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Abstract
The pathophysiology of many chronic pain disorders is far
from evident. MR imaging studies provided initial data in-
dicating chronic pain might lead to changes in brain struc-
ture and function. These changes may contribute to cognitive
and emotional impairment and maybe even to the chronifica-
tion of pain. However, the evidence for pain-related changes in
gray and white matter is inconclusive so far. Hence we inves-
tigated potential changes of white matter microstructure in 34
adults with chronic noncancer pain (> 1 year) and 34 sex- and
age-matched healthy individuals using diffusion tensor imaging
(DTI). Whole-brain tract-based spatial statistics (TBSS) analy-
ses of fractional anisotropy, mode of diffusivity, mean diffusiv-
ity, axial diffusivity, and radial diffusivity did not show signifi-
cant differences after correction for multiple comparisons. The
volumes of subdivisons of the corpus callosum were not signif-
icantly different either. We also performed a systematic review
of the existing literature on white matter microstructure in pa-
tients with chronic pain following PRISMA guidelines. We iden-
tified 53 eligible studies on DTI in chronic pain. These studies
demonstrated conflicting results regarding the direction and lo-
cation of white matter changes across all diagnoses and within
major diagnostic subcategories. We propose that two factors
primarily contribute to this low reproducibility, small sample
size and the use of potentially unreliable DTI parameters de-
rived from the single-tensor model.
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Introduction
Chronic pain is a major medical, social, and economical
problem, causing a significant individual and societal bur-
den worldwide (1, 2). Chronic pain is often associated with
cognitive (3–5) and emotional (6, 7) disturbances and also
has serious consequences for social relationships, work, and
the individual’s family (8). The prevalence of moderate-to-
severe chronic noncancer pain in the adult population ranges
between 10% and 20% in developed countries (9, 10). Ac-
cordingly, the financial costs of chronic pain are substantial,
both for the affected individual and for society in general
(11, 12). While the notion that chronic pain is the result of
several diverse mechanisms, including neuroscientific, psy-
chological, and social factors, according to Engel’s biopsy-
chosocial model (13, 14), has gained wide support, the exact
etiologies of most forms of chronic pain are far from estab-

