Clonal chromosomal mosaicism and loss of chromosome Y in men are risk factors for SARS-CoV-2 vulnerability in the elderly ========================================================================================================================= * Luis A. Pérez-Jurado * Alejandro Cáceres * Tonu Esko * Miguel López de Heredia * Inés Quintela * Raquel Cruz * Pablo Lapunzina * Ángel Carracedo * SCOURGE Cohort Group * Juan R. González ## Abstract The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) has an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome events (CME) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (CME and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, CME and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. KEYWORDS * Clonal mosaicism * chromosomal mosaic events * loss of chromosome Y * COVID-19 * SARS-CoV-2 * elderly people * mortality ## Background The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a major health threat to the entire world.1 As of December, 2021, there have been over 400 million confirmed cases of COVID-19 worldwide, with more than 5.7 million deaths reported. A best estimate of the overall case fatality ratio after adjusting for demography and under-ascertainment in the initial outbreak in China was 1.38% (95% confidence interval 1.23–1.53), being significantly higher in aging people (6.4% in ≥60 and 13.4% in ≥80 age groups) and in males.2 World-wide data of the age-stratified case fatality ratio and infection fatality ratio show a similar pattern with a remarkable sex-bias increasing with advanced age, with 60% overall deaths reported in men (estimated hazard ratio of 1.59, 95% confidence interval 1.53-1.65).3 Interestingly, sex-dependent differences in disease outcomes were also found during the past SARS-CoV and MERS-CoV epidemics4,5 and also in mice infected with the virus.6 Understanding the underlying basis of this different sex and age vulnerability is crucial because aging men and women are likely to have fundamentally different reactions to the SARS-CoV-2 virus infection, treatments, and vaccines. Male patients with COVID-19 have higher plasma levels of innate immune cytokines (IL-8 and IL-18) and stronger induction of non-classical monocytes, while females had more robust T cell activation during infection. Proposed causes include different case definition of disease, different environmental and social factors (such as lifestyle, smoking history or work-environment) and sex-specific immune-defense factors. The X chromosome harbors multiple genes important for immunity and there are many X-linked immunodeficiencies, so males have greater susceptibility to infections starting at birth.6 More specifically, SARS viruses use the angiotensin converting enzyme (ACE2), encoded by an X-linked gene, as a receptor to enter and infect ACE-2 expressing cells.1 Sex variation in the expression of this gene with paradoxically higher expression and higher circulating levels in men than in women has also been proposed as a candidate mechanism.7 However, ascertainment bias and environmental factors are unlikely to prevail in different populations while the gender-specific immune factors or ACE2 variation would not fully explain the increased risk and sex-divergence with aging. The analysis of previously untreated patients with moderate COVID-19 disease revealed that male patients have higher levels of innate immune cytokines and more robust induction of non-classical monocytes, while female patients have more robust T-cell activation, which is sustained in old age.8 A B-cell autoimmune disorder present in about 10% of individuals with life-threatening COVID-19 pneumonia has been reported, 5 times more common in males than females, characterized by detection of neutralizing immunoglobulin G autoantibodies against interferon type 1.9 Finally, a meta-analysis of genome-wide association studies searching for host-specific genetic factors has revealed 13 loci significantly associated with SARS-Cov2 infection or severe manifestations of COVID-19, but do not fully explain the gender differences.10 Chromosomal mosaic events (CME) detectable in blood, including deletions, gains or copy neutral changes, are age-related somatic alterations that indicate clonal hematopoiesis when detectable and have been associated with increased risk for cancer, cardiovascular disease and overall mortality.11-15 Expanded CMEs have also been recently associated with increased risk for incident infections, including COVID-19 hospitalization.16 Multiple germline genetic alleles involved in susceptibility to clonally expanded CME have been identified, with enrichment at regulatory sites for the immune system.16 In men, mosaic X chromosome monosomy (XCM), acquired by somatic loss of the Y chromosome (LOY), is the most common copy number alteration in male leukocytes, estimated to occur in <2% men under 60 years of age, but exponentially increasing with aging to 15–40% in 70–85 year-old males and >50% at 93 years of age.17 LOY has also been associated with a wide spectrum of human diseases including cancer, Alzheimer’s disease, cardiovascular disease, and reduced overall life expectancy in men.18-21 Genetic variation in multiple loci is involved in the inherited susceptibility to LOY, which can also be driven by smoking and other environmental exposures.17 Extreme down-regulation of chromosome Y gene expression mainly driven by genes with X-chromosome homologs that escape X-inactivation seems to be the functional mediator of the reported association between LOY and disease.22,23 In women, developmental (causing Turner syndrome) or late onset XCM detectable in leukocytes, usually with loss of the inactive X-chromosome, is found with lower frequency than in men but also increasing with age (0.05% in 50-year old; 0.25% in 75-year old).24 Females with XCM have an increased risk for autoimmune disease, recurrent viral infections and earlier cardiovascular mortality,25 which is associated with excessive production of pro-inflammatory cytokines (IL-6), decrease in anti-inflammatory cytokines (IL-10, TGF-β) and a lower CD4:CD8 ratio.26 We have tested here the hypothesis that CME/XCM/LOY could be underlying factors for the increased severity and mortality of COVID-19 in the elderly and mainly in men. Overall, we have associated clonal mosaicism with a 50% increase in the risk of COVID-19 lethality. We have also correlated LOY in aging males with multiple parameters of cardiovascular dysfunction, and defined the transcriptomic deregulation that underlies disease risks, including signatures of immune system dysfunction and increased coagulation activity. We have finally studied how some of the genes deregulated by LOY are involved in the response to SARS-CoV-2 infection. ## Methods ### Covid-19 infection, mortality data, CME and LOY prevalence estimates Accumulated data until July 21st, 2021 was obtained from the Spanish National Epidemiological Registry ([https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Paginas/InformesCOVID-19.aspx](https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Paginas/InformesCOVID-19.aspx)). Hospitalization rates, intensive care admission rates, and mortality stratified by age and sex was obtained from this report. Prevalence estimates of CME and LOY by age were obtained from the general population.14,21 ### EGCUT subjects, phenotype and genotype data LOY was assessed in a total of 530 adult men belonging to the Estonian Gene Expression Cohort (EGCUT, [www.biobank.ee](http://www.biobank.ee)) that comprises a large cohort of 53,000 samples of the Estonian Genome Center Biobank, University of Tartu.27 Detailed phenotypic information from all the individuals studied, including clinical analysis (blood cell counts and general biochemistry) and follow-up until June 2020, was available in ICD-10 codes. Patients selected in this study were genotyped using OmniX array. All individuals had genotyping success rate above 95%. All studies were performed in accordance with the ethical standards of the responsible committee on human experimentation, and with proper informed consent from all individuals tested. ### SCOURGE subjects, phenotype and genotype data A total of 9578 (5134 females and 4444 males) patients diagnosed with COVID-19 and recruited to the SCOURGE study were included in this study.28 Mean age was 62.58 years, 61.06 for females and 64.34 for males. Available phenotype data included age, sex, some clinical variables of past clinical history, several defined measures of COVID-19 severity and vital status (alive or dead) 90 days after diagnosis. The severity variables classified individuals in five levels called Asymptomatic (A), Mild (light: L), Moderate (M), Severe (G), and Critical (C). Additional information about pre-existing conditions as categorical variables was also available for most cases, including history of vascular disorders, cardiac problems, neurologic conditions, gastrointestinal disorders, onco-hematologic conditions, respiratory issues, and pulmonary thrombo-embolism. Blood DNA was genotyped using a customized Affymetrix SNP microarray.28 Genotype data passed quality controls for GWAS analysis. ### Detection of mosaic CME and LOY The genotype CEL files from everyone were used to extract the log-R ratio (LRR) and B-allele (BAF) frequency from SNP probes. We used the *apt* software for quality control (QC) and the extraction of the array intensity signals. Following the QC pipeline with filters *axiom-dishqc-DQC*>*0.82* and *call-rate*>*0.97*, we observed that all individuals could be included. The signals were obtained from CNV calling pipeline with default parameters *mapd-max=0.35* and *waviness-sd-max=0.1*. We also called mosaicisms in autosomes and chromosome X with the MAD algorithm.29 The method uses the fixed deviation from the expected BAF value of 0.5 for heterozygous SNPs (Bdev) to call allelic imbalances by using a segmentation procedure. The segmentation was performed using the three different parameters of MAD: *T*>8, aAlpha=0.8, minSegLength>100. Some false positive alterations were detected in bad quality arrays. Therefore, curation via visual inspection, considering variability of LRR and BAF mean values in the segment, was performed by two independent investigators. Each mosaic alteration was classified as copy-loss, copy-gain or copy-neutral. The estimated percentage of abnormal cells was computed based on the B-deviation as previously reported.10 Mosaic LOY detection and quantification was performed using the *MADloy* tool which implements LOY calling using the mean LRR (mLRRY) and B-deviation derived-measures from chromosome Y across subjects.30 For each sample, *MADloy* first estimates the normalized mLRRY given by its ratio with the trimmed-mean of mLRRY values in the autosomes to discard regions with copy number alterations. B-deviation is calculated for the pseudoautosomal regions 1 and 2 (PAR1, 0-2.5Mb