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Abstract

Testing is viewed as a critical aspect of any strategy to tackle epidemics. Much of the
dialogue around testing has concentrated on how countries can scale up capacity, but
the uncertainty in testing has not received nearly as much attention beyond asking if a
test is accurate enough to be used. Even for highly accurate tests, false positives and
false negatives will accumulate as mass testing strategies are employed under pressure,
and these misdiagnoses could have major implications on the ability of governments to
suppress the virus. The present analysis uses a modified SIR model to understand the
implication and magnitude of misdiagnosis in the context of ending lockdown measures.
The results indicate that increased testing capacity alone will not provide a solution to
lockdown measures. The progression of the epidemic and peak infections is shown to
depend heavily on test characteristics, test targeting, and prevalence of the infection.
Antibody based immunity passports are rejected as a solution to ending lockdown, as
they can put the population at risk if poorly targeted. Similarly, mass screening for
active viral infection may only be beneficial if it can be sufficiently well targeted,
otherwise reliance on this approach for protection of the population can again put them
at risk. A well targeted active viral test combined with a slow release rate is a viable
strategy for continuous suppression of the virus.

Introduction 1

During the early stages of the United Kingdoms SARS-CoV-2 epidemic, the British 2

government’s COVID-19 epidemic management strategy was been influenced by 3

epidemiological modelling conducted by a number of research groups [1, 2]. The analysis 4

of the relative impact of different mitigation and suppression strategies concluded that 5

the “only viable strategy at the current time” is to suppress the epidemic with all 6

available measures, including the lockdown of the population with schools closed [3, 4]. 7

Similar analysis in other countries lead to over half the world population being in some 8

form of lockdown by April 2020 and over 90% of global schools closed [5, 6]. These 9

analyses have highlighted from the beginning that the eventual relaxation of lockdown 10

measures would be problematic [3]. Without a considered cessation of the suppression 11

strategies the risk of a second wave becomes significant, possibly of greater magnitude 12

than the first as the SARS-CoV-2 virus is now endemic in the population [7, 8]. 13

Although much attention was focused on the number of tests being conducted and 14

the effect that testing could have in supressing the disease [9–11]. Not enough attention 15
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has been given to the issues of imperfect testing, beyond Matt Hancock, UK Secretary 16

of State for Health and Social Care, stating in a press conference on 2nd April 2020 that 17

“No test is better than a bad test” [12]. In this paper we will explore the validity of this 18

claim. 19

The failure to detect the virus in infected patients can be a significant problem in 20

high-throughput settings operating under severe pressure, with evidence suggesting that 21

this is indeed the case [13–17]. The public are rapidly becoming aware of the difference 22

between the ‘have you got it?’ tests for detecting active cases, and the ‘have you had it?’ 23

tests for the presence of antibodies, which imply some immunity to COVID-19. What 24

may be less obvious is that these different tests need to maximise different test 25

characteristics. 26

To be useful in ending lockdown measures, active viral tests need to maximise the 27

sensitivity. High sensitivity reduces the chance of missing people who have the virus 28

who may go on to infect others. There is an additional risk that an infected person who 29

has been incorrectly told they do not have the disease, when in fact they do, may 30

behave in a more reckless manner than if their disease status were uncertain. 31

The second testing approach, seeking to detect the presence of antibodies to identify 32

those who have had the disease would be used in a different strategy. This strategy 33

would involve detecting those who have successfully overcome the virus, and are likely 34

to have some level of immunity (or at least reduced susceptibility to more serious illness 35

if they are infected again), so are relatively safe to relax their personal lockdown 36

measures. This strategy would require a high test specificity, aiming to minimise how 37

often the test tells someone they have had the disease when they haven’t [18]. A false 38

positive tells people they have immunity when they don’t, which may be worse than if 39

people are uncertain about their viral history. 40

Evidence testing is flawed 41

The successes of South Korea, Singapore, Taiwan and Hong Kong in limiting the impact 42

of the SARS-CoV-2 virus has been attributed to their ability to deploy widespread 43

testing, with digital surveillance, and impose targeted quarantines in some cases [13]. 44