lished.
Regarding the neural mechanisms of chronic pain, numerous
studies have suggested that pain reshapes the brain’s struc-
ture and function and that pain-induced neural reorganiza-
tion contributes to the chronification of pain (15–17). In a
seminal structural MRI study, Apkarian et al. (18) were able
to demonstrate gray matter loss in a group of patients with
chronic back pain compared to healthy controls. Since then,
various studies on gray matter changes in chronic pain have
been published with conflicting results regarding the location
and direction (decrease vs. increase) of changes. Coordinate-
based quantitative meta-analyses have been performed to
condense these findings, e.g. (19, 20). These meta-analyses
identified areas of decreased and increased gray matter in pa-
tients with chronic pain. Importantly, areas of gray matter al-
terations included not only parts of the nociceptive system,
such as the primary somatosensory cortex, the thalamus, and
the insula, but also areas outside the core nociceptive system,
such as the frontal lobe. The mechanisms that lead to gray
matter changes in chronic pain are unknown so far. However,
structural MR images of patients with chronic pain did not
provide evidence for global neurodegeneration or premature
aging of the brain (21).
In the meantime, it has become increasingly clear that also
white matter fiber tracts play a crucial role in neural function.
Disruption of fiber tracts is e.g. associated with global cog-
nitive dysfunction as well as a decline of executive functions
and verbal memory (22). Soon after the initial studies on gray
matter researchers started to investigate potential changes of
white matter in patients with chronic pain, including DaSilva
et al. (23), Lutz et al. (24), and Sundgren et al. (25). While
white matter lesions can be identified on conventional T1- or
T2-weighted images, the tissue structure of normal-appearing
white matter may be estimated with diffusion tensor imag-
ing (DTI) (26). DTI allows investigating the macrostructure
(e.g., the thickness and fiber density of major white matter
fiber bundles) and microstructure of white matter (27).
Using DTI, changes in white matter microstrucure were
found in patients with various pain disorders, including mus-
culoskeletal pain (28, 29), fibromyalgia (30), trigeminal neu-
ralgia (31–33), primary dysmenorrhea (34–36), and chronic
neuropathic pain following spinal cord injury (37, 38). Im-
paired white matter structure in chronic pain may be of con-
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siderable clinical importance because white matter disorder
may be associated with cognitive deficits and may predict
transition to chronic pain (39). Of note, not all studies found
changes in white matter microstructure in chronic pain; sev-
eral studies did not detect differences between patients and
healthy controls, including studies by Ceko et al. (40), Neeb
et al. (41), and Petrusić et al. (42).
For patients with chronic low back pain, two systematic re-
views are available, presenting findings of several MR imag-
ing techniques, including DTI (43, 44). For patients with
chronic musculoskeletal pain, another systematic review on
structural and functional MR imaging of the brain, including
DTI, has been published (45). To the best of our knowledge,
there is no systematic review synthesizing all available stud-
ies on white matter microstructure across all forms of chronic
pain.
The first aim of the present study was to investigate white
matter microstructure and the volume of corpus callosum
subdivisions. As part of a bigger project, DTI was performed
in the ChroPain1 study, a cross-sectional case-control study,
including 34 patients with chronic noncancer pain and 34 in-
dividually age- and sex-matched healthy controls. To assess
white matter microstructure, whole-brain tract-based spa-
tial statistics (TBSS) analyses of fractional anisotropy (FA),
mode of diffusivity (MO), mean diffusivity (MD), axial dif-
fusivity (AD), and radial diffusivity (RD) were done. TBSS
was used to compare DTI diffusivity parameters between pa-
tients and controls and to evaluate, within the chronic pain
group, potential associations between diffusivity parameters
and pain duration and pain intensity. TBSS has been per-
formed in numerous DTI studies and is considered a standard
approach for voxel-based analysis of DTI data (46). Based
on previous reports (28, 29), we hypothesized that patients
with chronic pain, on average, demonstrate decreased FA in
white matter fiber tracts, such as corpus callosum, cingulum,
and in the frontal white matter. Several studies found changes
in white matter microstructure in the corpus callosum of pa-
tients with chronic pain, e.g (30). We, therefore, hypothesized
that the macroanatomy of the corpus callosum might also be
affected in chronic pain.
The second aim of the present study was to perform a sys-
tematic review of the existing literature on white matter mi-
crostructure in patients with chronic pain based on PRISMA
guidelines (47). The research question of this systematic re-
view was: Are there statistically significant differences of
white matter DTI parameters between groups of patients with
chronic (> 3 months) pain and healthy controls?

Results
Diffusion tensor imaging in the ChroPain1 study.

Description of clinical characteristics. We included 42 pa-
tients with chronic pain and 42 healthy controls. Due to
missing MRI measurements and missing matching part-
ners, we excluded 8 participants in each group. The demo-
graphic, clinical, and neuropsychological characteristics of
the chronic pain group (n = 34) and the individually matched

Controls Chronic pain p
n = 34 . n = 34

Age (yrs) 54 ± 8 54 ± 8 0.965 (t-test)
Sex

Women, n (%) 25 (74%) 25 (74%) —
Men, n (%) 9 (26%) 9 (26%)

Pain duration (yrs.) — 17 ± 11 (1-50) —
Pain intensity1 — 6 ± 2 (3-9) —
Handedness

Right, n 32 29 0.149 (X2)
Right converted, n 1 5
Left, n 1 0

Education2

Lower secondary, n 1 15 0.001 (X2)
Secondary, n 15 10
High school diploma, n 6 3
University degree, n 12 6

Verbal IQ3 106 ± 9 97 ± 9 > 0.001 (t-test)
Depression score4 5 ± 4 16 ± 10 > 0.001 (t-test)

