
 

Analysis of the impact of lockdown on the reproduction 
number of the SARS-Cov-2 in Spain 

Alexandre Hyafil1,2*, David Moriña2,3 

1Centre de Recerca Matemàtica (CRM) 

2Barcelona Graduate School of Mathematics (BGSMath), Departament de Matemàtiques, 
Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona (Spain) 

3Department of Econometrics, Statistics and Applied Economics, Riskcenter-IREA, 
Universitat de Barcelona (UB), 08034 Barcelona (Spain) 

 

* Corresponding author: 

Alexandre Hyafil 

Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, Universitat Autònoma de 
Barcelona, 08193 Cerdanyola del Vallès, Barcelona (Spain) 

ahyafil@crm.cat 

 

 

 

 

 

 

 

 

 

 

Recuento de palabras: 

Resumen en inglés: 211 

Resumen en castellano: 226 

Texto principal:2733 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2020.04.18.20070862doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.18.20070862
http://creativecommons.org/licenses/by-nc/4.0/


 

Authorship contributions: 

A.H. and D. M. designed the study and defined the considered scenarios. A. H. implemented 

the codes for the analyses. Both authors participated in writing the manuscript, 

interpretation and discussion of the obtained results, and approve the publication of the 

manuscript in its present form. 

Funding: 

A. H. was funded by the Spanish Ministry of Economy and Competitiveness (Ramón y Cajal 

fellowship RYC-2017-23231). D. M. acknowledges financial support from the Spanish 

Ministry of Economy and Competitiveness, through the María de Maeztu Programme for 

Units of Excellence in R&D (MDM-2014-0445), Instituto de Salud Carlos III (COV20/00115) 

and Fundación Santander Universidades. 

 

Conflict of interest: 

The authors declare no conflict of interest. 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2020.04.18.20070862doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.18.20070862
http://creativecommons.org/licenses/by-nc/4.0/


 

Análisis del impacto del confinamiento en el número de 

reproducción del SARS-Cov-2 en España 

Resumen 

Objetivo: El brote de la enfermedad Covid-19 a finales de 2019 ha puesto los sistemas de 

salud de muchos países al límite de su capacidad. Los países europeos más afectados son, 

hasta ahora, Italia y España. En ambos países (y en otros), las autoridades decretaron un 

confinamiento, con especificidades locales. El objetivo de este trabajo es evaluar el impacto 

de las medidas adoptadas en España para hacer frente a la pandemia. Método: Estimamos el 

número de casos y el impacto del confinamiento en el número básico de reproducción según 

los informes de hospitalización hasta el día 15 de abril 2020. Resultados: El número 

estimado de casos muestra un fuerte aumento hasta el bloqueo, seguido de una 

desaceleración y luego una disminución después de la implementación del confinamiento 

total. Las diferencias en el número básico de reproducción también son muy significativas, 

cayendo de 5.89 (95% IC: 5.46-7.09) antes del bloqueo a 0.48 (95% IC: 0.15-1.17) después.  

Conclusiones: Gestionar una pandemia como la Covid-19 es muy complejo y requiere una 

rápida toma de decisiones. Las grandes diferencias encontradas en la velocidad de 

propagación de la enfermedad nos muestran que poder implementar intervenciones en la 

etapa más temprana de la misma es crucial para minimizar el impacto de una potencial 

amenaza. Nuestro trabajo también muestra la importancia de contar con datos 

epidemiológicos actualizados y confiables para evaluar con precisión el impacto de las 

políticas de Salud Pública en el brote. 

Palabras clave: Covid-19, estudio de evaluación, salud pública, infecciones, virus 
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Analysis of the impact of lockdown on the reproduction 

number of the SARS-Cov-2 in Spain 

Abstract 

Objective: The late 2019 Covid-19 disease outbreak has put the health systems of many 

countries to the limit of their capacity. The most affected European countries are, so far, Italy 

and Spain. In both countries (and others), the authorities decreed a lockdown, with local 

specificities. The objective of this work is to evaluate the impact of the measures undertaken 

in Spain to deal with the pandemic. Method: We estimated the number of cases and the 

impact of lockdown on the reproducibility number based on the hospitalization reports up 

to April 15th 2020. Results: The estimated number of cases shows a sharp increase until the 