on both Xp and Yp; PAR2, 300kb on distal Xq and Yq, Mb 155 and 59 respectively), and the XY transposed region (88-92Mb on X, 2.5-6.5Mb on Y). The method is calibrated to detect mosaicism when the proportion of affected cells is above 10%. We then plotted the values of the mLRRY signals for males and females. A signal from chromosome Y in females is observed due to the background noise of the array and some cross-hybridization. While we observed variability of the mLRRY signal, numerous males were identified with extreme low values of mLLRY, suggesting loss of chromosome Y. We categorized the level of LOY status into three groups according to the magnitude of the decrease in mLRRY, believed to be a function of XCM/LOY cellularity. ### Bulk transcriptome data Gene expression was obtained with Illumina whole-genome expression BeadChips (HT12v3) from peripheral blood RNA in the EGCUT cohort. Low quality samples were excluded. All probes with primer polymorphisms were left out, leaving 34,282 probes. The expression dataset is publicly available at GEO (Gene Expression Omnibus) under the accession number GSE48348.31 In this dataset, a total of 11 individuals with LOY were identified. In order to consider the effect of aging on LOY detection and to have the maximum power, 32 age and gender-paired normal samples without LOY (3 controls per case) were selected for the transcriptomic analyses. The effect of SARS-CoV-2 infection on gene expression was assessed in independent biological triplicates of two different cell lines that were mock treated or infected with SARS-CoV-2 (USA-WA1/2020). One corresponds to primary human lung epithelium (NHBE) and the other to transformed lung alveolar cells (A549). These data are available at GEO under the accession number GSE147507. ### Statistical data analyses Gene expression data was quantile-normalized to the median. We analyzed linear regression residuals of gene expression data on forty multidimensional scaling components, to correct for possible unwanted variability. Array quality was assessed using *arrayQualityMetrics* Bioconductor package. *genefilter* Bioconductor package was used to filter for features without annotation and/or exhibiting little variation and low signal across samples, leaving a total of 15,592 probes from 34,282. Differential expression (DE) between individuals with and without LOY was then performed using *limma* Bioconductor package. Significant DE genes were considered at false discovery rate (FDR) <0.05. Significant DE genes at p<0.001 level were selected for Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis with *clusterProfiler* Bioconductor package. Over-representation of DE genes in the gene set obtained from the analysis of SARS-CoV-2 infected cell lines (p<0.001 and log-foldchange >0.5) was performed using exact Fisher test. Cell-type composition of the 43 individuals with bulk transcriptomic data (11 LOY, 32 normal) was estimated using the ‘xcell’ method implemented in the *immunodeconv* R package.32 Association analysis between CME or LOY status and clinical data, including blood cell counts and biochemical parameters, was assessed using linear models adjusted by age. All statistical analyses were performed using the statistical software R version 3.6.3 ([http://www.r-project.org](http://www.r-project.org)). ## Results ### Higher Covid-19 severity and mortality in males, a sex-bias that increases with aging Accumulated data on the age-stratified case fatality ratio and infection fatality ratio in a large sample from Spain, show a pattern with a remarkable sex-bias increase with advancing age (Figure 1). Available reports, mostly based on hospital records, show the same tendency in other countries. COVID-19 lethality, CME prevalence and LOY prevalence in men, as previously reported in multiple reports including the UK biobank dataset, appear to increase exponentially with age (Figure 1).18-21 ![Figure 1:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/02/18/2020.04.19.20071357/F1.medium.gif) [Figure 1:](http://medrxiv.org/content/early/2022/02/18/2020.04.19.20071357/F1) Figure 1: Increasing male (orange) to female (blue) differences in hospitalization and mortality rates for COVID-19 in Spain in the different age intervals (updated December 2021). Estimated prevalence by age in the population of detectable CME (black) or LOY in men (grey) in blood is also shown.13,14 ### COVID-19 severity variables and their association with age We first studied the SCOURGE clinical data. Phenotype data was available from all 9578 individuals (5134 females and 4444 males) patients diagnosed with COVID-19 and recruited to the SCOURGE study (Table 1). According to disease severity, there were 607 cases asymptomatic (6.8% A), 2727 individuals with mild symptoms (30% L), 2141 patients with moderate disease (23.6% M), 2449 with severe manifestations (27% G), 1157 critical (12.7% C). We visually inspected the contrasts defined together with the level of severity and the age of the patients. Mean age was 62.58 years, 64.34 for males and 61.06 for females, with an age difference between sexes that was statistically significant (*P* = 4.1×10−19). All clinical categories and variables correlated with age except for “critical” and “history of pulmonary thromboembolism”. View this table: [Table 1:](http://medrxiv.org/content/early/2022/02/18/2020.04.19.20071357/T1) Table 1: Number, proportion and mean age of patients in the different clinical categories of COVID-19 severity in the SCOURGE study, with and without detectable CMEs or LOY (males). ### Association between CME and COVID-19 severity (lethality) The algorithm followed by manual curation finally detected 133 individuals (1.42%), 61 males and 72 females, carrying CMEs in blood affecting the autosomes and/or the X chromosome (Table 1, Table S1, Figures 2A & 2B and Figure S1). Globally, 95 individuals had a single CME while 38 of them had more than one event, for a total of 213 CMEs. There were 88 deletions, 5 whole chromosome monosomies, 20 segmental gains and 21 whole chromosome trisomies, along with 78 copy-neutral changes (somatic segmental uniparental disomies), and a few complex rearrangements. Mean age for individuals with CMEs was 75.04±12.7. We then performed association analyses across the different outcome variables related to COVID-19 severity and the presence of mosaicism. We first confirmed the strong association between mosaicism and age (year) (*OR* = 1.051, *P* = 1.05×10−16), as previously reported. We then observed a significant association between the presence of CME and COVID-19 lethality (1-survival, *OR* = 1.77, *P* = 0.015), after adjusting for sex and age (Figure 3). ![Figure 2:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/02/18/2020.04.19.20071357/F2.medium.gif) [Figure 2:](http://medrxiv.org/content/early/2022/02/18/2020.04.19.20071357/F2) Figure 2: (**A**) Plot representing the whole-genome molecular karyotype obtained by SNParray of blood DNA from an individual with several CMEs. Dots in grey are LRR values (average per widow shown by a green lane), while colored dots are BAF values of homozygous and heterozygous SNPs from odd (red) and even number (orange) chromosomes, respectively. Abnormal BAF and average LRR values in three regions (blue lanes interrupting the black lane in the upper part) correspond to mosaicism for trisomy 12, a small interstitial deletion in 13q and X-chromosome monosomy. The blue lanes interrupting the green lane at LRR=0 correspond to small regions of homozygosity. (**B**) Circus plots showing all detected CMEs in the SCOURGE dataset. In red deletions, in blue gains and in green copy neutral events. (**C**) Analysis of LOY in male individuals in the SCOURGE study based on mean LRR from chromosome Y (mLRRY: relative amount of DNA from the Y chromosome with respect to autosomes). Blue dots correspond to males with mosaic LOY in more than 65% of cells (XCM>65%), green dots to males with LOY/XCM between 25%-65%, and red dots to males with LOY/XCM in less than 25% of cells. The three individuals with top mLRRY values have apparently non-mosaic gains of chromosome Y (47,XYY). ![Figure 3:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/02/18/2020.04.19.20071357/F3.medium.gif) [Figure 3:](http://medrxiv.org/content/early/2022/02/18/2020.04.19.20071357/F3) Figure 3: Associations of detectable CMEs and LOY with COVID-19-related mortality (<90 days after infection). Analyses are adjusted for age, sex, and 10 principal components of ancestry. Individuals with prevalent hematologic cancer were excluded from the analysis. ### Association between LOY and COVID-19 severity Among all male cases, we detected 226 individuals with LOY (mean age 82.0±7.9), a 5,08% prevalence of LOY in this cohort (Table 1, Table S2). According to the estimated proportion of cells with XCM/LOY, 162 individuals had mild LOY (<25% cells with XCM), 43 moderate LOY (25-65% cells with XCM) and 21 had extreme LOY (>65% cells with XCM) (Figure 2C). We also identified three women with detectable chromosome Y in a proportion of cells, then likely corresponding to X0/XY mosaicism and a possible diagnosis of Turner syndrome, as well as three individuals with non-mosaic XYY (Figure 2C). We observed 6 men with both LOY and CME, 220 with LOY and no CME, and 55 with CME and no LOY, which resulted in no significant correlation between the presence of LOY and CME. We first confirmed a strong association between XCM/LOY in males and age (OR = 1.11, *P* = 5.65×10−51). We then fitted a series of models between LOY and the contrast *CG* > *MLA*, for which we had observed a strong association with age. We first observed a significant association between the contrast and LOY, primarily due to its association with age (not significant after adjusting by age, OR = 1.25, *P* = 0.15). We also performed association tests for all the contrasts and clinical variables adjusting only by age and we observed some significant associations. LOY was associated with reduction in survival (*OR* = 0.713, *P* = 0.045) and with clinical history of vascular disease (*OR* = 0.627, *P* = 0.001) and lung thromboembolism (*OR* = 0.271, *P* = 0.042). While associations with severity were not significant, we observed a consistent estimate of their risk given by LOY. We then tested the association with the continuous value for mLRRY across all severity contrast and clinical variables. We found a significant association with survival for higher relative levels of chromosome Y content (β = 0.86, *P* = 0.0054). We then performed a joint analysis for all mosaicisms, CMEs and LOY, confirming their strong association with age (*OR* = 1.08 *P* = 1.95 × 10−62) and also with COVID-19 lethality (*OR* = 1.53, *P* = 0.004) after corrections, including adjustment for other clinical variables (Figure 3). The associations of all type mosaicism with severity contrasts were not significant but consistent across all contrasts. ### Germline