This testing has predominantly been based on the use of reverse transcription 45

polymerase chain reaction (RT-PCR) testing. During the 2009 H1N1 pandemic the 46

rapid development of high sensitivity PCR assay were employed early with some success 47

in that global pandemic [19]. These tests, when well targeted, clearly provide a useful 48

tool for managing and tracking pandemics. 49

These tests form the basis of much of the research into the incidence, dynamics and 50

comorbidities of SARS-CoV-2, but few, if any, of these studies give consideration to the 51

impact of false test results [20–24]. Increasing reliance on lower-sensitivity tests to 52

address capacity concerns is likely to make available data on confirmed cases more 53

difficult to accurately utilise [19]. It may be the case that false test results contribute to 54

some of the counter-intuitive disease dynamics observed [25]. 55

There is evidence that both active infection [26–30] and antibody [31–33] tests lack 56

perfect sensitivity and specificity even in best-case scenarios. Alternative screening 57

methods such as chest x-rays may be found to have high sensitivity based on biased 58

data [34] or may simply perform poorly even compared to imperfect RT-PCR tests [29]. 59

The Foundation for Innovative New Diagnostics (FIND) conducted an independent 60

evaluation of five RT-PCR tests which scored highly out of 17 candidate tests on 61

criteria such as regulatory status and availability [35]. Even ideal laboratory conditions 62

can produce a specificity which could be as low as 90%, and the practical specificity is 63

likely to be lower still. 64

The rapid development and scaling of new diagnostic systems invites error, 65

particularly as labs are converted from other purposes and technicians are placed under 66

August 20, 2020 2/20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2020. ; https://doi.org/10.1101/2020.04.16.20067884doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20067884
http://creativecommons.org/licenses/by-nc-nd/4.0/


pressure, and variation in test collection quality, reagent quality, sample preservation 67

and storage, and sample registration and provenance. Assessing the magnitude of these 68

errors on the performance of tests is challenging in real time. Point-of-care tests are not 69

immune to these errors and are often seen as less accurate than laboratory based 70

tests [36,37]. 71

Introduction to test statistics: What makes a ‘good’ 72

test? 73

In order to answer this question there are a number of important statistics: 74

� Sensitivity σ - Out of those who actually have the disease, that fraction that 75

received a positive test result. 76

� Specificity τ - Out of these who did not have the disease, the fraction that 77

received a negative test result. 78

The statistics that characterise the performance of the test are computed from a 79

confusion matrix (Table 1). We test ninfected people who have COVID-19, and nhealthy 80

people who do not have COVID-19. In the first group, a people correctly test positive 81

and c falsely test negative. Among healthy people, b will falsely test positive, and d will 82

correctly test negative. 83

Infected Not Infected Total
Tested Positive a b a+ b
Tested Negative c d c+ d

Total a+ c = ninfected b+ d = nhealthy N

Table 1. Confusion matrix

From this confusion matrix the sensitivity is given by (1) and the specificity by (2). 84

σ =
a

ninfected
(1)

τ =
d

nhealthy
. (2)

Sensitivity is the ratio of correct positive tests to the total number of infected people 85

involved in the study characterising the test. The specificity is the ratio of the correct 86

negative tests to the total number of healthy people. Importantly, these statistics 87

depend only on the test itself and do not depend on the population the test is intended 88

to be used upon. 89

When the test is used for diagnostic purposes, the characteristics of the population 90

being tested become important for interpreting the test results. To interpret the 91

diagnostic value of a positive or negative test result the following statistics must be used: 92

� Prevalence P - The proportion of people in the target population that have the 93

disease tested for. 94

� Positive Predictive Value PPV - How likely one is to have the disease given a 95

positive test result. 96

� Negative Predictive Value NPV - How likely one is to not have the disease, 97

given a negative test result. 98
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The PPV and NPV depend on the prevalence, and hence depend on the population 99

you are focused on. This may an entire nation or region, a sub-population with 100

COVID-19 compatible symptoms, or any other population you may wish to target. The 101

PPV and NPV can be calculated using Bayes’ rule: 102

PPV =
Pσ

Pσ + (1 − P )(1 − τ)
, (3)

103

NPV =
τ(1 − P )

τ(1 − P ) + (1 − σ)P
. (4)

To illustrate the impact of prevalence on PPV , for a test with σ = τ = 0.95, if 104

prevalence P = 0.05, then the PPV = 0.5. Therefore, a positive result only indicates a 105

50% chance that an individual will have the disease given that they have tested positive, 106

even though the test is highly accurate. Fig 1 shows why, for 1000 test subjects there 107

will be similar numbers of true and false positives even with high sensitivity and 108

specificity of 95%. In contrast, using the same tests on a sample with a higher 109

prevalence P = 0.5 we find the PPV = 0.8, see Fig 2. Similarly, the NPV is lower 110

when the prevalence is higher. 111

1000 People

50 950

48 2 48 902

Infected Healthy

Test +VE Test -VE Test +VE Test -VE

Fig 1. If the prevalence of a disease amongst those being tested is 0.05 then with
σ = τ = 0.95 the number of false positives will outnumber the true positives, resulting
in PPV = 0.5.