lockdown, followed by a slowing down and then a decrease after full quarantine was 

implemented. Differences in the basic reproduction ratio are also very significant, dropping 

from de 5.89 (95% CI: 5.46-7.09) before the lockdown to 0.48 (95% CI: 0.15-1.17) 

afterwards. Conclusions: Handling a pandemic like Covid-19 is very complex and requires 

quick decision making. The large differences found in the speed of propagation of the disease 

show us that being able to implement interventions at the earliest stage is crucial to minimise 

the impact of a potential infectious threat. Our work also stresses the importance of reliable 

up to date epidemiological data in order to accurately assess the impact of Public Health 

policies on viral outbreak. 

Keywords: Covid-19, evaluation study, public health, infections, virus 
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1. Introduction 

By late 2019 an outbreak of Covid-19 disease -caused by SARS-Cov-2 virus- started in the 

region of Hubei (China), more specifically in the city of Wuhan. Since then, the disease has 

spread all over the world, being declared pandemic by the World Health Organization (WHO) 

on 2020 March 11th. The rapid propagation of the virus around the world has stressed the 

health systems of many countries to their limit. In Europe, the most affected countries in 

terms of number of detected cases, hospitalizations and deaths are, to the date, Italy and 

Spain. This unprecedented situation for the public health systems of these countries forced 

decision makers to act very quickly in order to minimize the impact of the disease and to 

avoid collapse. In Spain, the emergency state (estado de alarma) was declared on 2020 March 

14th and was hardened with mandatory home confinement except for vital sectors workers 

(including health professionals, food supply, etc.) on March 30th. Under this situation, it is 

urgent to assess the efficiency of social distancing and other non-pharmaceutical 

interventions undertaken to control the pandemics of Covid-19.1,2 One of the main challenges 

in evaluating the impact of these actions is that data are only partially available, as many of 

the cases are asymptomatic or with mild symptoms,3 and shortage of testing kits prevent 

testing all patients with possible Covid-19 symptoms. Therefore, the number of cases might 

be severely underestimated. This issue is common in epidemiology and several methods 

have been recently proposed to address it (see4,5) under specific circumstances. Another 

issue is that, when no massive viral testing of the population is performed, new cases are 

only detected once symptoms appear, at a variable delay after contamination. This 

complicates the assessment of the impact of interventions to reduce/slow down the spread 

of a virus. 

Here, we aimed at evaluating the impact of the Covid-19 related non-pharmaceutical 

interventions undertaken in Spain over the basic reproduction ratio 𝑅0, considering three 

periods of time in 2020: No intervention (until March 13th), emergency state (March 16-30th 

and April 13th-15th) and mandatory confinement (March 31st to April 12th). We inferred 

retrospectively the number of contamination in each Spanish region (Comunidad Autónoma, 
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or CCAA) from the patterns of hospitalizations, deaths and detected cases. Analyses were 

performed with data up to April 15th 2020.  

 

2. Methods 

We modelled the dynamics of infection with a discrete-time (Susceptible-Infected-

Recovered) SIR model with time-varying 𝑅0 defined for each region 𝑟 and day 𝑑. We also 

assumed the stock of susceptible population 𝑆(𝑟, 𝑑) is almost constant through time  at 

𝑆(𝑟, 𝑑) ≈ 𝑁𝑟 , (where 𝑁𝑟 is the size of the total population in the region; i.e. a small percentage 

of the population is contaminated) as is probably valid up to now. The dynamics of infected 

people 𝐼(𝑟, 𝑑) in region 𝑟 at day 𝑑 thus varies as: 

𝐼(𝑟, 𝑑 + 1) = 𝐼(𝑟, 𝑑)𝑒(𝑅0(𝑟,𝑑)−1)𝛾, 

where 𝛾 is the recovery rate of the infection. 𝑅0 is a stochastic variable whose expected value 

is defined by the ongoing social distancing measures (no measure, state emergency or 

mandatory confinement). Those three expected values are parameters that are estimated 

from the reports. Formally, the priors over 𝑅0 for each region are defined as independent 

Gaussian Processes . The prior mean is defined by the distancing measures, while the prior 

covariance is Squared Exponential covariance 𝐾 with variance 𝜎2 = 0.12 and length 𝑙 = 1 

day.6 Such prior allows to capture differences in the spread between different regions as well 

as temporary change of 𝑅0 within a region (Gaussian Processes enforce that these 

fluctuations are smooth in time). The variance term 𝜎2 was set so it is unlikely that the 

infected population goes down in a single day by a proportion larger than the recovery rate 

𝛾. Based on the mean 20 days of contagious before recovery (duration of viral shedding7), 

we set 𝛾 = 0.05 𝑑𝑎𝑦−1. 