Table 1. Demographic, clinical, and neuropsychological data of healthy controls
and patients with chronic pain. Data are presented as mean ± standard deviation.
1Eleven-point numerical rating scale; 0: no pain, 10: worst pain imaginable. 2 lower
secondary: Hauptschulabschluss; secondary: Realschulabschluss; high school
diploma: Abitur ; university degree: Universitätsabschluss. 3Wortschatztest (WST).
4Allgemeine Depressionsskala (ADS-K)

healthy control group (n = 34) are presented in Table 1. For-
mal education and verbal IQ, as assessed by a vocabulary test,
were significantly lower in chronic pain patients (detailed
data on spatial-numeric processing and other cognitive func-
tions in this sample have been presented by Spindler et al.
(4)). Although we tried to match for formal education, we
were unable to recruit sufficient numbers of healthy controls
with lower secondary education. We thus decided not to in-
clude formal education in the matching process to avoid the
loss of a considerable number of participants.
All participants were Caucasians born and raised in Germany.
All patients with chronic pain were seen in a specialized pain
outpatient clinic on a regular basis. Primary pain diagnoses
were degenerative spinal disease (n = 21), degenerative joint
disease (n = 4), fibromyalgia (n = 7), and abdominal pain (n
= 2). Patients were treated with non-opioid analgesics (n =
20, 59%), opioid analgesics (n = 14, 41%), glucocorticoids
(n = 2, 6%), antidepressants (n = 16, 47%), and antiepileptic
drugs (n = 4, 12%). The mean depression score on the Ger-
man version of the Center for Epidemiological Studies De-
pression Scale (CES-D) was significantly higher in chronic
pain patients.

White matter microstructure in chronic pain patients and
healthy controls. Whole-brain TBSS of FA, MO, MD, AD,
and RD did not result in significant differences between
groups after correction for multiple comparisons. Figure 1A
displays the mean white matter skeleton used for voxel-based
TBSS analysis, Figure 1B shows voxels in which FA is sig-
nificantly decreased compared to healthy controls. After cor-
rection for multiple comparisons, no significant voxels re-
mained.

Association between white matter microstructure and pain
duration in chronic pain patients. Using whole-brain TBSS,
no significant associations between FA, MO, MD, AD, RD,
and pain duration were found.
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A

B

Fig. 1. The white matter skeleton used for tract-based spatial statistics (TBSS) is
shown in green (A). Comparison of fractional anisotropy (FA) between patients with
chronic pain and healthy controls (B). Voxels in yellow-red represent areas of de-
creased FA before correction for multiple comparisons.

Association between white matter microstructure and pain
intensity in chronic pain patients. Using whole-brain TBSS,
no significant associations between FA, MO, MD, AD, RD,
and pain intensity (pain during the last 24 hours before the
MRI scan on an 11-point numerical rating scale) were found.

Corpus callosum volumetry. Comparing the volumes of five
subdivisions of the corpus callosum between patients with
chronic pain and healthy controls did not result in statistically
significant differences, neither for the original volumes nor
for volumes corrected for intracranial volume (Welch’s t-test,
p > 0.05).

Systematic review.

Study selection. Literature searches in the PubMed and Web
of Science Core Collection databases identified 1045 records.
The selection process resulted in 53 eligible articles after re-
moving duplicates and applying all inclusion and exclusion
criteria (Table 2).

Study characteristics. All studies were case-control studies,
comparing one or two patient groups with a healthy control
group. Four studies were longitudinal (40, 48–50), the re-
maining studies were cross-sectional.

Risk of bias in individual studies. Included studies were very
heterogeneous in terms of the specific pain disorder studied,
in- and exclusion criteria, and sample size. The majority of
studies investigated patients recruited systematically in spe-
cialized clinics. The recruitment of healthy controls was less
transparent; only a few studies mentioned the recruitment of
hospital staff or university students. Several studies mention
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Fig. 2. Distribution of sample sizes (patient group only) across all studies included
in the systematic review.