aneuploidies and COVID-19 In addition to 6 individuals with XCM and likely Turner syndrome, 3 cases with 45,X0/46,XY mosaicism mentioned above, 2 more cases with 45,X0/46,XX mosaicism and one with likely 45,X0/46,XY/46,XX mosaicism, the algorithm also detected a total of 25 individuals with germline (non-mosaic) aneuploidies. We detected 7 cases with Down syndrome (trisomy 21) and 18 with gonosomal aneuploidies, including 9 with Klinefelter syndrome (47,XXY), 6 with triple X syndrome (47,XXX) and 3 with XYY syndrome (47,XYY) (Table S3). We found an association of aneuploidies with the presence of CMEs (*OR* = 9.90, *P* = 0.0047). We then performed association tests of phenotypic features with all the aneuploidies, removing individuals with CMEs. We did not find any significant association between COVID-19 severity parameters and any type of aneuploidy given this small sample size, although previous history of cardiopathy was significantly associated, as expected (OR = 4.02, *P* = 0.004). ### Correlation of LOY with cellular and biochemical phenotypes in EGCUT individuals We analyzed SNP microarray data with MADloy of a selected sample of 530 apparently healthy adult men from the Estonian Genome Center of the University of Tartu cohort (EGCUT) and classified them as having (n=28) or not having LOY (n=502). We then correlated genotype classification with several clinical parameters. Individuals with LOY had significantly age-adjusted decrease in red cell counts, decrease in mean corpuscular hemoglobin concentration and higher red cell distribution width, low basophil counts and borderline low lymphocyte proportions. Biochemical parameters revealed low albumin levels, low triglycerides and elevated homocysteine and urea levels (Table S3). ### Blood transcriptome in individuals with LOY reveals immune defects and cardiovascular risk We also compared blood transcriptome from 11 men with LOY (median age: 69, range: 58-84) and 32 age-paired men without LOY (median age: 68, range: 60-87) as controls. Multiple genes differentially expressed between groups were found, including autosomal and gonosomal genes (Tables S4-S6 and Figs S2-S3), providing insight into the mechanisms of disease susceptibility caused by LOY with implications for COVID-19. *CSF2RA*, located on the X-Y chromosome pseudoautosomal 1 (PAR1) region, is one of the most significantly down-regulated genes in LOY (Fig 4A), along with other multiple Y chromosome genes with homologs on the X chromosome that escape X inactivation and with known function in immunity (Table S6). ![Figure 4:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/02/18/2020.04.19.20071357/F4.medium.gif) [Figure 4:](http://medrxiv.org/content/early/2022/02/18/2020.04.19.20071357/F4) Figure 4: (**A**) Decreased expression of *CSF2RA* mRNA and increased expression of *MYL9* and *VWF* in individuals with LOY compared with controls with no LOY (mean gene expression in red dot). (**B**) Different predicted cell counts underlying the transcriptomic differences between cases with LOY and control individuals (no-LOY). (**C**) Gene Ontology (GO) enrichment of top differentially expressed genes. Top autosomal genes overexpressed in LOY, such as *VWF and MYL9* (Fig 4A), are associated with cardiovascular risk. *VWF* codes for the von Willebrand factor (vWF), a pro-coagulant protein that promotes platelet adhesion and smooth muscle cell proliferation, while *MYL9* encodes Myosin Light Chain 9, regulatory, important in inflammatory immune responses. Since changes in gene expression may reflect differences in cell-type composition and functionality, we estimated the average cell-type functional composition of samples from individuals with LOY compared to those without LOY using bulk transcriptome data (Table S7). The results were consistent with LOY individuals having significantly decreased GM-progenitors and B cell naïve cells, along with increased counts of endothelial cells (Fig 4B). Enrichment gene set analysis using differentially expressed genes revealed a few categories significantly over-enriched, most notably the coagulation and cellular detoxification, the leukocyte migration and neutrophil activation (Fig 4C, Tables S8-S9). Overall, gene expression in LOY individuals leads to a down-regulated immune score. ### Down-regulated genes in LOY involved in response to SARS-CoV-2 infection We tested whether the genes that participate in the primary response to SARS-CoV-2 infection were significantly deregulated in blood cells of individuals with LOY. We obtained 249 deregulated genes with SARS-CoV-2 infection in primary human lung epithelium (NHBE) and 130 for transformed lung alveolar (A549) (339 unique genes for the two cell lines). This gene set is highly over-represented in several pathways including defense response to virus, IL-17, type I interferon and NF-Kappa B signaling (Table S10). From the deregulated genes in cells infected with SARS-CoV-2 13 were also deregulated in individuals with LOY (Figure 5A and Table S11) indicating a strong significant over-representation (OR of enrichment = 7.23, p=1.5×10−7). Most of these genes are interferon response genes (*IFIT3, IFI44L, ITFT1, IFI6*), which are down-regulated in individuals with LOY (Figure 5B-D). ![Figure 5:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/02/18/2020.04.19.20071357/F5.medium.gif) [Figure 5:](http://medrxiv.org/content/early/2022/02/18/2020.04.19.20071357/F5) Figure 5: (A) Overlap between top differentially expressed genes in individuals with LOY and deregulated genes in SARS-CoV-2 infected cells. Panels B, C and D show detailed gene expression patterns of some of these overlapping genes, including down-regulated in individuals with LOY (B), and over-expressed in NHBE (C) and A549 (D) cell lines infected with SARS-CoV-2. ## Discussion We have shown in the SCOURGE study that clonal detectable CMEs, including XCM, are relatively common in blood of aging individuals, as previously reported,14 with much higher frequency in males due to somatic LOY.18 In addition to a risk factor for cancer, cardiovascular complications, incidental infections and all cause early mortality,12,16,18,33 clonal hematopoiesis with CME and/or XCM due to LOY is a risk factor for COVID-19 lethality with a combined odds ratio of 1.53. Despite some limitations of our study due to a relatively small sample size and the possibility of uncontrolled confounding factors, similar results have been recently reported in the UK biobank revealing increased risk for diverse incident infections and COVID-19 hospitalization in people with clonal hematopoiesis.16,34 Our data indicate that these two types of chromosomal mosaicism underlie at least part of the aging-related and sex-biased severity and mortality of COVID-19. Therefore, identification of CME and LOY in blood cells is likely to have an immediate clinical relevance in the management of aged patients with COVID-19. The mechanisms predisposing to autosomal events and LOY seem be mostly unrelated, as no significant association has been found between both types of events in our cohort and the germline loci reported to predispose to autosomal CMEs and LOY are different.16,19,21 While only 10% of autosomal CMEs correspond to whole chromosome aneuploidies (mainly trisomies 8, 12 and 15 and monosomy 7) likely mediated by mitotic non-disjunction, this is the main mechanism for XCM and LOY. Mitotic non-disjunction of Y chromosomes may be facilitated by the higher rate of cellular turnover of aging men. In mice, while the Y chromosome is stably transmitted during meiotic cell divisions, there is a high frequency of non-disjunction in mitosis, mainly in the earliest cleavage divisions.35 A possible pathogenetic mechanism that could be common to clonal CMEs and XCM is immunosenescence, which involves modifications of humoral and cellular immunity. One aspect of immunosenescence is a decline in the absolute number of peripheral blood lymphocytes with locus-dependent reduction of HLA class-I cell surface expression, related with increased risk of subsequent mortality. T-lymphocytes also play a central role in the effector and regulatory mechanisms of the adaptive immune response.36 Many of the biochemical and transcriptomic alterations found in individuals with LOY have been already associated to poor prognosis for SARS-CoV-2 infection.37-40 Several genes located on the Y chromosome with relevant functions in the immune system have functional homologs on the X chromosome that escape X inactivation in females (Table S4). Cells with XCM are likely haploinsufficient for many of those genes, which are downregulated in individuals with mosaic XCM due to LOY. In this regard, we observed low expression of *CSF2RA* in individuals with LOY, who also have low GM progenitors. *CSF2RA* codes for the alpha subunit of the heterodimeric receptor for colony stimulating factor 2, a cytokine that regulates the production, differentiation, and function of granulocytes and macrophages (GM-CSF), key cells for antigen presentation in infections, and is also critical for T cell function. GM-CSF increases IL-2R and IL-2 signaling, which can increase expansion of lymphocytes and IFN-γ production important for anti-viral response. Therefore, GM-CSF leads to enhanced protective responses.41 Loss or inactivation of both copies of the *CSF2RA* gene is associated with surfactant metabolism dysfunction-4 and pulmonary alveolar proteinosis, a primary immunodeficiency (OMIM 300770).42 As Leukine® (sargramostim, rhu-GM-CSF) is currently being assessed in the SARPAC trial because of its potential positive effect on antiviral immunity and contribution to restore immune homeostasis in the lungs ([https://clinicaltrials.gov/ct2/show/NCT04326920](https://clinicaltrials.gov/ct2/show/NCT04326920)), our data suggest that patients with LOY might be predictive of a poor response due to their low expression of one of the receptor subunits for GM-CSF (*CSF2RA*).43 Patients severely affected with COVID-19 have lower lymphocyte counts, especially T cells, higher leukocyte counts and neutrophil-lymphocyte-ratio, lower percentages of monocytes, eosinophils, and basophils, along with generally elevated levels of infection-related biomarkers and inflammatory cytokines, including IL-6. Helper, suppressor and regulatory T cells were all below normal levels in the severe group, with increased naïve helper T cells and decreased memory helper T cells.1,44 We observed a significant overlap of deregulated genes in LOY individuals that participate in the immediate immune response elicited by SARS-CoV-2 virus infection. Some of these genes clearly activated in both studied cell types infected by SARS-CoV-2 are markedly under expressed in individuals with LOY (*SLPI, IFI6, IFIT1, IFIT3*, and *IFI44L*) (Figure 3B-D). Secretory leukocyte protease inhibitor (SLPI) is a regulator of innate and adaptive immunity that protects the host from excessive