We assumed that the value of infected people at the beginning of the period studied (20th 

of February 2020) was drawn from a log-normal distribution with mean 𝑥𝑖(𝑟) and variance 

1, where 𝑥𝑖  is a parameter specific to each CCAA (estimated from the data). This variability 

allowed us to capture initial variations in the spread of the epidemics at the beginning of 

the period of study. 
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The number of new cases per day is 𝑁(𝑟, 𝑑) = 𝐼(𝑟, 𝑑) − 𝐼(𝑟, 𝑑 − 1) + 𝛾𝐼(𝑟, 𝑑 − 1) = 𝐼(𝑟, 𝑑) −

(1 − 𝛾)𝐼(𝑟, 𝑑 − 1). This true number of cases however cannot be observed directly. Here we 

use a latent-state approach: we estimated the evolution of the number of true cases in each 

CCAA based on the recorded accumulated number of detected cases, hospitalizations and 

deaths provided by Instituto de Salud Carlos III7 . We used estimates for the proportion of 

cases 𝑝𝐶  that are detected by the Spanish Health system, the proportion of cases 𝑝𝐻 that are 

hospitalized, and the lethality rate 𝑝𝐷, as the well as the distribution of latency between 

infection and this three types of events 𝑙𝑖(𝑑) (figure 1). We used the following estimates: 

15% of contaminated persons are hospitalized; 1% die from disease8,9 ; 30% of cases get 

detected (this latter number was defined arbitrarily, since the number of detected cases is 

roughly twice the number of hospitalizations). Note that these percentages affect the 

estimated number of true cases by a scaling factor, but do not affect the estimation of 

reproduction parameters. We used estimates of the distribution of duration of infection-to-

detection, infection-to-hospitalization based on published literature8,9. Lauer and colleagues 

describe that the incubation period can be captured by log-normal distribution with median 

5.1 days. To capture the extra time from the apparition of symptoms to case 

detection/hospitalization, we increased the  median time of the log-normal distribution by 

50% for case detection and 100% for hospitalization, i.e. 7.65 days and 10.2 days, 

respectively, while keeping the same dispersion parameter 𝜎. For infection-to-death, we 

used the sum of two gamma distributions for infection-to-onset and onset-to-death with 

overall mean 23.9 days.10 Thus the expected numbers of events 𝑦𝑖(𝑟, 𝑑) in a certain CCAA is 

given by convolving the pattern of new cases with the distribution of infection-to-event. 

𝐸[𝑦𝑖(𝑟, 𝑑)] = 𝑝𝑖 ∑ 𝑁(𝑐, 𝑡)𝑙𝑖(𝑑 − 𝑡)

𝑡<𝑑

 

𝐸[𝑦𝑖(𝑟, 𝑑)] = ∑ 𝑤𝑑−𝑡𝐼(𝑟, 𝑡)

𝑡<𝑑

 

with 𝑤𝑑 = 𝑝𝑖(𝑙𝑖(𝑑) − (1 − 𝛾)𝑙𝑖(𝑑 − 1)). We assumed that the actual number of events 

recorded at that day and time was drawn from a negative binomial distribution with mean 

𝐸[𝑦𝑖(𝑟, 𝑑)] as defined above and parameter 𝑟 = 2.10 The reports provide accumulated time 
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series, so in principle new events correspond to the difference between two successive days. 

However new events are sometimes reported later than on the day of occurrence (especially 

during weekends). We estimated that 30% of events were reported on the following day, 

10% two days later. Assigning this proportion of events to one or two days before they are 

reported allowed us to smooth the event time series. Finally, for the case of 2 CCAA (Madrid 

and Castilla y La Mancha, until April 12th for the latter), the reported number of 

hospitalizations was not cumulative but corresponded to the current number of hospitalized 

patients related to Covid-19. For Castilla y La Mancha, we found that we could recover the 

reported cumulative number of hospitalizations on April 12th by assuming that the duration 

of hospitalization is distributed uniformly between 5 and 15 days. We used this rule to 

estimate the cumulative number of hospitalizations for this CCAA, and applied it similarly 

for Madrid. 