individual matching (e.g., (41, 51)), but some of these studies
recruited unequal sample sizes for patients and controls. The
majority of studies performed frequency matching (recruit-
ing a convenience sample of healthy controls with similar age
and sex distribution as found in the chronic pain group). Al-
most all studies presented detailed diagnostic criteria for the
patient group and additional inclusion and exclusion criteria
for all participants. Two studies did not state clear diagnostic
criteria for the patient group (40, 50), another two studies did
not state additional inclusion and exclusion criteria (52, 53).
Only 16 studies communicated if participants were excluded
after enrollment in the study. No study reported that a partici-
pant withdrew from the study. One study mentioned a signifi-
cant difference in age between patient and control group (54),
6 studies did not present statistical results on potential age
differences. Five studies mentioned a significant difference
in the distribution of men and women (28, 38, 49, 55, 56),
8 did not present statistical results on potential differences
in sex. Seven studies also matched for years of education
(30, 34, 35, 57–60), in addition to age and sex.
The majority of studies was performed on a 3 Tesla scanner
(n = 43), 10 studies used a 1.5 Tesla system. The number of
diffusion directions ranged between 6 and 64, the b-values
between 700 and 1300 s/mm2 (40 studies used 1000 s/mm2).
No study measured two or more b-values > 0 s/mm2).
The sample sizes of all studies are shown in Figure 2. The
median sample size of the patient group was 23 (minimum 7,
maximum 74). Of note, only three studies justified the chosen
sample size (50, 53, 61).
The majority of studies used whole-brain voxel-based TBSS.
Several studies performed voxel-based comparisons with
different software tools or tractography-based analyses.
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One study also presented the results of a fixel-based analysis
(55) (a fixel represents the different fiber populations within
a single voxel (84)).

Synthesis of results. The results of individual studies are
summarized in Table 2. The findings presented in the table
list comparisons of patient group(s) with the healthy control
group. The results of subgroup analyses (e.g. (42)), compar-
isons between patient groups (e.g. (61) or correlations of DTI
parameters with clinical characteristics are not shown.
Considering all studies on white matter microstructure in
chronic pain, the results of the DTI parameters are incon-
clusive. FA, determined in all studies, MD, AD, and RD are
found increased, decreased, and unchanged in patients vs.
controls. When separating studies into the major diagnoses,
such as migraine, cluster headache, musculoskeletal pain, or
fibromyalgia, similarly conflicting effects were seen. How-
ever, in two studies on chronic pelvic pain, FA was decreased
compared to controls (77, 78). In two studies on neuropathic
pain after spinal cord injury, FA was not significantly differ-
ent compared to controls (37, 38).

Discussion
The present case-control study investigated white matter mi-
crostructure and corpus callosum morphometry in 34 pa-
tients with chronic noncancer pain and 34 healthy controls,
age- and sex-matched on an individual basis. Whole-brain
tract-based spatial statistics (TBSS) analyses of fractional
anisotropy (FA), mode of diffusivity (MO), mean diffusiv-
ity (MD), axial diffusivity (AD), and radial diffusivity (RD),
as well as corpus callosum segmentation, did not reveal sta-
tistically significant differences between groups. The aim of
the systematic review was to summarize potential differences
in white matter microstructure between patients with chronic
pain and healthy controls. The results of our review were con-
flicting and demonstrated a low reproducibility of white mat-
ter changes, across all studies on chronic pain and within ma-
jor diagnostic categories. We propose two main reasons for
these conflicting results, (1) insufficient sample sizes, result-
ing in underpowered studies and (2) the use of an oversimpli-
fied diffusion tensor model, resulting in unreliable diffusion
parameters.
A major methodological concern of neuroimaging studies is
a sufficient sample size (85). Studies with small sample sizes
and, consequently, low power are at risk of failing to detect
true effects, exaggerating effect sizes, and increasing the false
report probability (86–88). As MR scan time is expensive
and, for clinical studies, recruiting patients fulfilling strict
inclusion criteria is difficult and time-consuming, most neu-
roimaging studies investigate small samples. This has been
shown for functional and structural (T1-weighted) MR stud-
ies (89, 90). To our knowledge, there is no systematic assess-
ment of sample sizes in DTI studies.
Heiervang et al. (91) used probabilistic tractography in
healthy individuals to define the cingulum bundle, pyrami-
dal tracts, optic radiations, and genu of the corpus callosum
and determined mean FA and MD along the tracts. Based