inflammation in infectious disease, while the other four genes encode interferon induced proteins of the innate immune system that participate in the immediate host response to viral infections.45 Dysfunctions of the adaptive immunity and interferon-mediated immediate host response in individuals with XCM/LOY are consistent with the observed sexual dimorphism in human immune system aging, and might underlie a poor immune response to SARS-CoV-2 infection.46 This patterns along with the increased severity in older males, suggests that XCM due to LOY may be one underlying factor for susceptibility to COVID-19 in a proportion of patients. In addition to depleted hematopoietic progenitor cells and possible immunodeficiency, individuals with LOY may have increased levels of circulating endothelial cells, which are known biomarkers for endothelial dysfunction and cardiovascular disease.47 We observed up-regulation of *VWF* and *MYL9* in LOY. Pro-coagulant vWF promotes platelet adhesion and smooth muscle cell proliferation, and elevated levels of vWF have been associated with higher risk for thrombosis and cardiovascular disease.48 MYL9 is a ligand for CD69 to form a net-like structure inside blood vessels in inflamed lungs and is also a risk factor for cardiovascular disease risk found over-expressed in aged versus young injured arteries.49,50 Through these mechanisms, XCM/LOY seems to contribute to COVID-19 lethality by its associated cardiovascular risk. ## Conclusion In summary, clonal detectable CME & XCM are relatively common in aging individuals with much higher frequency in males due to somatic LOY. LOY is associated to decreased progenitors and stem cells, along with immune system dysfunction and increased coagulation and cardiovascular risk, as revealed by biochemical and gene expression data. Our data indicate that this type of mosaicism underlies at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential relevance for modulating prognosis, therapeutic intervention, and immunization responses, we propose that evaluation of CME/LOY by currently established methods should be implemented in both, retrospective studies and all prospective and currently ongoing clinical trials with different medications and vaccines for COVID-19. Testing for CME/LOY at large scale in elderly people may also be helpful to evaluate vaccination response and to identify still unexposed people who may be especially vulnerable to severe COVID-19 disease. ## Supporting information Supplementary Figures and Tables [[supplements/071357_file03.pdf]](pending:yes) Supplementary_FigureS1 [[supplements/071357_file04.pdf]](pending:yes) ## Data Availability Transcriptomic data from EGCUT individuals are available at GEO repository (see Methods). LOY and CME status obtained from genomic data are available upon request. ## Declarations ### Ethics approval and consent to participate All studies were performed in accordance with the ethical standards of the responsible committee on human experimentation, and with proper informed consent from all individuals tested. The whole SCOURGE project was approved by the Galician Ethical Committee Ref 2020/197, along with the Ethics and Scientific Committees of all participating centers. ### Availability of data and materials Transcriptomic data from EGCUT individuals are available at GEO repository (see Methods). LOY and CME status obtained from genomic data are available upon request. ### Author Contributions Conceptualization, LAPJ and JRG; Funding acquisition, LAPJ, TE (EGCUT), PL and AC (Scourge) and JRG; Data provider, TE, MLdH, IQ, RC, PL, AC, and Scourge Consortium; Data analysis: JRG, AC and LAPJ; Methodology, AC and JRG; Project administration, LAPJ, PL and JRG; Software, JRG; Validation, LAPJ and AC; Supervision and visualization, LAPJ and JRG; Writing original draft, LAPJ; Writing review & editing, LAPJ, AC and JRG. LAPJ, AC and JRG contributed equally to this work. All authors have read and agreed to the published version of the manuscript. ### Funding The authors acknowledge support from the Catalan Department of Economy and Knowledge (SGR2017/1974, SGR2017/801), the Spanish Ministry of Science “Programa de Excelencia María de Maeztu” (MDM-2014-0370) and “Centro de Excelencia Severo Ochoa” (CEX2018-000806-S), the Fondo Europeo de Desarrollo Regional, UE (RTI2018-100789-B-I00) and the Estonian Research Council (PUT1660). The SCOURGE study has been funded by Instituto de Salud Carlos III (COV20_00622) and cofunded by European Union (ERDF) “A way of making Europe”; additional funding was received from Amancio Ortega Foundation and Banco de Santander. Authors also receive support from the Generalitat de Catalunya through the CERCA Program. ## Conflicts of Interest LAPJ is founding partner and scientific advisor of qGenomics laboratories. The other authors declare no conflict of interest. ## Legends of the Supplemental Material **Table S1:** Patients with CMEs. In each case with a patient identifier (ID), detected CMEs are indicated by chromosome (chr), start and end coordinates of the event, estimated proportion of cells carrying the CME (cellularity) and type of event (gain, loss, or copy neutral loss of heterozygosity – cnloh). Patient age, COVID-19 severity, and patient status (dead or alive) 90 days after disease are shown in the three last columns. NA: data not available. **Table S2:** Male patients with XCM due to LOY. In addition to the patient identifier (ID) and patient age at diagnosis of COVID-19, columns show the estimated proportion of cells with XCM (LOY proportion), COVID-19 severity, and patient status (dead or alive) 90 days after disease. NA: data not available. **Table S3:** Individuals with germline (non-mosaic) complete aneuploidies (chromosome 21 and gonosomes), and developmental mosaic X-chromosome aneuploidies. **Table S4:** Comparison of analytical parameters between age-matched individuals with and without LOY in the EGCUT biobank. **Table S5:** Top 30 differentially expressed genes in blood of individuals with LOY. **Table S6:** Top 30 differentially expressed Y-linked genes in blood of individuals with LOY. **Table S7a and S7b:** Y-linked genes with homologs in the X-chromosome and a possible role in immunity. **Table S8:** Association between cell-type composition estimated using bulk transcriptomic data (immunedecov R package) and LOY status. **Table S9:** GO enrichment analysis of differentially expressed genes in individuals with LOY. GO terms significant at 5% FDR are shown. **Table S10:** KEGG enrichment analysis of differentially expressed genes in individuals with LOY. KEGG terms significant at 5% FDR are shown. **Table S11:** Top GO enrichment of differentially expressed genes in the two cell lines infected with SAS-CoV-2 (NHBE and A549). **Table S12:** Intersection between significant genes in the blood transcriptomic comparison of LOY versus no LOY individuals and in the two cell lines infected with SAS-CoV-2 (NHBE and A549). **Figure S1:** Plots of the whole-genome molecular karyotype obtained by SNParray of blood DNA from all 133 individuals of SCOURGE with detectable CMEs. **Figure S2:** Top differentially expressed genes in blood between individual with LOY and controls at genome level. The plots show the gene expression for individuals with (LOY) and without LOY (normal). The p-values correspond to a linear model adjusted for age and surrogate variables using limma. **Figure S3:** Top differentially expressed chromosome Y genes between individual with LOY and controls. The plots show the gene expression for individuals with (LOY) and without LOY (normal). The p-values correspond to a linear model adjusted for age and surrogate variables using limma. ## ** SCOURGE Cohort Group Javier Abellan15,16; René Acosta-Isaac17; Jose María Aguado18,19,20,21; Carlos Aguilar22; Sergio Aguilera-Albesa23,24; Abdolah Ahmadi Sabbagh25; Jorge Alba26; Sergiu Albu27,28,29; Karla A.M. Alcalá-Gallardo30; Julia Alcoba-Florez31; Sergio Alcolea Batres32; Holmes Rafael Algarin-Lara33,34; Virginia Almadana35; Kelliane A. Medeiros36,37; Julia Almeida38,39; Berta Almoguera40,3; María R. Alonso41; Nuria Alvarez41; Rodolfo Alvarez-Sala Walther32; Yady Álvarez-Benítez33,34; Felipe Álvarez-Navia42,43; Katiusse A. dos Santos44; Álvaro Andreu-Bernabeu45,20; Maria Rosa Antonijoan46; Eleno Martínez-Aquino47; Eunate Arana-Arri48,49; Carlos Aranda50,51; Celso Arango45,52,20; Carolina Araque53,54; Nathalia K. Araujo55; Ana C. Arcanjo56,57,58; Ana Arnaiz59,60; Francisco Arnalich Fernández61; María J. Arranz62; José Ramon Arribas Lopez61; Maria-Jesus Artiga63; Yubelly Avello-Malaver64; Carmen Ayuso40,3; Belén Ballina Martín25; Raúl C. Baptista-Rosas65,66,67; Ana María Baldion64; Andrea Barranco-Díaz34; María Barreda-Sánchez68,69; Viviana Barrera-Penagos64; Moncef Belhassen-Garcia70,43; David Bernal-Bello71; Enrique Bernal68; Joao F. Bezerra72; Marcos A.C. Bezerra73; Natalia Blanca-López74; Rafael Blancas75; Lucía Boix-Palop76; Alberto Borobia77; Elsa Bravo78; María Brion79,80; Óscar Brochado-Kith81; Ramón Brugada82,83,80,84; Matilde Bustos85; Alfonso Cabello86; Alejandro Cáceres4,5; Juan J. Caceres-Agra87; Esther Calbo76; Enrique J. Calderón88,6,89; Shirley Camacho90; Francisco C. Ceballos81; Yolanda Cañadas51; Cristina Carbonell42,43; Servando Cardona-Huerta91; Maria Sanchez Carpintero50,51; Carlos Carpio Segura32; José Antonio Carrillo-Avila92; Marcela C. Campos56; Carlos Casasnovas93,94,3; Luis Castano48,95,3,96,97; Carlos F. Castaño50,51; Jose E. Castelao98; Aranzazu Castellano Candalija99; María A. Castillo90; Walter G. Chaves-Santiago100,54; Sylena Chiquillo-Gómez33,34; Marco A. Cid-Lopez30; Oscar Cienfuegos-Jimenez91; Rosa Conde-Vicente101; Gabriela C.R. Cunha102; M. Lourdes Cordero-Lorenzana103; Dolores Corella104,105; Almudena Corrales106,107; Jose L. Cortes-Sanchez91,108; Marta Corton40,3; Karla S.C. Souza109; Fabiola T.C. Silva56; Raquel Cruz8,3,9,10; Luisa Cuesta110; Nathali A.C. Tavares111; Maria C.C. Carvalho112; David Dalmau62,76; Raquel C.S. Dantas-Komatsu113; M. Teresa Darnaude114; Raimundo de Andrés115; Carmen de Juan116; Juan De la Cruz Troca117,118,6; Carmen de la Horra89; Ana B. de la Hoz48; Alba De Martino-Rodríguez119,120; Marina S. Cruz121; Julianna Lys de Sousa Alves Neri122; Victor del Campo-Pérez123; Juan Delgado-Cuesta124; Aranzazu Diaz de Bustamante114; Anderson Díaz-Pérez34; Beatriz Dietl76; Silvia Diz-de Almeida3,10; Manoella do Monte Alves125,126; Elena Domínguez-Garrido127; Lidia S. Rosa128; Andre D. Luchessi129; Jose Echave-Sustaeta130; Rocío Eiros131; César O. Enciso-Olivera53,54; Gabriela Escudero132; Pedro Pablo España133; Gladys Mercedes Estigarribia Sanabria134; María Carmen Fariñas59,60,135; Ramón Fernández59,136; Lidia Fernandez-Caballero40,3; Ana Fernández-Cruz137; Silvia Fernández Ferrero25; Yolanda Fernández Martínez25; María J. Fernandez-Nestosa138; Uxía Fernández-Robelo139; Amanda Fernández-Rodríguez81; Marta Fernández-Sampedro59,135,60; Ruth