when blood was drawn 

for DNA extraction for mtDNA CN estimates. Our primary analysis focused on 

four cardiometabolic disease phenotypes, obesity, hypertension (HTN), type 2 

diabetes (T2D), and hyperlipidemia. Obesity was defined as body mass index 

(BMI) ≥30 (kg/m2). T2D was defined as fasting blood glucose ≥126 mg/dL or 

currently receiving glucose-lowering or diabetes medication (s). Hypertension 
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(HTN) was defined as systolic blood pressure (SBP) ≥140 mmHg, or diastolic 

blood pressure (DBP) ≥90 mmHg, or use of antihypertensive medication(s) for 

blood pressure control. Hyperlipidemia was defined as fasting total cholesterol 

(TC) ≥200 mg/dL or triglyceride (TRIG) ≥150 mg/dL, or use of any lipid-lowering 

medication.  

We also analyzed the association of mtDNA CN with continuous 

cardiometabolic traits: BMI, SBP, DBP, FBG, HDL cholesterol, LDL cholesterol, 

and TRIG levels. In the analysis of FBG, we excluded individuals with diabetes, 

defined as glucose value >126 mg/dL and/or taking glucose-lowering or 

diabetes medications.20 SBP and DBP values (mmHg) were derived from the 

averages of two measurements. We added 15 mmHg and 10 mmHg to SBP 

and DBP, respectively, for individuals taking any BP lowering medications.21 

The total cholesterol (TC) measurements were divided by 0.8 for individuals 

using lipid treatment medications.22 LDL (mg/dL) was calculated as (TC - HDL 

- TRIG/5) in individuals with TRIG <400 mg/dL using imputed TC values.22 In 

analyses of FBG and lipid levels, we excluded individuals whose fasting status 

was not established. TRIG, LDL and HDL values were log-transformed to 

approximate normality. Other continuous outcome variables were not 

transformed.  

Metabolic syndrome is a collection of risk factors that increase the risk for 

cardiovascular disease.23 We analyzed the presence of metabolic syndrome 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.20.20016337doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.20.20016337
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

10 

 

variable in relation to mtDNA CN. An individual was classified as having 

metabolic syndrome (0/1) if he/she had three of the five following conditions: 23 

1) obesity – waist circumference >40 inches in men and >35 inches in women; 

2) hyperglycemia – fasting glucose ≥100 mg/dL or currently receiving glucose-

lowering or diabetes medication; 3) dyslipidemia – triglyceride ≥150 mg/dL or 

on lipid-lowering treatment; 4) dyslipidemia – High density lipoprotein 

cholesterol <40 mg/dL in men or <50 mg/dL in women or on lipid-lowering 

treatment; and 5) hypertension – 130 mmHg systolic or >85 mmHg diastolic or 

the current use of antihypertensive medication (s). Of note, the thresholds in 

defining metabolic syndrome are different from those for individual disease 

phenotypes in our primary analysis. Waist circumference was not measured in 

approximately a third of the FHS participants. Because BMI is the most 

common measure of overall obesity24, to increase the sample size we used BMI 

≥30 to define obesity in FHS participants with missing waist circumference 

values.  

Statistical analysis  

In all analyses, we used mtDNA CN as the primary independent variable. To 

identify confounders and covariates in association analyses, we first examined 

whether mtDNA CN levels were associated with ‘blood collection year’ (the year 

when blood was drawn, as a surrogate of batch effects for blood-derived DNA 

samples) in all participating cohorts. We also investigated whether mtDNA CN 
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was associated with blood cell counts in cohorts with imputed or measured cell 

count variables available (Supplemental Table 2)25,26. We further examined 

mtDNA CN in relation to age and sex after adjusting for blood collection year 

(Supplemental Figure 1). 