on these results, the required sample sizes were calculated
to detect reductions in mean tract FA and mean MD with a
one-tailed significance level of 0.05, power of 0.8, and equal
sample sizes for patients and controls. For a reduction in FA
and an effect size of 2%, between 31 and 221 participants
per group were required. For a reduction in MD and an effect
size of 2%, between 9 and 159 participants per group were
required. Unfortunately, we were unable to find effect sizes
for DTI studies on patients with chronic pain. We speculate
that many of the studies included in our systematic review
(and maybe even our ChroPain1 study) were underpowered.
The ChroPain1 study and almost all studies summarized
in the systematic review used the diffusion tensor model
to determine markers of diffusivity for each voxel of the
brain. This method gained huge popularity, and FA was fre-
quently interpreted as representing "white matter integrity"
(30, 62, 68). However, FA expresses the degree of anisotropy,
or directionality of diffusion, in an entire voxel. FA and other
DTI parameters are greatly influenced by different factors,
such as the MRI hardware and sequences used, technical and
biological artifacts, and local tissue properties, such as axonal
density, axonal diameter, and degree of myelination (92–94)
Another major confound to diffusion tensor estimation is the
existence of crossing fibers (or fiber bundles in different di-
rections) in a voxel (84, 94). It has been estimated that up to
90% of all white matter voxels contain crossing fibers (95).
Given the aforementioned methodological limitations, our
expectation was nevertheless to detect statistically signifi-
cant differences between the patient and control group in the
ChroPain1 study because of the precise individual match-
ing and the high-end MR scanner used with a 64-channel
head/neck receive-array coil. One limitation of our study is
that we only acquired 27 axial slices to shorten the measure-
ment time and to reduce head motion during the DTI scan
(96). As a result, the cerebellum was not covered; potential
differences in white matter cerebellar tracts could not be in-
vestigated. Another limitation of our study is that we only
acquired diffusion images at b-values of 0 s/mm2 and 1500
s/mm2. Thus, advanced analysis techniques, such as diffu-
sion kurtosis imaging (97) or fixel-based analysis (84) were
not possible.
For future studies on potential changes of white matter mi-
crostructure in patients with chronic pain we recommend: (1)
Investigation of larger sample sizes; a statistical power analy-
sis with G*Power1, assuming a two-tailed independent sam-
ples t-test with a (hypothetical) medium effect size of d = 0.5
and 95% power, resulted in necessary sample sizes of 105
patients and 105 controls. (2) Exact and individual matching
regarding age and sex; cross-sectional and longitudinal stud-
ies indicate that healthy aging is associated with a decrease of
FA in several brain regions (98). (3) Use of advanced imag-
ing techniques, such as diffusion kurtosis imaging (97) and
fixel-based analysis (84) (implemented in MRtrix3 (99)), to
overcome the limitations of the diffusion tensor model and its
most popular metric, fractional anisotropy.

1www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-
arbeitspsychologie/gpower.html
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Methods

Diffusion tensor imaging in the ChroPain1 study.

Participants. This investigation is part of the ChroPain1
study, focusing on the neuropsychological (4) and neural
changes (21) associated with chronic pain. Data of 34 pa-
tients with chronic pain and 34 healthy controls were an-
alyzed. Patients were recruited from the Pain Outpatient
Clinic, University Clinic of Anesthesiology, Critical Care,
Emergency Medicine, and Pain Management, Klinikum Old-
enburg in Oldenburg, Germany. Additional patients were
found through advertisements in the local daily newspaper.
For each patient with chronic pain, a sex- and age-matched (±
5 years) pain-free control participant was recruited (individ-
ual or pair matching (100), also known as the head-by-head
method of recruitment). Healthy controls were identified with
the help of the local newspaper, the University of Oldenburg’s
web page, flyers, and personal communication.
Following the Classification of Chronic Pain suggested by
the International Association for the Study of Pain (101), we
used a purely temporal definition of chronic pain. The Inter-
national Association for the Study of Pain defines chronic
pain as pain that lasts or recurs for > 3 months (101). In
this study, we extended the minimum duration of pain to 12
months, because we hypothesized that white matter changes
will be more recognizable in patients with longer pain dura-
tion. The inclusion criterion for the pain group was thus pain
on most days of a month for > 12 months of mild to severe
intensity. This was established by reviewing clinical charts
and through patient interviews.
Exclusion criteria for the chronic pain and the healthy con-
trol group were as follows: neurological disorders (such as
dementia, Parkinson’s disease, stroke, epilepsy, multiple scle-
rosis, traumatic brain injury, and migraine), psychiatric dis-
orders (such as schizophrenia or major depression), sub-
stance abuse, impaired kidney or liver function, and cancer.
The ChroPain1 study was approved by the Medical Research
Ethics Board, University of Oldenburg, Germany (25/2015).
Written informed consent was obtained from all participants
before entering the study. Participants received a compensa-
tion of 10 C per hour.