Fernández40,3; Tania Fernández-Villa140; Carmen Fernéndez Capitán99; Antonio Augusto F. Carioca141; Patricia Flores-Pérez142; Lácides Fuenmayor-Hernández34; Marta Fuertes Núñez25; Victoria Fumadó143; Ignacio Gadea144; Lidia Gagliardi50,51; Manuela Gago-Domínguez13,9; Natalia Gallego11; Cristina Galoppo145; Ana García-Soidán146; Carlos Garcia Cerrada15,16; Aitor García-de-Vicuña48,95; Josefina Garcia-García68; Irene García-García77; Carmen García-Ibarbia59,135,60; Andrés C. García-Montero147; Leticia García50,51; Mercedes García50,51; María Carmen García Torrejón148,16; Inés García40,3; Elisa García-Vázquez68; Emiliano Garza-Frias91; Angela Gentile145; Belén Gil-Fournier149; Jéssica N.G. de Araújo150; Mario Gómez-Duque100,54; Javier Gómez-Arrue119,120; Luis Gómez Carrera32; María Gómez García151; Ángela Gómez Sacristán152; Juan R. González4,5,6,14; Anna González-Neira41; Beatriz González Álvarez119,120; Fernan Gonzalez Bernaldo de Quirós153; Rafaela González-Montelongo154; Javier González-Peñas45,20,52; Manuel Gonzalez-Sagrado101; Hugo Gonzalo Benito155; Oscar Gorgojo-Galindo156; Miguel Górgolas86; Florencia Guaragna145; Jessica G. Chaux54; Encarna Guillen-Navarro68,157,158,159; Beatriz Guillen-Guio106; Pablo Guisado-Vasco130; Luz D. Gutierrez-Castañeda160,54; Juan F. Gutiérrez-Bautista161; Sara Heili-Frades162; Rafael H. Jacomo163; Estefania Hernandez164; Cristina Hernández Moro25; Luis D. Hernandez-Ortega165,166; Guillermo Hernández-Pérez42; Rebeca Hernández-Vaquero167; Belen Herraez41; M. Teresa Herranz68; María Herrera50,51; María José Herrero168,169; Antonio Herrero-Gonzalez170; Juan P. Horcajada171,172,28,173; Natale Imaz-Ayo48; Maider Intxausti-Urrutibeaskoa174; Antonio Íñigo-Campos154; María Íñiguez175; Rubén Jara68; Ángel Jiménez50,51; Ignacio Jiménez-Alfaro176; Pilar Jiménez161; María A. Jimenez-Sousa81; Iolanda Jordan177,178,6; Rocío Laguna-Goya179,180; Daniel Laorden32; María Lasa-Lazaro179,180; María Claudia Lattig90,181; Ailen Lauriente145; Anabel Liger Borja182; Lucía Llanos183; Amparo López-Bernús42,43; Miguel López de Heredia3; Esther Lopez-Garcia117,118,6,184; Eduardo López Granados185,186,3; Rosario Lopez-Rodriguez40,3; Miguel A. López-Ruz187,188,189; Leonardo Lorente190; José M. Lorenzo-Salazar154; José E. Lozano191; María Lozano-Espinosa182; Ignacio Mahillo192,193,107; Esther Mancebo179,180; Carmen Mar133; Cristina Marcelo Calvo99; Alba Marcos-Delgado194; Miguel Marcos42,43; Alicia Marín Candon77; Pablo Mariscal Aguilar32; Laura Martin-Pedraza74; Marta Martin-Fernandez195; Caridad Martín-López182; José-Ángel Martín-Oterino42,43; María Dolores Martín196; Vicente Martín194,6; María M. Martín197; María Martín-Vicente81; Amalia Martinez198; Óscar Martínez-González75; Ricardo Martínez164; Pedro Martinez-Paz155; Covadonga M. Diaz-Caneja45,52,20; Oscar Martinez-Nieto64,181; Iciar Martinez-Lopez199,200; Michel F. Martinez-Resendez91; Silvia Martínez59,135; Juan José Martinez94,3; Angel Martinez-Perez201; Andrea Martínez-Ramas40,3; Violeta Martínez Robles25; Laura Marzal40,3; Juliana F. Mazzeu202,203,204; Francisco J. Medrano88,6,89; Xose M. Meijome205,206; Natalia Mejuto-Montero207; Ingrid Mendes3; Alice L. Duarte109; Ana Méndez-Echevarria208; Humberto Mendoza Charris78,34; Eleuterio Merayo Macías209; Fátima Mercadillo210; Arieh R. Mercado-Sesma165,166; Pablo Minguez40,3; Elena Molina-Roldán211; Antonio J J. Molina194; Juan José Montoya164; Susana M.T. Pinho36,212,213; Patricia Moreira-Escriche116; Xenia Morelos-Arnedo78,34; Rocío Moreno3; Victor Moreno Cuerda15,16; Antonio Moreno-Docón68; Junior Moreno-Escalante34; Alberto Moreno Fernández99; Patricia Muñoz García214,107,20; Pablo Neira145; Julian Nevado3,11,12; Israel Nieto-Gañán146; Vivian N. Silbiger129; Rocio Nuñez-Torres41; Antònia Obrador-Hevia215,216; J. Gonzalo Ocejo-Vinyals59,135; Virginia Olivar145; Silviene F. Oliveira56,217,204,218; Lorena Ondo40,3; Alberto Orfao38,39; Eva Ortega-Paino63; Luis Ortega219; Rocio Ortiz-Lopez91; Fernando Ortiz-Flores59,135; José A. Oteo26,175; Manuel Pacheco164; Fredy Javier Pacheco-Miranda34; Irene Padilla Conejo25; Sonia Panadero-Fajardo92; Mara Parellada45,52,20; Roberto Pariente-Rodríguez146; Vicente Friaza6,89; Estela Paz-Artal179,180,220; Germán Peces-Barba221,107; Miguel S. Pedromingo Kus222; Celia Perales144; Ney P.C. Santos223; Genilson P. Guegel224; Perez Maria Jazmin145; Alexandra Perez82,80; Patricia Pérez-Matute175; César Pérez225; Gustavo Perez-de-Nanclares48,95; Felipe Pérez-García226,227; Patricia Perez228; Luis A. Pérez-Jurado1,2,3; M. Elena Pérez-Tomás68; Teresa Perucho229; Lisbeth A. Pichardo25; Adriana P. Ribeiro36,37,213; Mel·lina Pinsach-Abuin82,80; Luz Adriana Pinzón100,54; Jeane F.P. Medeiros230; Guillermo Pita41; Francesc Pla-Junca231,3; Laura Planas-Serra94,3; Ericka N. Pompa-Mera232; Gloria L. Porras-Hurtado164; Aurora Pujol94,3,233; María Eugenia Quevedo Chávez33,34; Maria Angeles Quijada46,234; Inés Quintela8; Soraya Ramiro León149; Pedro Rascado Sedes235; Joana F.R. Nunes56; Delia Recalde119,120; Emma Recio-Fernández175; Salvador Resino81; Renata R. Sousa213,236; Carlos S. Rivadeneira-Chamorro54; Diana Roa-Agudelo64; Montserrat Robelo Pardo235; Marianne R. Fernandes223,237; María A. Rodriguez-Hernandez85; Agustí Rodriguez-Palmero238,94; Emilio Rodríguez-Ruiz235,9; Marilyn Johanna Rodriguez54; Fernando Rodriguez-Artalejo117,118,6,184; Marena Rodríguez-Ferrer34; Carlos Rodriguez-Gallego239,240; José A. Rodriguez-Garcia25; Belén Rodríguez Maya15; Antonio Rodriguez-Nicolas161; German Ezequiel Rodriguez Novoa145; Paula A. Rodriguez-Urrego64; Federico Rojo241,242; Andrea Romero-Coronado34; Rubén Morilla89,243; Filomeno Rondón García25; Antonio Rosales-Castillo244; Cladelis Rubio245; María Rubio Olivera50,51; Francisco Ruiz-Cabello161,188,246; Eva Ruiz-Casares229; Juan J. Ruiz-Cubillan59,135; Javier Ruiz-Hornillos247,51,248; Montserrat Ruiz94,3; Pablo Ryan249,250,251; Hector D. Salamanca53,54; Lorena Salazar-García90; Giorgina Gabriela Salgueiro Origlia 99; Anna Sangil76; Olga Sánchez-Pernaute252; Pedro-Luis Sánchez131,43; Antonio J. Sánchez López253; Clara Sánchez-Pablo131; María Concepción Sánchez Prados32; Javier Sánchez Real25; Jorge Sánchez Redondo15,254; Cristina Sancho-Sainz174; Esther Sande255; Arnoldo Santos225; Agatha Schlüter94,3; Sonia Segovia231,256,257; Alex Serra-Llovich62; Fernando Sevil Puras22; Marta Sevilla Porras3,11; Miguel A. Sicolo258,259; Cristina Silván Fuentes3; Vitor M.S. Moraes260; Vanessa S. Souza102; Jordi Solé-Violán261,107; José Manuel Soria201; Jose V. Sorlí104,105; Nayara S. Silva262; Juan Carlos Souto17; John J. Sprockel100,54; José Javier Suárez-Rama8; David A. Suarez-Zamora64; Xiana Taboada-Fraga207; Eduardo Tamayo263,156; Alvaro Tamayo-Velasco264; Juan Carlos Taracido-Fernandez170; Romero H.T. Vasconcelos111; Carlos Tellería119,120; Thássia M.T. Carratto260; Jair Antonio Tenorio Castaño3,11,12; Alejandro Teper145; Izabel M.T. Araujo109; Juan Torres-Macho265; Lilian Torres-Tobar266; Ronald P. Torres Gutiérrez222; Jesús Troya249; Miguel Urioste210; Juan Valencia-Ramos267; Agustín Valido35,268; Juan Pablo Vargas Gallo269,270; Belén Varón271; Tomas Vega272; Santiago Velasco-Quirce273; Valentina Vélez-Santamaría93,94; Virginia Víctor50,51; Julia Vidán Estévez25; Gabriela V. Silva109; Miriam Vieitez-Santiago59,135; Carlos Vilches274; Lavinia Villalobos25; Felipe Villar221; Judit Villar-Garcia275,276,277; Cristina Villaverde3,40; Pablo Villoslada-Blanco175; Ana Virseda-Berdices81; Tatiana X. Costa278; Zuleima Yáñez34; Antonio Zapatero-Gaviria279; Ruth Zarate280; Sandra Zazo241; Carlos Flores106,107,154; José A. Riancho59,60,135; Augusto Rojas-Martinez281; Pablo Lapunzina3,11,12; Ángel Carracedo3,8,9,10,13 ## SCOURGE Cohort Group Affiliations (440 members) 1, Genetics Unit, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain 2, Service of Genetics, Hospital del Mar and Hospital del Mar Research Institute (IMIM), Barcelona, Spain 3, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain 4, ISGlobal, Barcelona, Spain 5, Centre for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain 8, Centro Nacional de Genotipado (CEGEN), Universidade de Santiago de Compostela, Santiago de Compostela, Spain 9, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain 10, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain 11, Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IDIPAZ, Madrid, Spain 12, ERN-ITHACA-European Reference Network 13, Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS) Santiago de Compostela, Spain 14, Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain 15, Hospital Universitario Mostoles, Medicina Interna, Madrid, Spain 16, Universidad Francisco de Vitoria, Madrid, Spain 17, Haemostasis and Thrombosis Unit, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain 18, Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain 19, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain 20, School of Medicine, Universidad Complutense, Madrid, Spain 21, Centre for Biomedical Network Research on Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain 22, Hospital General Santa Bárbara de Soria, Soria, Spain 23, Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain 24, Navarra Health Service, NavarraBioMed Research Group, Pamplona, Spain 25, Complejo Asistencial Universitario de León, León, Spain 26, Hospital Universitario San Pedro, Infectious Diseases Department, Logroño, Spain 27, Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Hospital de Neurorehabilitació, Barcelona, Spain 28, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain 29, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain 30, Hospital General de Occidente, Guadalajara, Mexico 31, Microbiology Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain 32, Hospital Universitario La Paz-IDIPAZ, Servicio de Neumología, Madrid, Spain 33, Camino Universitario Adelita de Char, Mired IPS, Barranquilla, Colombia 34, Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia 35, Hospital Universitario Virgen Macarena, Neumología, Seville, Spain 36, Hospital das Forças Armadas, Brazil 37, Exército Brasileiro, Brazil 38, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain 39, Centro de Investigación del Cáncer (IBMCC) Universidad de Salamanca - CSIC, Salamanca, Spain 40, Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 41, Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain 42, Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna, Salamanca, Spain 43, Universidad de Salamanca, Salamanca, Spain 44, Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Ciências Farmacêuticas, Natal, Brazil 45, Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain 46, Clinical Pharmacology Service, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain 47, Servicio de Medicina Interna, Sanatorio Franchin, Buenos Aires, Argentina 48, Biocruces Bizkai HRI, Bizkaia, Spain 49, Cruces University Hospital, Osakidetza, Bizkaia, Spain 50, Hospital Infanta