 

There is a debate about the reliability of these data. It is believed that hospitalizations report 

is the most reliable of these indicators11 , as many cases go undetected (some patients are 

asymptomatic or suffer mild symptoms; saturation of health systems have led to testing only 

more severely affected patients in some CCAA), and some deaths are not integrated in the 

official count because of the lack of viral charge testing. There is indeed a large variability 

between the fraction of hospitalizations per reported case between CCAA: it is 31% in Galicia 

but 82% in Comunidad de Madrid. This difference is more likely to be due to differences in 

detecting and reporting cases rather than in the true proportion of infected people requiring 

hospitalization. It is also more difficult to assess reliably the number of cases from death 

reports as the latency from infection to death is long and can be very variable across 

individuals. 

Parameters of the model, including the value of 𝑅0 in the different conditions, were 

estimated from the data using an Expectation-Maximization algorithm (see Appendix A for 

details). We ran three alternative analyses: the principal analysis estimated model 

parameters using hospitalizations reports; two control analyses were run using either 

detected cases or deaths reports, which are two less reliable indicators.   
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Figure 1: Normalized distribution for the latency from contamination to  detected case, 

hospitalization and death. event. 

3. Results 

We present the number of Covid-19 cases in all 19 CCAA inferred from the pattern of 

hospitalizations in Figure 2 (see also Supplementary Figure 1 for breakdown by CCAA). The 

estimated cases display a sharp increase until the lockdown followed by a plateau, and then 

a decrease. We estimated the 𝑅0 before state of emergency, during state emergency and 

during enforced lockdown. 𝑅0 was found to drop from 5.89 (95% CI: 5.46-7.09) to 1.86 

(95% CI: 1.10-2.63) after state of emergency, and down to 0.48 (95% CI: 0.15-1.17) after 

full lockdown. We estimate a total number of 0.871 million Covid-19 cases in Spain by April 

15th 2020, including 0.294 active cases, 0.559 recovered and 0.018 deceased (see Figure 3 

for breakdown by CCAA). 
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Figure 2: Number of estimated Covid-19 cases in Spain, inferred from the number of 

hospitalizations until April 15th 2020. The posterior mean of inferred cases is plotted in blue. 

Cumulative number of detected cases, hospitalizations and deaths are plotted in green, red and 

black curves, respectively. Grey curves represent the inferred number of cases in each CCAA. The 

onset of state of emergency and mandatory confinement are indicated by a vertical bar. 
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Figure 3: Cumulative number of cases in each CCAA, and breakdown into active cases, 

recovered cases and deceased patients. 

Estimates were similar when we used detected cases rather than hospitalizations. Using 

detected case reports, we estimated the 𝑅0 to be 6.91 (95% CI: 6.75-7.39) before the state of 

urgency, 2.22 (95% CI: 1.92-2.74) during the state of emergency and 0.85 (95% CI: 0.5-1.05) 

during the full lockdown . The estimate for the cumulative number of cases was 0.823 million 

overall in Spain (0.351 million active). 

Because deaths occur after a long and variable interval after contamination, we could not 

reliably estimate the value of 𝑅0 separately for the state emergency and full lockdown 

measures, so we simply estimated 𝑅0 before and after declaring the state of emergency. We 

estimated the 𝑅0 to be 6.48 before the lockdown (95% CI: 5.5-7.51), and 0.49 afterwards 
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(95% CI: 0.16 - 1.57). The estimate for the cumulative number of cases was 2.82 millions 

overall in Spain (0.72 millions active). 

Finally, we assessed how much our results depended on some of our assumptions, using 

hospitalization reports. We estimated the parameters using a different pattern of delays of 

notification for hospitalizations (50% reported on the same day; 20% on the next day; 20% 

two days later; 10% three days later). This change in delays induced a relatively small change 

in estimated 𝑅0 : 5.60 before the state of emergency (95% CI: 4.77-7.05), 1.66 (95% CI: 1.14-

2.55) during the state of emergency and 0.60 (95% CI: 0.13-1.35) during the full lockdown. 