Calculation of sample size. A formal calculation of the nec-
essary sample size was not possible because we were unable
to find effect sizes for tract-based spatial statistics analyses in
previous studies on patients with chronic pain.

Demographic and clinical data. Participants’ date of birth,
sex, handedness, and the highest degree of formal education
were recorded. In a structured interview, previous and present
conditions that may lead to an exclusion from the study and
complete medication records were inquired. Patients were
asked to estimate the average pain intensity during the last
24 hours before the MRI examination by using the 11-point
numerical rating scale, with 0 representing “no pain” and 10
“worst pain imaginable” (102). Pain duration in years was
also noted.

Neuropsychological data. To test verbal intelligence, a stan-
dardized German vocabulary test (Wortschatztest, WST) was
used (103). Participants were required to identify an exist-
ing German word within 5 nonwords in each of 42 rows. The
number of correct choices was transformed into IQ scores ac-
cording to the test manual (103) WST results are highly cor-
related with general intelligence and level of education (104).
The Center for Epidemiological Studies Depression Scale
(CES-D) (105) in its short German version (Allgemeine De-
pressionsskala, ADS-K) (106) was used to quantify depres-
sive symptoms. The scale consists of 15 items assessing de-
pressive symptoms during the preceding week. Each item is
answered on a 4-point Likert scale: “never or rarely” (<1
day), “sometimes” (1-2 days), “often” (3-4 days), and “al-
ways” (5-7 days of the week). The total score ranges from 0
to 45. A score of > 18 supports the diagnosis of a clinically
relevant depression (106).

MR data acquisition. MR images were acquired at 3 Tesla
on a MAGNETOM Prisma whole-body scanner (Siemens,
Erlangen, Germany) with the XR gradient system (gradi-
ent strength = 80 mT/m, gradient rise time = 200 T/m/s
on all three gradient axes simultaneously) and a 64-channel
head/neck receive-array coil. The scanner is located at the
Neuroimaging Unit, School of Medicine and Health Sci-
ences, University of Oldenburg, Germany2.
For anatomical brain imaging, Siemens’ 3-dimensional T1-
weighted MPRAGE sequence was used with the following
parameters: time of repetition (TR): 2000 ms, echo time
(TE): 2.41 ms, inversion time (TI): 920 ms, flip angle: 9°,
voxel dimensions = 0.7 × 0.7 mm2, slice thickness = 0.9 mm,
208 axial slices.
DTI was acquired using a 2-dimensional echo-planar se-
quence: TR: 3000 ms, TE: 73 ms, voxel dimensions = 2.5
× 2.5 × 2.5 mm3, 27 axial slices. Images had an isotropic dis-
tribution along 64 directions using a b-value of 1500 s/mm2.
In addition, 6 volumes with no diffusion weighting were ac-
quired (b = 0 s/mm2). T1-weighted and DTI sequences used
in-plane acceleration (GRAPPA) with an acceleration factor
of 2. Siemens’ pre-scan normalization filter was used in both
sequences for on-line compensation of regional signal inho-
mogeneities.

Data analysis. T1-weighted and DTI images were first
converted from Siemens DICOM format to compressed
NIfTI (.nii.gz) format using dcm2niix3. Data conversion with
dcm2niix also generates bvecs and bvals files, containing in-
formation about the gradient directions and diffusion weight-
ing applied.
Analysis of T1-weighted and DTI data was carried out using
FSL (FMRIB Software Library)4 version 6.0.2 (107, 108).
DTI analysis was supported by tools and scripts provided by
MRItrix35 (99). These analyses were performed under mac-
OS 10.14 Mojave on an Apple iMac.

2uol.de/en/medicine/biomedicum/neuroimaging-unit
3github.com/rordenlab/dcm2niix
4fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
5www.mrtrix.org
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The segmentation of the corpus callosum was performed by
FreeSurfer6 version 6.0.0 (109, 110) under Red Hat Enter-
prise Linux on the high-performance cluster CARL, Univer-
sity of Oldenburg, Germany7.