Elena, Valdemoro, Madrid, Spain 51, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 52, Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain 53, Fundación Hospital Infantil Universitario de San José, Bogotá, Colombia 54, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia 55, Universidade Federal do Rio Grande do Norte, Departamento de Analises Clínicas e Toxicológicas, Natal, Brazil 56, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brazil 57, Colégio Marista de Brasilia, Brazil 58, Associação Brasileira de Educação e Cultura, Brazil 59, IDIVAL, Cantabria, Spain 60, Universidad de Cantabria, Cantabria, Spain 61, Hospital Universitario La Paz-IDIPAZ, Servicio de Medicina Interna, Madrid, Spain 62, Fundació Docència I Recerca Mutua Terrassa, Barcelona, Spain 63, Spanish National Cancer Research Center, CNIO Biobank, Madrid, Spain 64, Fundación Santa Fe de Bogota, Departamento Patologia y Laboratorios, Bogotá, Colombia 65, Hospital General de Occidente, Zapopan Jalisco, Mexico 66, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico 67, Centro de Investigación Multidisciplinario en Salud, Universidad de Guadalajara, Tonalá Jalisco, Mexico 68, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain 69, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain 70, Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna-Unidad de Enfermedades Infecciosas, Salamanca, Spain 71, Hospital Universitario de Fuenlabrada, Department of Internal Medicine, Madrid, Spain 72, Escola Tecnica de Saúde, Laboratorio de Vigilancia Molecular Aplicada, Brazil 73, Federal University of Pernambuco, Genetics Postgraduate Program, Recife, PE, Brazil 74, Hospital Universitario Infanta Leonor, Servicio de Alergia, Madrid, Spain 75, Hospital Universitario del Tajo, Servicio de Medicina Intensiva, Toledo, Spain 76, Hospital Universitario Mutua Terrassa, Barcelona, Spain 77, Hospital Universitario La Paz-IDIPAZ, Servicio de Farmacología, Madrid, Spain 78, Alcaldía de Barranquilla, Secretaría de Salud, Barranquilla, Colombia 79, Instituto de Investigación Sanitaria de Santiago (IDIS), Xenética Cardiovascular, Santiago de Compostela, Spain 80, Centre for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain 81, Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain 82, Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), Girona, Spain 83, Medical Science Department, School of Medicine, University of Girona, Girona, Spain 84, Hospital Josep Trueta, Cardiology Service, Girona, Spain 85, Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville-Virgen del Rocio University Hospital, Seville, Spain 86, Division of Infectious Diseases, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 87, Intensive Care Unit, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain 88, Departemento de Medicina, Hospital Universitario Virgen del Rocío,Universidad de Sevilla, Seville, Spain 89, Instituto de Biomedicina de Sevilla, Seville, Spain 90, Universidad de los Andes, Facultad de Ciencias, Bogotá, Colombia 91, Tecnológico de Monterrey, Monterrey, Mexico 92, Andalusian Public Health System Biobank, Granada, Spain 93, Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat (Barcelona), Spain 94, Bellvitge Biomedical Research Institute (IDIBELL), Neurometabolic Diseases Laboratory, L’Hospitalet de Llobregat, Spain 95, Osakidetza, Cruces University Hospital, Bizkaia, Spain 96, Centre for Biomedical Network Research on Diabetes and Metabolic Associated Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain 97, University of Pais Vasco, UPV/EHU, Bizkaia, Spain 98, Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galego de Saúde, Vigo, Spain 99, Hospital Universitario La Paz, Hospital Carlos III, Madrid, Spain 100, Hospital de San José, Sociedad de Cirugía de Bogota, Bogotá, Colombia 101, Hospital Universitario Río Hortega, Valladolid, Spain 102, Programa de Pós Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade de Brasília, Brazil 103, Servicio de Medicina intensiva, Complejo Hospitalario Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain 104, Valencia University, Preventive Medicine Department, Valencia, Spain 105, Centre for Biomedical Network Research on Physiopatology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain 106, Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain 107, Centre for Biomedical Network Research on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain 108, Otto von Guericke University, Departament of Microgravity and Translational Regenerative Medicine, Magdeburg, Germany 109, Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicais e Toxicologias, Natal, Brazil 110, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain 111, Hospital Universitario Lauro Wanderley, Brazil 112, Programa de Pós Graduação em Ciências Farmacêuticas (PPgCF), Natal, Brazil 113, Universidade Federal do Rio Grande do Norte, Programa de Pós-graduação em Ciências da Saúde, Natal, Brazil 114, Hospital Universitario Mostoles, Unidad de Genética, Madrid, Spain 115, Internal Medicine Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 116, Hospital Universitario Severo Ochoa, Servicio de Medicina Interna, Madrid, Spain 117, Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain 118, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain 119, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain 120, Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain 121, Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Ciências da Saúde, Natal, Brazil 122, Universidade Federal do Rio Grande do Norte, Programa de Pós Graduação em Nutrição, Natal, Brazil 123, Preventive Medicine Department, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galego de Saúde, Vigo, Spain 124, Hospital Universitario Virgen del Rocío, Servicio de Medicina Interna, Seville, Spain 125, Universidade Federal do Rio Grande do Norte, Departamento de Infectologia, Brazil 126, Hospital de Doenças Infecciosas Giselda Trigueiro, Rio Grande do Norte, Brazil 127, Unidad Diagnóstico Molecular. Fundación Rioja Salud, La Rioja, Spain 128, Faculdade de Ciências da Saúde, Universidade de Brasília, Brazil 129, Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicas e Toxicologicas, Natal, Brazil 130, Hospital Universitario Quironsalud Madrid, Madrid, Spain 131, Hospital Universitario de Salamanca-IBSAL, Servicio de Cardiología, Salamanca, Spain 132, Hospital Universitario Puerta de Hierro, Servicio de Medicina Interna, Majadahonda, Spain 133, Biocruces Bizkaia Health Research Institute, Galdakao University Hospital, Osakidetza, Bizkaia, Spain 134, Instituto Regional de Investigación en Salud-Universidad Nacional de Caaguazú, Caaguazú, Paraguay 135, Hospital U M Valdecilla, Cantabria, Spain 136, Fundación Asilo San Jose, Cantabria, Spain 137, Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Madrid, Spain 138, Universidad Nacional de Asunción, Facultad de Politécnica, Paraguay 139, Urgencias Hospitalarias, Complejo Hospitalario Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain 140, Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS) - Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain 141, Universidade de Fortaleza, Natal, Brazil 142, Hospital Universitario Niño Jesús, Pediatrics Department, Madrid, Spain 143, Unitat de Malalties Infeccioses i Importades, Servei de Pediatría, Infectious and Imported Diseases, Pediatric Unit, Hospital Universitari Sant Joan de Deú, Barcelona, Spain 144, Microbiology Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 145, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina 146, Department of Immunology, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain 147, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain 148, Hospital Infanta Elena, Servicio de Medicina Intensiva, Valdemoro, Madrid, Spain 149, Hospital Universitario de Getafe, Unidad de Genética, Madrid, Spain 150, Programa de pós-graduação em biotecnologia - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, Brazil 151, X1 152, Pneumology Department, Hospital General Universitario Gregorio Marañón (iiSGM), Madrid, Spain 153, Ministerio de Salud Ciudad de Buenos Aires, Buenos Aires, Argentina 154, Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain 155, Hospital Clinico Universitario de Valladolid, Unidad de Apoyo a la Investigación, Valladolid, Spain 156, Universidad de Valladolid, Departamento de Cirugía, Valladolid, Spain 157, Sección Genética Médica - Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Servicio Murciano de Salud, Murcia, Spain 158, Departamento Cirugía, Pediatría, Obstetricia y Ginecología, Facultad de Medicina, Universidad de Murcia (UMU), Murcia, Spain 159, Grupo Clínico Vinculado, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain 160, Hospital Universitario Centro Dermatológico Federico Lleras Acosta, Bogotá, Colombia 161, Hospital Universitario Virgen de las Nieves, Servicio de Análisis Clínicos e Inmunología, Granada, Spain 162, Intermediate Respiratory Care Unit, Department of Neumology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 163, Sabin Medicina Diagnóstica, Brazil 164, Clinica Comfamiliar Risaralda, Pereira, Colombia 165, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara, Mexico 166, Centro de Investigación Multidisciplinario en Salud, Universidad de Guadalajara, Guadalajara, Mexico 167, Unidad de Cuidados, Intensivos Hospital Clínico Universitario de Santiago (CHUS), Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain 168, IIS La Fe, Plataforma de Farmacogenética, Valencia, Spain 169, Universidad de Valencia, Departamento de Farmacología, Valencia, Spain 170, Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 171, Hospital del Mar, Infectious Diseases Service, Barcelona, Spain 172, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain 173, CEXS-Universitat Pompeu Fabra, Spanish Network for Research in Infectious Diseases (REIPI), Barcelona, Spain 174, Biocruces Bizkaia Health Research Institute, Basurto University Hospital, Osakidetza, Bizkaia, Spain 175, Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain 176, Opthalmology Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 177, Hospital Sant Joan de Deu,Pediatric Critical Care Unit, Barcelona, Spain 178, Paediatric Intensive Care Unit, Agrupación Hospitalaria Clínic-Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain 179, Hospital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain 180, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Transplant Immunology and Immunodeficiencies Group, Madrid, Spain 181, SIGEN Alianza Universidad de los Andes - Fundación Santa Fe de Bogotá, Bogotá, Colombia 182, Hospital General de Segovia, Medicina Intensiva, Segovia, Spain 183, Clinical Trials Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 184, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain 185, Hospital Universitario La Paz-IDIPAZ, Servicio de Inmunología, Madrid, Spain 186, La Paz Institute for Health