The assumed probability of hospitalizations had no impact at all on the estimated 𝑅0, and 

had an inversely proportional influence on the estimated number of cases: assuming 7.5% 

of hospitalizations instead of 15% would lead a twofold increase in the estimated number of 

cases. 

 

4. Discussion and limitations 

We found similar estimates of reproducibility number and the proportion of the Spanish 

population contaminated by the new coronavirus, whether they were estimated from 

hospitalization numbers or detected cases. Both estimates from case reports and 

hospitalizations suggest that only mandatory quarantine achieved R0 lower than 1, while R0 

during state of emergency before non-essential services were shut down was estimated to 

be well beyond 1. This predicts that the opening of the non-essential services by April 13 

may lead to a new surge of cases. Based on this empirical study, mandatory confinement is 

the only state-wise measure that effectively reduces the number of contaminations.   

Estimates based on death reports differed considerably from those based on either 

hospitalizations or detected cases. This suggests that some of the assumptions and data our 

modeling is based on may not be accurate (although commonly used in previous studies), 

and shows that this can induce very large biases in the estimation of the propagation of the 

new coronavirus in Spain. A crucial pre-requisite for the reliability of our estimates is that 
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the proportion of events do not vary in time. That was likely not the case neither for detected 

cases, as the testing policy evolved during the period of study, nor for deaths, as the 

saturation of health systems may have led to higher death tolls and reporting of deaths in 

retirement homes evolved. As the proportion of hospitalized cases is believed to be more 

stable across time, we believe that estimates based on the latter are more reliable than 

estimates based on either reported cases or deaths.   Below, we further comment on the 

results obtained with the hospitalization reports.  

Our approach is very similar to a study by an Imperial College team published last week 

inferring the impact of non-pharmaceutical measures (including lockdown) on propagation 

of the new coronavirus in 11 European countries.10 Both studies rely on fitting a model of 

infection dynamics to observed data (here hospitalizations). This contrasts with other 

approaches based on fitting a curve to the observed time series, (e.g. for patterns of fatalities 

in United States12 or patterns of cases in China13), or to model simulations studies that 

capture how the pattern of contacts in different scenarios (with or without social distancing 

measures) affect virus propagation.14-16 Other studies have also estimated the number of 

cases from the reported deaths, assuming a fixed duration from infection to death17 . 

 

Figure 4: Increase in number of cases (in percent) for each CCAA in the 10 days following 

lockdown versus number of cases per 100.000 habitants at the time of lockdown 
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Our modeling approach included stochasticity in the reproducibility number in each area. 

This notably allows to capture distinct trajectories of infection in different areas. We noted 

a negative correlation across CCAA between the proportion of infected people at the onset 

of state of emergency and the subsequent increase in infection (Figure 4, Pearson coefficient: 

𝑟 = −0.46, 𝑝 = 0.048). In others words, 𝑅0 at the state of emergency was smaller in the 

regions with more cases. This could be due to a series of factors. First, the communities with 

the largest proportion of cases could start developing herd immunity, hence limiting the 

propagation of the infection (which seems unlikely given that in the most affected CCAA, only 

a few percent have been infected according to our estimations). It could also be the result of 

local policies taken before the national lockdown in the most affected CCAA, or a better 

compliance of lockdown and social distancing in most affected areas. Another factor could 

be the migration from the most affected (especially Madrid) to less affected region before 

lockdown was implemented18, or some distortions in the reporting (under-reporting) of 

cases in saturated health systems. 

Our study has several important limitations. First, as noted previously, it is not clear how 

reliable is the data the modeling is based on: both epidemiological reports, and infectious 

estimate probability and latency of symptoms, case detection, hospitalization and death). It 

should be stressed that the unreliability of epidemiologic data (with changes of criterion of 

inclusion along time and between CCAA) induces important biases which impede an accurate 

estimation of the impact of political measures on the propagation of the new coronavirus. A 

faster and more reliable tracking of the epidemics could be performed if cases were reported 

in a systematic way dated by the onset of symptoms rather than detection, as the incubation 

period has been well characterized. 