Preprocessing of T1-weighted images. T1-weighted images
were preprocessed with FSL’s fsl_anat script8 using the de-
fault parameters. This script performs several preprocessing
steps, including bias-field correction using FSL’s FAST (FM-
RIB’s Automated Segmentation Tool) (111) and brain extrac-
tion based on transforming a standard-space mask to the in-
put image using FSL’s FNIRT (FMRIB’s Non-Linear Image
Registration Tool) (107).

Preprocessing of diffusion-weighted images. Preprocessing
of DTI data was performed using the MRtrix3 package (99):
(1) Thermal noise was reduced using the dwidenoise com-
mand. This approach performs principal component analy-
sis of the original DTI data and removes noise-only principal
components, resulting in signal-to-noise ratio improvements
(112, 113). (2) Gibbs ringing artifacts were reduced with the
mrdegibbs command using the method of local subvoxel-
shifts (114). (3) MRtrix3’s dwipreproc script was used to
perform motion and eddy-current distortion correction (115).
The script was used with the -rpe_none option because re-
versed phase-encoding image data were not available, invok-
ing FSL’s eddy tool9 (115) and using the b = 0 s/mm2 vol-
umes as reference. For quality control, all residuals were vi-
sually inspected. (4) A whole-brain mask was generated from
the preprocessed DTI data set using the dwi2mask command.

Estimation of diffusion tensors. A single-tensor diffusion
tensor model was fitted at each voxel of the preprocessed
DTI data using FSL’s dtifit program10, part of FDT (FM-
RIB’s Diffusion Toolbox). Using least squares on the log-
transformed signal, whole-brain maps of the following pa-
rameters were generated (for detailed explanations and equa-
tions, see (93, 116)): (1) The first, second, and third eigen-
values (λ1, λ2, λ3), describing the 3 directions of water dif-
fusivity. The first eigenvalue is also referred to as axial dif-
fusivity (AD), representing diffusion parallel to the principal
diffusion direction (117), (2) fractional anisotropy (FA), the
standard deviation of the 3 eigenvalues divided by their root
mean square, (3) mode of anisotropy (MO), the 3rd moment
of the tensor (118), (4) mean diffusivity (MD), the average of
the 3 eigenvalues and (5) radial diffusivity (RD), the average
of the second and third eigenvalues, representing diffusion
perpendicular to the principal diffusion direction (117).

Tract-based spatial statistics. Voxel-based statistical analy-
sis of DTI parameters was performed using FSL’s TBSS
(tract-based spatial statistics)11 (119): (1) FA images were
preprocessed using the tbss_1_preproc command to slightly

6freesurfer.net
7uol.de/en/school5/sc/high-perfomance-computing/hpc-facilities/carl
8fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat
9fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
10fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#DTIFIT
11fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS

erode the FA images and zero the end slices. (2) FA data of
all participants were aligned into a common space using the
FMRIB58_FA_1mm standard-space image12 and FSL’s non-
linear registration tool FNIRT with the tbss_2_reg -T com-
mand. (3) Individual participants’ FA images were trans-
formed into MNI152 standard space with the tbss_3_postreg
-S command. The mean of all individual FA images was then
calculated. This mean FA image was thinned to create a mean
FA skeleton, which represents all white fiber tracts common
to the entire group of participants. (4) The mean FA skeleton
was thresholded at 0.2 and all individual FA data were pro-
jected onto the mean FA skeleton with the tbss_4_prestats
command. Statistical comparison was carried out using a bi-
nary mask of the FA skeletonized image ensuring that only
voxels within each tract were analyzed, preventing partial
volume effects.
To perform voxel–based statistics on the skeletonized FA
data, FSL’s randomise program was used with 10,000 ran-
dom permutations (120). The statistical threshold was set at
p < 0.05, corrected for multiple comparisons by controlling
the family-wise error rate and using threshold-free cluster
enhancement (TFCE) across all white matter tracts in the
whole-brain analysis. TFCE enhances cluster-like features
in a statistical image without relying on a pre–defined clus-
ter–forming threshold (121). In addition to FA, TBSS was
performed with MO, MD, AD, and RD maps. For each pa-
rameter, a non-parametric t-test was used to compare patients
with chronic pain and healthy controls. To test if pain dura-
tion and pain intensity predicted DTI parameters, linear re-
gressions were performed with pain duration and pain inten-
sity as regressors.