Based on observing significant associations of mtDNA CN in relation to 

‘blood collection year’, age and sex, we generated mtDNA CN residuals for 

downstream analyses by regressing mtDNA CN on age, age squared, sex and 

blood collection year (as a factored variable) in each cohort. The residuals were 

standardized to a mean of zero and standard deviation (s.d.) of one, and used 

as the main predictor in all regression models. In the primary analysis, we used 

logistic regression (for unrelated individuals) and mixed effects logistic 

regression model (related individuals) to analyze binary outcomes (i.e., obesity, 

HTN) in relation to mtDNA CN residuals. Because age, sex and BMI are 

important confounders or covariates for cardiometabolic traits, we further 

adjusted for sex and age as covariates in the analysis of obesity, and adjusted 

for sex, age, age-squared (only for HTN) and BMI as covariates in the analysis 

of T2D, hyperlipidemia, and HTN. We used linear effects models to analyze 

continuous outcome variables, adjusting for the same set of covariates as for 

the respective binary outcomes. For cohorts with family structure, we accounted 

for maternal lineage as random effects in linear or logistic mixed models. A 
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maternal lineage was defined to include a founder woman with all of her 

children, and all grandchildren from daughters of the founder woman.27 

We performed ancestry-specific meta-analysis with fixed effects (PQ>0.01) 

or random effects (PQ≤0.01) inverse variance method to combine results within 

TOPMed cohorts. We used EA-only meta-analysis in TOPMed as the discovery 

phase. The UK Biobank participants of European origin were used for validation 

of results in the discovery phase. We further compared EA only meta-analysis 

results to those from other ancestries in TOPMed cohorts. Finally, we 

performed inverse-variance meta-analysis to combine results of all ancestries 

from TOPMed and UK Biobank. The primary results included associations of 

mtDNA CN with the four disease outcomes. We used p=0.01 for significance to 

account for multiple testing for primary results, and used p=0.05/9~0.006 for 

significance in analysis of continuous outcomes.  

White blood cell (WBC) counts were previously reported to be associated 

with mtDNA CN.19,28 Measured and/or imputed WBC variables were available 

in a subset participants in TOPMed and in all participants in UK Biobank. We 

compared associations between mtDNA CN and individual outcomes in the 

same participants with and without cell counts as additional covariates. Finally, 

we investigated whether sex or age modified the association between mtDNA 

CN and outcome variables. The statistical software R (version 3.6.0) was used 

for all statistical analyses. 
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Results 

Characteristics of Study Participants 

The current study included ~52,500 European ancestry (EA) (54% women), 

~8,100 African American (AA) (60% women), ~600 Chinese ancestry (EAS) 

(50% women), and ~4,900 Hispanic ancestry (HA) (58% women) participants 

with a mean age of 60 years (range 20 to 100 year; Supplemental Table 1). 

We observed moderate to high heterogeneity in distributions of age, sex, and 

cardiometabolic phenotypes across cohorts and ancestries. For example, the 

age range was 20 to 100 years in the Framingham Heart Study (FHS) (mean 

age 60 years, 40% pariticipants≥65 years). In contrast, all participants in the 

Cardiovascular Health Study (CHS) were older than 65 year of age (mean age 

74). HTN, obesity, T2D, and hyperlipidemia were more prevalent in participants 

of African descent than European, Chinese and Hispanic ancestry. 

(Supplemental Table 1) 

An inverted U-shape relationship between mtDNA CN and age 

We observed that, on average, age was associated with 0.032 s.d. / 10 years 

higher (95% CI= (0.013, 0.052), P=0.0014) level of mtDNA CN from 20s to 65 

years, and 0.14 s.d. / 10 years lower level of mtDNA CN after 65 years (95% 

CI= (-0.18, -0.10), P=1.82e-13) (Figure 2). The relationship between mtDNA 

CN and age appeared to be similar in men and women. Women had higher 

mtDNA CN than men (beta=0.23, 95% CI= (0.20, 0.26), P=7.4e-60) as noted 
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previously.13,28 The inverted U shape relationship between mtDNA CN and age 

was slightly attenuated after adjusting for WBC counts (Supplemental Figure 

2).  

Discovery meta-analysis of TOPMed cohorts of European ancestry 

We performed the discovery meta-analysis of EA participants in TOPMed (N 

=13,400). Because lower mtDNA CN was associated with older age and 

reported to be associated with higher cardiometabolic disease risk, 15-18 we 

report beta estimates as the change in an outcome variable in response to 1 

s.d. lower mtDNA CN in all of analyses. We found that 1 s.d. lower in mtDNA 

CN was significantly associated with 1.08-fold odds of obesity (95% CI= (1.03, 

1.13), P=5.0e-04), 1.07-fold odds of hypertension (95% CI= (1.03, 1.12), 

P=1.4e-03), 1.16-fold odds of metabolic syndrome (95% CI= (1.06, 1.27), 

P=1.8e-03). We also found that 1 s.d. lower mtDNA CN was nominally 

(0.01<P<0.05) associated with 1.18-fold odds of diabetes (95%= (1.01, 1.37), 

P=0.041). For continuous traits, 1 s.d. lower in mtDNA CN was significantly 

associated with 0.033 mg/dL (95% CI= (0.023, 0.041), P=1.7e-04) higher TRIG 

and nominally associated with 0.38 mmHg (95% CI= (0.021, 0.73), P=0.038) 