Research (IdiPAZ), Lymphocyte Pathophysiology in Immunodeficiencies Group, Madrid, Spain 187, Hospital Universitario Virgen de las Nieves, Servicio de Enfermedades Infecciosas, Granada, Spain 188, Instituto de Investigación Biosanitaria de Granada (ibs GRANADA), Granada, Spain 189, Universidad de Granada, Departamento de Medicina, Granada, Spain 190, Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Spain 191, Dirección General de Salud Pública, Consejería de Sanidad, Junta de Castilla y León, Valladolid, Spain 192, Fundación Jiménez Díaz, Epidemiology, Madrid, Spain 193, Universidad Autónoma de Madrid, Department of Medicine, Madrid, Spain 194, Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain 195, Universidad de Valladolid, Departamento de Medicina, Valladolid, Spain 196, Preventive Medicine Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 197, Intensive Care Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain 198, Hospital Universitario Infanta Leonor, Servicio de Medicina Intensiva, Madrid, Spain 199, Unidad de Genética y Genómica Islas Baleares, Islas Baleares, Spain 200, Hospital Universitario Son Espases, Unidad de Diagnóstico Molecular y Genética Clínica, Islas Baleares, Spain 201, Genomics of Complex Diseases Unit, Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain 202, Faculdade de Medicina, Universidade de Brasília, Brazil 203, Programa de Pós-Graduação em Ciências Médicas, Universidade de Brasília, Brazil 204, Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Brazil 205, Hospital El Bierzo, Gerencia de Asistencia Sanitaria del Bierzo (GASBI), Gerencia Regional de Salud (SACYL), Ponferrada, Spain 206, Grupo INVESTEN, Instituto de Salud Carlos III, Madrid, Spain 207, Unidad de Cuidados Intensivos, Complejo Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain 208, Hospital Universitario La Paz-IDIPAZ, Servicio de Pediatría, Madrid, Spain 209, Hospital El Bierzo, Unidad Cuidados Intensivos, León, Spain 210, Spanish National Cancer Research Centre, Familial Cancer Clinical Unit, Madrid, Spain 211, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos (HCSC), Madrid, Spain 212, Marinha do Brasil, Brazil 213, Universidade de Brasília, Brazil 214, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain 215, Unidad de Genética y Genómica Islas Baleares,Unidad de Diagnóstico Molecular y Genética Clínica, Hospital Universitario Son Espases, Islas Baleares, Spain 216, Instituto de Investigación Sanitaria Islas Baleares (IdISBa), Islas Baleares, Spain 217, Programa de Pós-Graduação em Biologia Animal (UnB), Brazil 218, Programa de Pós-Graduação Profissional em Ensino de Biologia (UnB), Brazil 219, Anatomía Patológica, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos (HCSC), Madrid, Spain 220, Universidad Complutense de Madrid, Department of Immunology, Ophthalmology and ENT, Madrid, Spain 221, Department of Neumology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 222, Hospital Nuestra Señora de Sonsoles, Ávila, Spain 223, Universidade Federal do Pará, Núcleo de Pesquisas em Oncologia, Belém, Pará, Brazil 224, Secretaria Municipal de Saude de Apodi, Natal, Brazil 225, Intensive Care Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 226, Hospital Universitario Príncipe de Asturias, Servicio de Microbiología Clínica, Madrid, Spain 227, Universidad de Alcalá de Henares, Departamento de Biomedicina y Biotecnología, Facultad de Medicina y Ciencias de la Salud, Madrid, Spain 228, Inditex, A Coruña, Spain 229, GENYCA, Madrid, Spain 230, Universidade Federal do Rio Grande do Norte, Departamento de Análises Clínicas e Toxicológicas, Natal, Brazil 231, Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain 232, Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Mexico City, Mexico 233, Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain 234, Drug Research Centre, Institut d’Investigació Biomèdica Sant Pau, IIB-Sant Pau, Barcelona, Spain 235, Unidad de Cuidados Intensivos, Hospital Clínico Universitario de Santiago (CHUS), Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain 236, Faculdade de Medicina, Brazil 237, Hospital Ophir Loyola, Departamento de Ensino e Pesquisa, Belém, Pará, Brazil 238, University Hospital Germans Trias i Pujol, Pediatrics Department, Badalona, Spain 239, Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain 240, Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain 241, Department of Pathology, Biobank, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 242, Centre for Biomedical Network Research on Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain 243, Universidad de Sevilla, Departamento de Enfermería, Seville, Spain 244, Hospital Universitario Virgen de las Nieves, Servicio de Medicina Interna, Granada, Spain 245, Fundación Universitaria de Ciencias de la Salud, Grupo de Ciencias Básicas en Salud (CBS), Bogotá, Colombia 246, Universidad de Granada, Departamento Bioquímica, Biología Molecular e Inmunología III, Granada, Spain 247, Hospital Infanta Elena, Allergy Unit, Valdemoro, Madrid, Spain 248, Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain 249, Hospital Universitario Infanta Leonor, Madrid, Spain 250, Complutense University of Madrid, Madrid, Spain 251, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain 252, Reumathology Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain 253, Biobank, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain 254, Universidad Rey Juan Carlos, Madrid, Spain 255, X2 256, The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. 257, Neuromuscular Unit, Neuropediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Spain 258, Casa de Saúde São Lucas, Natal, Brazil 259, Hospital Rio Grande, Natal, Brazil 260, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil 261, Intensive Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain 262, Universidade Federal do Rio Grande do Norte, Pós-graduação em Biotecnologia - Rede de Biotecnologia do Nordeste (Renorbio), Natal, Brazil 263, Hospital Clinico Universitario de Valladolid, Servicio de Anestesiologia y Reanimación, Valladolid, Spain 264, Hospital Clinico Universitario de Valladolid, Servicio de Hematologia y Hemoterapia, Valladolid, Spain 265, Hospital Universitario Infanta Leonor, Servicio de Medicina Interna, Madrid, Spain 266, Sociedad de Cirugía de Bogotá, Hospital de San José, Bogotá, Colombia 267, University Hospital of Burgos, Burgos, Spain 268, Universidad de Sevilla, Seville, Spain 269, Fundación Santa Fe de Bogota, Instituto de servicios medicos de Emergencia y trauma, Bogotá, Colombia 270, Universidad de los Andes, Bogotá, Colombia 271, Quironprevención, A Coruña, Spain 272, Junta de Castilla y León, Consejería de Sanidad, Valladolid, Spain 273, Gerencia Atención Primaria de Burgos, Burgos, Spain 274, Immunogenetics-Histocompatibility group, Servicio de Inmunología, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Madrid, Spain 275, Hospital del Mar, Department of Infectious Diseases, Barcelona, Spain 276, IMIM (Hospital del Mar Medical Research Institute, Institut Hospital del Mar d’Investigacions Mediques), Barcelona, Spain 277, Universitat Autònoma de Barcelona, Department of Medicine, Spain 278, Maternidade Escola Janário Cicco, Natal, Brazil 279, Consejería de Sanidad, Comunidad de Madrid, Madrid, Spain 280, Centro para el Desarrollo de la Investigación Científica, Paraguay 281, Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico ## Acknowledgments We thank Gemma Moncunill, Lluís Armengol and Jozef Gecz for their critical reading of initial versions of this manuscript. ## Footnotes * ** SCOURGE cohort group: listed in pages 24-32 * We have included a GWAS data analysis of COVID-19 case control study (SCOURGE) to validate our hypothesis with LOY and have extended the analyses to chromosomal mosaicims * Received April 19, 2020. * Revision received February 18, 2022. * Accepted February 18, 2022. * © 2022, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at [http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/) ## REFERENCES 1. 1.Zhou, P., Yang X. Lou, Wang, X.G., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-020-2012-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 2. 2.Verity, R., Okell, L.C., Dorigatti, I., et al. (2020). Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 20(6):669–677. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(20)30243-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32240634&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 3. 3.Williamson, E.J. Walker, A.J., Bhaskaran, K., et al. (2020). Factors associated with COVID-19-related death using OpenSAFELY. Nature 584(7821):430–436. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-020-2521-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 4. 4.Leong, H.-N., Earnest, A., Lim, H.-H., Chin, C.-F., Tan, C.S.H., Puhaindran, M.E., Tan, A.C.H., Chen, M.I.C., and Leo, Y.-S. (2006). SARS in Singapore--predictors of disease severity. Ann. Acad. Med. Singapore 35, 326–331. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16829999&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000238381300004&link_type=ISI) 5. 5.Alghamdi, I.G., Hussain, I.I., Almalki, S.S., Alghamdi, M.S., Alghamdi, M.M., and El-Sheemy, M.A. (2014). The pattern of Middle east respiratory syndrome coronavirus in Saudi Arabia: A descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int. J. Gen. Med. 7, 417–423. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/IJGM.S67061&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25187734&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 6. 6.Channappanavar, R., Fett, C., Mack, M., Ten Eyck, P.P., Meyerholz, D.K., and Perlman, S. (2017). Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. J. Immunol. 198, 4046–4053. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6MTE6IjE5OC8xMC80MDQ2IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjIvMDIvMTgvMjAyMC4wNC4xOS4yMDA3MTM1Ny5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 7. 7.Takahashi, T., Ellingson, M.K., Wong, P., et al. (2020). Sex differences in immune responses that underlies COVID-19 disease outcomes. Nature 177:4375–85. 8. 8.Jin, J.-M., Bai, P., He, W., Liu, S., Wu, F., Liu, X.-F., Han, D.-M., and Yang, J.-K. (2020). Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health 8:152. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 9. 9.Bastard, P., Rosen, L.B., Zhang, Q., et al. (2020) Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370(6515):eabd4585. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjE3OiIzNzAvNjUxNS9lYWJkNDU4NSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIyLzAyLzE4LzIwMjAuMDQuMTkuMjAwNzEzNTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 10. 10.COVID-19 Host Genetics Initiative (2021). Mapping the human genetic architecture of COVID-19. Nature 600(7889), 472–477. 11. 11.Rodríguez-Santiago B, Malats N, Rothman N, et al. (2010) Mosaic Uniparental Disomies and Aneuploidies as Large Structural Variants of the Human Genome. Am J Hum Genet, 87:129–138. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ajhg.2010.06.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20598279&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 12. 12.Jacobs, K.B., Yeager, M., Zhou, W., et al. (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44, 651–658. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ng.2270&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22561519&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 13. 13.Laurie, C.C., Laurie, C.A., Rice, K., et al. (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44, 642–650. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ng.2271&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22561516&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 14. 14.Machiela, M.J., Zhou, W., Sampson, J.N., et al. (2015) Characterization of large structural genetic mosaicism in human autosomes. Am J Hum Genet 96, 487–497. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ajhg.2015.01.011&link_type=DOI) 15. 15.Loh, P.R., Genovese, G., Handshaker, R.E., et al. (2018) Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559, 350–355. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-018-0321-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29995854&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 16. 16.Zekavat, S.M., Lin, S.H., Bick, A.G., et al. (2021) Hematopoietic mosaic chromosomal alterations and risk for infection in 767891 individuals without blood cancer. Nat Med. 27(6), 1012–1024. 17. 17.Guo, X., Dai, X., Zhou, T., Wang, H., Ni, J., Xue, J., and Wang, X. (2020). Mosaic loss of human Y chromosome: what, how and why. Hum. Genet. 139, 421–446. 18. 18.Forsberg, L.A., Rasi, C., Malmqvist, N., et al. (2014). Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 46, 624–628. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ng.2966&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24777449&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 19. 19.Zhou, W., Machiela, M.J., Freedman, N.D., et al. (2016). Mosaic loss of chromosome Y is associated with common variation near TCL1A. Nat. Genet. 48, 563–568. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ng.3545&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27064253&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 20. 20.Loftfield, E., Zhou, W., Graubard, B.I., Yeager, M., Chanock, S.J., Freedman, N.D., and Machiela, M.J. (2018). Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. Sci. Rep. 8, 12316. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-018-30759-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30120341&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 21. 21.Thompson, D.J., Genovese, G., Halvardson, J., et al. (2019). Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-019-1765-3&link_type=DOI) 22. 22.Cáceres, A., Jene, A., Esko, T., Pérez-Jurado, L.A., and González, J.R. (2020). Extreme down-regulation of chromosome Y and cancer risk in men. JNCI J. Natl. Cancer Inst. 112(9), 913–920. 23. 23.Cáceres, A., Jene, A., Esko, T., Pérez-Jurado, L.A., and González, J.R. (2020). Extreme down-regulation of chromosome Y and Alzheimer’s disease in men. Neurobiol. Aging. 90, 150.e1-150.e4. 24. 24.Machiela, M.J., Zhou, W., Karlins, E., et al. (2016). Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nat. Commun. 7, 11843. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ncomms11843&link_type=DOI) 25. 25.Fuchs, M.M., Attenhofer Jost, C., Babovic-Vuksanovic, D., Connolly, H.M., and Egbe, A. (2019). Long-Term Outcomes in Patients With Turner Syndrome: A 68-Year Follow-Up. J. Am. Heart Assoc. 8, e011501. 26. 26.Wang, H., Zhu, H., Zhu, W., Xu, Y., Wang, N., Han, B., Song, H., Qiao, J. (2020) Bioinformatic Analysis Identifies Potential Key Genes in the Pathogenesis of Turner Syndrome. Front Endocrinol. 11, 104. 27. 27.Leitsalu, L., Haller, T., Esko, T., et al. (2015). Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int J Epidemiol. 44(4):1137–47. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ije/dyt268&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24518929&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 28. 28.Cruz, R., Diz de Almeida, S., López de Heredia, M., et al. A genome-wide association study of COVID_19 related hospitalization in Spain reveals genetic disparities among sexes. Submitted to PNAS. 29. 29.González, J.R., Rodríguez-Santiago, B., Cáceres, A., Pique-Regi, R., Rothman, N., Chanock, S.J., Armengol, L., Pérez-Jurado, L.A. (2011). A fast and accurate method to detect allelic genomic imbalances underlying mosaic rearrangements using SNP array data. BMC Bioinformatics, May 17;12:166. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2105-12-166&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21586113&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 30. 30.González, J.R., López-Sánchez, M., Cáceres, A., Puig, P., Esko, T., and Pérez-Jurado, L.A. (2020) A robust estimation of mosaic loss of chromosome Y from genotype-array-intensity data to improve disease risk associations and transcriptional effects. BMC Bioinformatics 21(1):533. 31. 31.enOever, B.R., Blanco-Melo, D. (2020) Transcriptional response of human lung epithelial cells to SARS-CoV-2 infection. GSE147507. [https://doi.org/10.1101/2020.03.24.004655](https://doi.org/10.1101/2020.03.24.004655). Mar 25. 32. 32.Tsoucas, D., Dong, R., Chen, H., Zhu, Q., Guo, G., and Yuan, G.C. (2019). Accurate estimation of cell-type composition from gene expression data. Nat Commun. 10, 1–9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41467-019-09078-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30602773&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 33. 33.Evans, M.A., Sano, S., Walsh, K. (2020) Cardiovascular Disease, Aging, and Clonal Hematopoiesis Annu Rev Pathol 15:419–438. 34. 34.Lin, S.H. Loftfield, E., Sampson J.N., Zhou, W., Yeager, M., Freedman, N.D., Chanock, S.J., Machiela, M. (2020) Mosaic chromosome Y loss is associated with alterations in blood cell counts in UK Biobank men. Sci Rep 10, 3655. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-020-59963-8&link_type=DOI) 35. 35.Bean, C.J., Hunt, P.A., Millie, E.A., Hassold, T.J. (2001). Analysis of a malsegregating mouse Y chromosome: evidence that the earliest cleavage divisions of the mammalian embryo are non-disjunction-prone. Hum Mol Genet. 10(9):963–72. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/hmg/10.9.963&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11309370&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000168490500008&link_type=ISI) 36. 36.Rodríguez, I.J., Lalinde Ruiz, N., Llano León, M., et al. (2021). Immunosenescence study of T cells: a systematic review. Front Immunol 11:604591. 37. 37.Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., Huang, H., Zhang, L., Zhou, X., Du, C., et al. (2020). Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. Mar 13;e200994. 38. 38.Tang, N., Li, D., Wang, X., and Sun, Z. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 18, 844–847. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jth.14768&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 39. 39.Chen, G., Wu, D., Guo, W., et al. (2020) Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest 130:2620–2629. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1172/jci137244&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 40. 40.Zhou, F., Yu, T., Du, R., et al. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 395, 1054–1062. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(20)30566-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 41. 41.Autenshlyus, A., Arkhipov, S., Mikhailova, E., Marinkin, I., Arkhipova, V., and Varaksin, N. (2019). The Relationship Between Cytokine Production, CSF2RA, and IL1R2 Expression in Mammary Adenocarcinoma, Tumor Histopathological Parameters, and Lymph Node Metastasis. Technol. Cancer Res. Treat. 18, 1533033819883626. 42. 42.Suzuki, T., Sakagami, T., Rubin, B.K., et al. (2008). Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J. Exp. Med. 205, 2703–2710. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamVtIjtzOjU6InJlc2lkIjtzOjExOiIyMDUvMTIvMjcwMyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIyLzAyLzE4LzIwMjAuMDQuMTkuMjAwNzEzNTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 43. 43.Bosteels, C., Maes, B., Van Damme, K., et al. (2020) Sargramostim to treat patients with acute hypoxic respiratory failure due to COVID-19 (SARPAC): A structured summary of a study protocol for a randomised controlled trial. Trials 21(1):491. Erratum in: Trials 2020;21(1):554 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13063-020-04451-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32503663&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 44. 44.Wen, W., Su, W., Tang, H., et al. (2020). Immune Cell Profiling of COVID-19 Patients in the Recovery Stage by Single-Cell Sequencing. Cell Discov 6:31. Eratum in: Cell Discov 6:41. 45. 45.Majchrzak-Gorecka, M., Majewski, P., Grygier, B., Murzyn, K., and Cichy, J. (2016). Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev. 28, 79–93. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cytogfr.2015.12.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26718149&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 46. 46.Márquez, E.J., Chung, C. Han, Marches, R., Rossi, R.J., Nehar-Belaid, D., Eroglu, A., Mellert, D.J., Kuchel, G.A., Banchereau, J., and Ucar, D. (2020). Sexual-dimorphism in human immune system aging. Nat Commun 11, 751. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41467-020-14396-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 47. 47.Farinacci, M., Krahn, T., Dinh, W., Volk, H.-D., Düngen, H.-D., Wagner, J., Konen, T., von Ahsen, O. (2019). Circulating endothelial cells as biomarker for cardiovascular diseases. Res Pract Thromb Haemost 3, 49–58. 48. 48.Spiel, A.O., Gilbert, J.C., and Jilma, B. (2008). Von Willebrand Factor in Cardiovascular Disease. Circulation 117, 1449–1459. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTQ6ImNpcmN1bGF0aW9uYWhhIjtzOjU6InJlc2lkIjtzOjExOiIxMTcvMTEvMTQ0OSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIyLzAyLzE4LzIwMjAuMDQuMTkuMjAwNzEzNTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 49. 49.Shehadeh, L.A., Webster, K.A., Hare, J.M., and Vazquez-Padron, R.I. (2011) Dynamic Regulation of Vascular Myosin Light Chain (MYL9) with Injury and Aging. PLoS One 6, e25855. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0025855&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22003410&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F02%2F18%2F2020.04.19.20071357.atom) 50. 50.Kimura, M.Y., Koyama-Nasu, R., Yagi, R., Nakayama, T. (2019) A New Therapeutic Target: The CD69-Myl9 System in Immune Responses. Semin Immunopathol 41, 349–358.