Second, the model captures the number of new cases each day as a proportion from the pool 

of infected people in the same area. It does not take into account how the age distribution in 

each area affects that each infection leads to hospitalizations or death, nor how the 

probability of infecting depends on the days from infection.10 Nor do it take into account 

mobility between regions, whose impact is believed to be more important at the initiation of 

the epidemics. It is also worth noting that in a locked down environment where most 

contacts are compartmentalized in households, it is possible that at beginning the virus 
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continues to spread rapidly within households, but less so between households. As immunity 

was not taken care here, 𝑅0 may decrease significantly more without further policies, after 

this first wave of within-household contamination is over. 

Finally, we only modeled the impact of lockdown, not of other measures which were taken 

too close apart (banning public events, closing schools, etc.), and simultaneously in most 

regions, so it is not possible here to disentangle their effects precisely.  The analysis also did 

not take into account other changes that have occurred during this period, such as measures 

at an individual level or at the level of companies and local institutions (usage of masks, 

hands washing, etc.). 

In conclusion, the greatest interest should be focused on the trends in R0 found in this work, 

which show drastic successive reductions after the implementation of the state of urgency 

and forced quarantines. 
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Appendix A: Parameter estimation procedure 

Parameters of the model 𝜃 include the prior mean of 𝑅0 for the three different lockdown 

conditions (𝛽0, 𝛽1, 𝛽2), as well the expected value of the log-infected population at initial 

point 𝑥𝑖(𝑟). Parameters were fitted from the data by Maximum Likelihood estimation, using 

an Expectation-Maximization procedure.The procedure also allowed to recover the 

posterior distribution of true cases 𝑝(𝐼|𝑦; 𝜃) for each day and CCAA. We convert the 

infected population to the log-scale, defining 𝑥(𝑟, 𝑑) = 𝑙𝑜𝑔𝐼(𝑟, 𝑑): 

𝑥(𝑟, 𝑑 + 1) = 𝑥(𝑟, 𝑑) − (𝑅0(𝑟, 𝑑) − 1)𝛾 

This can be turned into: 

𝑥(𝑟, 𝑑) = 𝑥𝑖(𝑟) + 𝛾 (∑

𝑡<𝑑

𝑅0(𝑟, 𝑑) − 𝑑) 

In vectorial terms, we have 𝑥 = 𝑇[𝑥(0, 𝑟), 𝑅0(𝑟, : )], where 𝑇 is an upper triangular matrix of 

1 that implements the summing operation. Since both 𝑥𝑖(𝑟) and 𝑅0(𝑟, : ) have multivariate 

normal prior distribution, the prior over 𝑥 is normal itself with mean 𝜇𝑟 = 𝑇[𝑥𝑖(𝑟), 𝛷𝛽] and 

covariance 𝐾𝑥 = 𝑇𝐾̃𝑇′ where 𝛷 is an 𝐷-by-3 indicator matrix indicating the lockdown state 

for each day, and 𝐾̃ is block diagonal with submatrices 𝜎0
2 and 𝐾. In the Expectation step, 

we estimate the posterior distribution over log-infected population using a Laplace 

approximation 𝑝(𝑥|𝑦, 𝜃) ≈ 𝑁(𝑚, 𝑉). We first identified the maximum-a-posteriori variable 

m through gradient search, and then computed V as the inverse of the negative of the 

hessian joint-log-probability evaluated at m. 

Parameters were updated in the M-step by maximizing the objective function analytically. 

We run the EM 10 times with different initial values for the parameters to avoid falling into 

local maxima of the log-likelihood. Confidence intervals for parameters were estimated 

using parametric bootstrapping using 20 bootstraps. All analyses were implemented in 

Matlab with custom codes, which will be uploaded on a public repository upon publication 

of the manuscript. 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2020.04.18.20070862doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.18.20070862
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Supplementary Figure 1: Number of estimated Covid-19 cases in all Spanish Comunidades 

Autónomas, inferred from the number of hospitalizations. The posterior mean of inferred 

cases is plotted in blue. Cumulative number of detected cases, hospitalizations and deaths 

are plotted in green, red and black curves, respectively. Grey curves represent the inferred 

number of cases in other CCAA. The onset of state of emergency and mandatory confinement 

are indicated by a vertical bar. 
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