higher SBP and 0.22 kg/m2 (95% CI= (0.074, 0.25), P=0.028) higher BMI. 

mtDNA CN was not significantly associated with DBP, HDL, LDL, or fasting 

glucose (P>0.05) in the discovery meta-analysis (Table 1, Figures 3 and 4) 
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Bidirectional replication with EA participants between TOPMed and UK 

Biobank and meta-analysis 

Most of the significant associations in the discovery phase meta-analysis were 

validated in the UK Biobank EA sample (Table 1). Compared to those in the 

discovery meta-analysis, the UK Biobank yielded larger effect sizes for 

associations of several traits (Supplemental Figure 3). For example, 1 s.d. 

lower mtDNA CN was associated with 1.15-fold (95% CI= (1.12, 1.18)) odds of 

obesity in the UK Biobank versus 1.08-fold (95% CI= 1.03-1.13) in the TOPMed 

EA-specific meta-analysis. Additionally, 1 s.d. unit lower mtDNA CN was 

associated with 0.32 kg/m2 higher BMI in UKB (p = 9.1e-42) compared to 0.22 

kg/m2 higher BMI (p=0.028) in the meta-analysis of TOPMed EA participants. 

DBP and FBG were not significant in the discovery TOPMed EA meta-analysis 

(beta=0.02, 95% CI= (-0.37, 0.41) with P= 0.92 for DBP; beta=0.067, 95% CI= 

(-0.11, 0.25) with P=0.47 for FBG) while significant in UK Biobank (beta=0.19 , 

95% CI= (0.086, 0.30) with P=0.00038 for DBP; beta=0.20, 95% CI = (0.093, 

0.30) with P=2.0e-4 for FBG) (Table 1).  

We performed meta-analysis of all EA participants in the discovery and 

validation samples (n=52,500) using fixed effects inverse-variance method to 

combine results (Table 1). One s.d. lower mtDNA CN was significantly 

associated with higher odds of obesity (OR=1.13, 95% CI= (1.11, 1.16), 

P=3.3e-30), hypertension (OR=1.05, 95% CI= (1.03, 1.08), P=4.0e-07), 
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metabolic syndrome (OR=1.13, 95% CI= (1.11, 1.16), P=9.7e-27), and 

nominally associated with diabetes (OR=1.05, 95% CI= (1.00, 1.10), P=0.051), 

hyperlipidemia (OR=1.03, 95% CI= (1.00, 1.05), P=0.023). For continuous 

phenotypes, 1 s.d. lower mtDNA CN was significantly associated with 0.15 

mmHg higher DBP (95% CI=(0.056, 0.25), P=1.9e-03), 0.42 mmHg higher SBP 

(95% CI= (0.26, 0.59), P=6.0e-07), 0.32 kg/m2 higher BMI (95% CI=(0.27, 0.36), 

P=2.5e-41), 0.16 mg/dL higher fasting glucose (95% CI= (0.069, 0.25), P=5.4E-

04), and 0.025 mg/dL higher triglycerides (95% CI= (0.021, 0.029), P=8.3e-30).  

mtDNA CN estimated from low-pass WGS and Affymetrix Genome-Wide 

Human SNP Array 6.0 gave rise to consistent associations for most of the CMD 

traits compared to that from WGS (Supplemental Table 7). 

Comparison of results between EA and other ancestries and meta-

analysis of multi-ancestries 

The directionality of associations of mtDNA CN with CMD traits were consistent 

in African American (N=8,100), Hispanic (N=4,900) and East Asian Ancestries 

(N=600) compared to EA-only meta-analyses for most of the phenotypes 

(Table 1, Figure 5 and Supplemental Table 3, 4, Supplemental Figure 4, 5). 