1000 People

500 500

475 25 25 475

Infected Healthy

Test +VE Test -VE Test +VE Test -VE

Fig 2. If the prevalence of a disease amongst those being tested is 0.50 then with
σ = τ = 0.95 the number of true positives will outnumber the number of false positives,
resulting in a high PPV of 0.95.
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SIR model with testing 112

SIR models offer one approach to explore infection dynamics, and the prevalence of a 113

communicable disease. In the generic SIR model, there are S people susceptible to the 114

illness, I people infected, and R people who are recovered with immunity. The infected 115

people are able to infect susceptible people at rate β and they recover from the disease 116

at rate γ [38], Fig 3 shows how people move between the different states of an SIR 117

model. Once infected persons have recovered from the disease they are unable to 118

become infected again or infect others. This may be because they now have immunity 119

to the disease or because they have unfortunately died. 120

R0 =
β

γ
(5)

S I R
δS,I δI,R

Fig 3. Diagram for a basic SIR model. The black arrows show how people move
between the different states.

δS,I = βIS (6a)

δIR = γI (6b)

∆S = −δS,I (6c)

∆I = δS,I − δI,R (6d)

∆R = δI,R (6e)

To explore the effect of imperfect testing on the disease dynamics when strategies 121

testing regimes are employed to relax lockdown measures, three new classes were added 122

to the model. The first is a quarantined susceptible state, QS , the second is a 123

quarantined infected state, QI , and the third is people who have recovered but are in 124

quarantine, QR, as shown in Fig 4. 125

Fig 4. SIRQ Model used to simulated the effect of mass testing to leave quarantine.

The present model is similar to other SIR models that take into account the effect of 126

quarantining regimes on disease dynamics, such as Lipsitch et al. (2003) [39] or 127

Giordano et al. (2020) [23]. Lipsitch et al. implement quarantine in their model but do 128

not incorporate the effects on the dynamics from imperfect testing, nor do they consider 129

how the quality and scale of an available test affect the spread of a disease. Diagnostic 130

uncertainty plays no part in the model they present. Likewise, Giordano et al reduce 131

population based diagnostic strategies to two parameters which confound test capacity, 132

test targeting, and diagnostic uncertainty. Again, they do not investigate the role that 133

diagnostic uncertainty plays in the spread of a disease. The intent of this model is not 134

to create a more sophisticated SIR model, but to investigate how diagnostic uncertainty 135

affects the dynamics of an epidemic. 136

The model evaluates each day’s population-level state transitions. There are two 137

possible tests that can be performed: 138

� An active virus infection test that is able to determine whether or not someone is 139

currently infectious. This test is performed on some proportion of the 140

un-quarantined population (S + I +R). It has a sensitivity of σA and a specificity 141

of τA. 142
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� An antibody test that determines whether or not someone has had the infection in 143

the past. This is used on the fraction of the population that is currently in 144

quarantine but not infected (QS +QR) to test whether they have had the disease 145

or not. This test has a sensitivity of σB and a specificity of τB . 146

Each test is defined by a number of parameters. Testing each day is limited by the 147

test capacity C, the maximum number of tests that can be performed each day. Each 148

day a population N will be submitted for testing. The targeting capability of the test, 149

T indicates the probability that an individual submitted for testing is positive, this is 150

effectively the PPV of the initial screening effort. This results in a number of 151

individuals M being considered for screening who are negative, of which K will be 152

tested. Targeting must be imperfect, as if it were perfect there would be no need for 153

testing. Unless otherwise stated, scenarios consider a default targeting of T = 0.8, 154

representing an extremely effective screening capability that is nonetheless imperfect. 155

If daily testing targets are a goal regardless of the prevalence of the illness, T can be 156

overruled to ensure N ≈ C for example. This condition is referred to as Strict Capacity 157

and is denoted with boolean parameter G, defaulting to true for all scenarios. Tests can 158

also be conducted periodically by changing the test interval parameter D. These default 159

to 1, i.e. daily testing. 160

Each test has unique parameters, so for example test A (active virus infection test) 161

has a targeting parameter TA whilst test B (antibody test) has TB . The parameters 162