Segmentation of the corpus callosum. The volumes of
five regions of the corpus callosum were determined by
FreeSurfer version 6.0.0 using the recon-all command (109,
110). Processing included motion correction, removal of non-
brain tissue using a hybrid watershed/surface deformation
procedure (122), automated Talairach transformation, and
segmentation of subcortical structures (109). The corpus cal-
losum was automatically segmented into the following re-
gions: (1) anterior, (2) midanterior, (3) central, (4) midpos-
terior, and (5) posterior. The volumes of these regions were
divided by the estimated total intracranial volume (eTIV) as
determined by FreeSurfer (123) to correct for different brain
sizes. Original volumetric measurements and corrected val-
ues were compared between patients with chronic pain and
healthy controls using Welch’s t-test.

Systematic review. A systematic review of the available
literature on white matter microstructure in patients with
chronic pain was performed following the PRISMA guide-
lines (47).

Literature search. We searched the free PubMed search
engine13 provided by NIH’s National Library of Medicine

12fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA
13www.ncbi.nlm.nih.gov/pubmed
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and Clarivate Analytics’ Web of Science Core Collection14

through University of Oldenburg’s Library and Information
System15. For both search engines, search terms were "pain
diffusion tensor" and "pain DTI" in all fields and all years.
There were no language restrictions. The literature search
was initially performed on December 22, 2019 and updated
on March 29, 2020. All retrieved bibliographic records were
uploaded to the open-access online tool CADIMA16 as RIS
files. CADIMA supports several steps throughout the system-
atic review process (124). Here, CADIMA was used for study
selection, including duplicate removal, the definition of selec-
tion criteria, and screening of records according to the selec-
tion criteria at title/abstract and full-text stage. Data extrac-
tion was performed off-line after downloading CADIMA’s
data extraction sheet containing the bibliographic informa-
tion of all selected records. The full-text PDF files of all se-
lected papers were imported and managed in DEVONthink 3
for macOS.

Study selection. This systematic review includes all orig-
inal research studies that met the following inclusion and
exclusion criteria: Studies included had to (1) be published
in a peer-reviewed journal, (2) include a group of patients
with chronic or recurrent pain (> 3 months) without neu-
rological or psychiatric disorder affecting the brain (except
primary headache disorders), (3) include a group of healthy
controls, (4) perform diffusion tensor imaging of the brain in
both groups, (5) report a comparison of white matter DTI pa-
rameters between chronic pain patients and healthy controls.
Studies excluded (1) were published poster abstracts, (2) in-
vestigated chronic pain patients with a neurological disorder,
such as Parkinson’s disease or stroke, with traumatic brain
injury or amputation (to avoid disorder-specific rather than
pain-specific effects), (3) and did not present data of white
matter microstructure of the brain.

Data extraction. For each selected study, we retrieved the
following participant data: (1) sample size, main diagnosis,
age and pain duration of the patient group(s) and (2) sample
size and age of the healthy control group. We also recorded
methodological details: (1) field strength of the MRI scan-
ner, (2) number of diffusion directions, (3) b-value, (4) data
analysis approach, and (5) main findings of the study relative
to the patient group.

Risk of bias in individual studies. To assess the methodologi-
cal quality of individual studies, we modified the Quality As-
sessment Tool For Quantitative Studies17, developed by the
Effective Public Health Practice Project (125). To assess se-
lection bias, we recorded the method of patient recruitment
and the strictness of diagnostic criteria and additional inclu-
sion and exclusion criteria. We also noted if the study men-
tioned excluded subjects.
To assess potential confounders, we noted if age and sex were

14www.webofknowledge.com
15uol.de/en/bis
16cadima.info
17www.city.hamilton.on.ca/phcs/EPHPP

significantly different between patient and healthy control
groups. Moreover, we marked if groups were also matched
for years of education. Regarding data collection methods,
we summarized the technical details of DTI (see the previous
section). In addition, we noted sample sizes, justifications of
sample sizes, and the use of effect sizes (in addition to p-
values). Participant blinding and intervention integrity were
not rated. In interventional studies, only baseline results were
included in the review.
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