In the meta-analysis of AA participants, 1 s.d. lower mtDNA CN was 

significantly associated with 1.14-fold odds of diabetes (95%CI= (1.06, 1.22), 

P=2.5e-04) and a 0.68 mmHg higher in SBP (95% CI= (0.21, 1.15), P=4.0e-03). 

In Asian-only TOPMed participants (n=601), 1 s.d. lower mtDNA CN was 
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significantly associated with 1.43-fold odds of hyperlipidemia (95% CI= (1.19, 

1.72), P=0.00014). In Hispanic-only TOPMed participants (n=4,900), One s.d. 

lower mtDNA CN was significantly associated with higher odds of diabetes 

(OR=1.16, 95%CI= (1.06, 1.26), P=0.0012), and significantly associated with 

0.019 s.d. lower LDL (95 % CI= (-0.029, -0.0079), P=6.6e-04) and 0.028 s.d. 

higher TRIG (95% CI= (0.010, 0.046), P=0.0020). (Supplemental Table 4). 

Results of meta-analysis in pooled-samples are included in Supplemental 

Table 5. 

Accounting for cell counts as additional covariates 

Cell counts were available for a subset of participants in TOPMed (n=~16,100) 

and for all of the UK Biobank participants (n=~39,000). Cell counts were 

inversely related to WBC count and differentials (Supplemental Table 2), 

which were consistent to previous studies.29-34 Because WBC count is 

associated with mtDNA CN and also an indicator of a systemic subclinical 

inflammation state that accompanies CMD risk factors.35-39 40-42 To minimize 

confounding, we compared results between models with and without WBC cell 

counts and differentials as additional covariates in meta-analysis of the same 

individuals in EA. Directionality remained the same for all associations except 

for HDL after adjusting for cell counts (Supplemental Table 6, Supplemental 

Figure 6, 7). Comparison of regression coefficients of mtDNA CN with 

cardiometabolic traits not adjusting for cell counts vs adjusting for cell counts in 
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other ancestries were available in Supplemental Figure 8, 9. Non-lipid CMD 

traits and TRIG attenuated their associations with mtDNA CN after adjusting for 

WBC cell counts and differentials. For example, the association of mtDNA CN 

with obesity was attenuated: ORwithout cell counts=1.15 (1.12, 1.18), P=7.7e-31 

versus ORcell counts=1.06 (1.03, 1.08), P=2.5e-06. In contrast, hyperlipidemia and 

LDL were not significantly associated with mtDNA CN before adjusting for cell 

counts (P>0.05) and became significant after adjusting for cell counts (OR=1.06 

(1.03, 1.09), P=3.9e-05 for hyperlipidemia and beta=0.012 (0.0096, 0.015), 

P=7.8e-18 for LDL) (Supplemental Table 6). 

Interaction analyses     

We investigated if sex and age modified the relationship of mtDNA CN with 

cardiometabolic phenotypes. We did not find statistically significant interactions 

between sex and mtDNA CN, or between age and mtDNA CN with respect to 

the phenotypes tested (Supplemental Table 8). 

Discussion 

We demonstrated that lower mtDNA CN is significantly associated with higher 

level of cardiometabolic disease risk factors in ~66,100 individuals representing 

multiple ancestries. Consistent effect estimates were obtained from the 

discovery meta-analysis and the validation cohort of UK Biobank participants 

with adjustment for traditional covariates as well as adjustment for cell counts, 

demonstrating the robustness of our findings. The fact that lower mtDNA CN 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.20.20016337doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.20.20016337
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

19 

 

was significantly associated with higher prevalence of metabolic syndrome 

further suggests that altered levels of mitochondrial energy production may be 

associated with a cluster of conditions that increase the risk of cardiovascular 

disease.  

Inflammation is our body’s way of protecting itself from harmful stimuli, through 

regulation of our immune system. WBC count is a blood biomarker of systemic 

inflammation. It has been increasingly recognized that chronic low-grade 

inflammatory state accompanies CMD risk.35 Previous studies found that higher 

level of WBC counts is associated with increased level of BMI/obesity,36,37 

insulin tolerance and diabetes,35,38,39 high BP and hypertension.40-42 In contrast, 

lipid levels display heterogeneous relationship with WBC. Higher LDL levels are 

associated with lower total WBC counts, while higher TRIG is associated with 

higher total WBC counts.43 On the other hand, this study and previous studies 

showed that higher WBC were associated with lower mtDNA CN.29-34 Therefore, 

the connections among mtDNA CN in whole blood, inflammation, and metabolic 

disease phenotypes are complex. We compared associations between mtDNA 

CN and CMD traits with and without adjustment of WBC counts, and found that 

the strength of associations were attenuated for BMI/obesity, FBG/diabetes, 

and blood pressure/Hypertension but augmented for LDL and hyperlipidemia. 

Our findings demonstrated that mtDNA CN in whole blood and WBC count may 

interplay with CMD traits, especially LDL and hyperlipidemia. Further studies 
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are warranted to investigate underlying molecular mechanisms to establish a 

potential causal pathway among mtDNA CN, inflammation and CMD risk.  

 

Most previous studies reported a tendency toward lower mtDNA CN with 

advancing age,12,13,19,28,44,45 The current cross-sectional study, using a large 

sample size with a wide age range, demonstrated that mtDNA CN increases 

slightly from young adult (age 20 to 29) to late middle age (65 years old), and 

decreases in individuals older than 65 years. Most of the previous studies 

included participants with a limited age range with the majority of study 

participants being young, middle-aged, or older individuals.12,45,46 In addition, 

these studies only investigated the linear relationship between mtDNA CN and 

age.12,13,19 The inverted U shape relationship was only discovered when we 

examined mtDNA CN in relation to age by decade. This study only investigated 

age-mtDNA CN association cross-sectionally. The intra-individual mtDNA CN 

variability with advancing age needs to be explored in a longitudinal setting in 

future studies. 

 

Strengths and Limitations 

This study includes a large sample size of men and women of multiple 

ancestries across a wide age range, thus enables us to investigate the 

relationships of mtDNA CN with cardiometabolic phenotypes throughout the 

adult life span. In addition, we performed careful phenotype harmonization and 
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examined several potential confounding variables of mtDNA CN in association 

analysis with metabolic traits. Furthermore, we included association analyses 

of CMD traits with mtDNA CN estimated from several technologies further 

demonstrated the utility of mtDNA CN estimated from these different 

technologies in association analysis. Despite the multiple strengths in this study, 

several limitations should be noted. mtDNA CN was estimated using DNA 

derived from whole blood, which is not necessarily the relevant tissues with 

respect to cardiometabolic (e.g., cardiac muscle, skeletal muscle, adipose 

tissue) and aging-related (e.g., brain) disease phenotypes. Nevertheless, 

peripheral blood is easily accessible, and our aim was to evaluate mtDNA CN 

as a biomarker of disease phenotypes. Second, though we accounted for 

confounders and known batch effects in mtDNA CN and harmonized metabolic 

traits, we still observed moderate to high heterogeneity in the association 

coefficients in meta-analysis of most of the phenotypes in both ancestry-specific 

analyses and across ancestries. Different distributions of age, sex, and 

phenotypes across study cohorts may partially explain the heterogeneity in 

these associations. Unobserved confounding factors, such as experiment 

conditions for blood drawing, DNA extraction, and storage may also have 

contributed to heterogeneity. Finally, we were not able to determine causal 

relationships between mtDNA CN and metabolic traits due to the cross-

sectional nature of the study. Future longitudinal studies could help to establish 
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potential causal pathways between mtDNA CN and these metabolic traits and 

diseases. 
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Table 1. Cross-sectional association and meta-analysis of mtDNA CN with metabolic disease phenotypes. 

 Traits Discovery (N=13,400) 

  

Replication: UK Biobank 

(N=~39,100) 

Meta-analysis of discovery and 

replication (N=~52,500) 

OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value 

B
in

ar
y 

o
u

tc
o

m
es

 Obese 1.08 1.03-1.13 5.0e-04 1.15 1.12-1.18 1.6e-30 1.13 1.11-1.16 3.3e-30 

HTN 1.07 1.03-1.12 1.4e-03 1.04 1.02-1.07 0.00023 1.05 1.03-1.08 4.0e-07 

Diabetes 1.18 1.01-1.37 0.041 1.04 0.99-1.10 0.10 1.05 1.00-1.10 0.051 

Hyperlipids 1.04 0.99-1.08 0.11 1.03 1.00-1.06 0.024 1.03 1.00-1.05 0.023 

MetS 1.16 1.06-1.27 1.8e-03 1.13 1.10-1.15 1.1e-24 1.13 1.11-1.16 9.7e-27 

  Beta SE P-value Beta SE P-value Beta SE P-value 

C
o

n
ti

n
u

o
u

s 
o

u
tc

o
m

es
 

BMI 0.22* 0.10* 0.028* 0.32 0.023 9.1e-42 0.31 0.023 2.5e-41 

DBP 0.02* 0.20* 0.92* 0.19 0.054 0.00038 0.15 0.049 1.9e-03 

SBP 0.38 0.19 0.038 0.42 0.094 7.2e-06 0.42 0.085 6.0e-07 

FBG 0.067 0.092 0.47 0.20 0.052 2.0e-04 0.16 0.046 5.4e-04 

HDL -0.0097* 0.0099* 0.33* -0.099 0.069 0.16 -0.012 0.0098 0.21 

LDL -0.008* 0.0073* 0.27* -0.0040 0.0014 0.0045 -0.0027 0.0014 0.059 

TRIG 0.033 0.0088 1.7e-04 0.023 0.0025 8.6e-21 0.025 0.0022 8.3e-30 

The beta estimates are in units of metabolic traits corresponding to one s.d. lower mtDNA-CN. Association analysis of mtDNA CN with metabolic 

traits was performed in cohorts of European participants (EA) and African American participants (AA) in TOPMed and also in UK Biobank EA 

participants. Meta-analysis with fixed or random effects inverse variance method was used to summarize the results in EA or AA in TOPMed and 

the results in discovery and replication. DBP, diastolic blood pressure; SBP, systolic blood pressure; BMI, body mass index; FBG, fasting blood 

glucose; HDL, high density lipoprotein; Trig, triglyceride. Obese, obesity; HTN, hypertension; Diabetes, Diabetes; MetS, metabolic syndrome.  

Asterisk (*) denotes inverse variance random effect meta-analysis. 
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Figure 1. Study design. Association analysis of mtDNA CN with metabolic traits was performed in cohorts of European participants (EA) and American 

African (AA) in TOPMed and in UK Biobank EA participants. Meta-analysis using fixed or random effects inverse variance method was used to summarize the 

results in EA or AA in TOPMed. The relationship between age and mtDNA CN was performed in TOPMed and UK Biobank. Primary analysis included age, 

age2 (blood pressure traits), sex, and BMI (not in BMI traits). Second analysis included covariates in primary analysis and imputed cell counts. Interaction 

analysis was performed to investigate whether age and sex modified the relationship between mtDNA CN and metabolic trait
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Figure 2. The relationship of mtDNA CN with age in TOPMED participants. Scatterplots of mtDNA CN residuals versus age. Y-axis is cohort specific 

mtDNA CN residuals, x-axis is age. Cohort specific mtDNA CN residuals were obtained by regressing mtDNA CN on blood collection year. 
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Figure 3. Association analysis and meta-analysis of mtDNA CN with obesity and metabolic syndrome (MetS) in the discovery cohorts of European 

participants in TOPMed. Fixed effects inverse variance method was used to summarize the results. The odds ratio (OR) corresponds to one s.d. decrease in 

mtDNA-CN. 
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Figure 4. Association analysis and meta-analysis of mtDNA CN with continuous metabolic phenotypes in the discovery cohorts of European 

participants in TOPMed. Fixed effects inverse variance method was used to summarize the results. The effect size estimates are in units of metabolic traits 

corresponding to one s.d. decrease in mtDNA-CN. BMI, body mass index; HDL, high density lipoprotein; Trig, triglyceride. 
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Figure 5. Comparison of beta of metabolic traits in the participants of European (EA) and American (AA) Americans in TOPMed. DBP, diastolic blood pressure; 

SBP, systolic blood pressure; BMI, body mass index; FBG, fasting blood glucose; HDL, high density lipoprotein; LDL, low density lipoprotein, Trig, triglyceride. 

TC, total cholesterol; Obese, obesity; HTN, hypertension; Diabetes, Diabetes; Hyperlipids, hyperlipidemia; MetS, metabolic syndrome. 
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