σ, τ, T, C,G and D define a test. 163

A person in any category who tests positive in an active virus test transitions into 164

the corresponding quarantine state, where they are unable to infect anyone else. A 165

person, in QS or QR, who tests positive in an antibody test transitions to S and R 166

respectively. Any person within I or QI who recovers transitions to R, on the 167

assumption that the end of the illness is clear and they will know when they have 168

recovered. 169

For this parameterisation the impact of being in the susceptible quarantined state, 170

QS , makes an individual insusceptible to being infected. Similarly, being in the infected 171

quarantined state, QI , individuals are unable to infect anyone else. In practicality there 172

is always leaking, no quarantine is entirely effective, but for the sake of exploring the 173

impact of testing uncertainty these effects are neglected from the model. Other 174

situations may require including this effect. 175

The SIR model used in this paper uses discrete-time binomial sampling for 176

calculating movements of individuals between states. For a defined testing strategy 177

these rates are defined as follows: 178
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MA = min

(
S,CA − I,max

(
0,

I

TA
− I, CA − I

))
(7a)

NA = min (CA,MA + I) (7b)

KA = H (MA, I,NA) (7c)

δS,QS
= Bin (KA, 1 − τA) (7d)

δI,QI
= Bin (NA −KA, σA) (7e)

δS,I = min

(
S − δS,QS

,Bin

(
I,

β(S − δS,QS
)

S + I +R− δI,QI
− δS,QS

))
(7f)

δI,R = Bin (I − δI,R, γ) (7g)

MB = min

(
QS , CB −QR,max

(
0,
QR

TB
−QR, CB −QR

))
(7h)

NB = min (CB ,MB +QR) (7i)

KB = H (MA, I,NA) (7j)

δQS ,S = Bin (KB , 1 − τB) (7k)

δQI ,R = Bin (QR, γ) (7l)

δQR,R = Bin (NB −KB , σB) (7m)

∆S = δQS ,S − δS,QS
− δS,I (7n)

∆I = δS,I − δI,QI
− δI,R (7o)

∆R = δI,R + δQI ,R + δQR,R (7p)

∆QS = δS,QS
− δQS ,S (7q)

∆QI = δI,QI
− δQI ,R (7r)

∆QR = −δQR,R (7s)

(7t)

In Equation 7, Bin(n, p) refers to a binomial distribution with count n and rate p, 179

H(n, k,m) refers to a hypergeometric distribution with populations n and k and a 180

sample size m. 181

The model must be initialised with a defined population split between the six states. 182

At each time step t, the model calculates the number of persons moving between each 183

state in the order defined above. The use of binomial and hypergeometric sampling was 184

prompted by a desire to incorporate aleatory uncertainty in each movement. The current 185

approach does not account for epistemic uncertainty, fixing the model parameters 186

σ, τ, C, T and D. A discrete time model was selected to allow for comparisons against 187

available published data detailing recorded cases and recoveries on a day-by-day basis. 188

If the tests were almost perfect, then we can imagine how the epidemic would die out 189

very quickly by either widespread infection or antibody testing with a coherent 190

management strategy. A positive test on the former and the person is removed from the 191

population, and positive test on the latter and the person, unlikely to contract the 192

disease again, can join the population. 193

More interesting are the effects of incorrect test results on the disease dynamics. If 194

someone falsely tests positive in the antibody test, they enter the susceptible state. 195

Similarly, if an infected person receives a false negative for the disease they remain 196

active in the infected state and hence can continue the disease propagation and infect 197

further people. 198
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What part will testing play in relaxing lockdown 199

measures? 200

In order to explore the possible impact of testing strategies on the relaxation of 201

lockdown measures several scenarios have been analysed. These scenarios are illustrative 202

of the type of impact, and the likely efficacy of a range of different testing 203

configurations. 204

� Immediate end to lockdown scenario: This baseline scenario is characterised 205

by a sudden relaxation of lockdown measures. 206

� Immunity passports scenario: A policy that has been discussed in the 207

media [40–42]. Analogous to the International Certificate of Vaccination and 208

Prophylaxis, antibody based testing would be used to identify those who have 209

some level of natural immunity. 210

� Incremental relaxation scenario: A phased relaxation of lockdown is the 211

most likely policy that will be employed. To understand the implications of such 212

an approach this scenario has explored the effect of testing capacity and test 213

performance on the possible disease dynamics under this type of policy. Under the 214

model parameterisation this analysis has applied an incremental transition rate 215

from the QS state to the S state, and QR to R. 216

Whilst the authors are sensitive to the sociological and ethical concerns of any of 217

these approaches, the analysis presented is purely on the question of efficacy. 218

For the purpose of the analysis we have selected a population similar in size to the 219

United Kingdom, 6.7 × 107 people, β and γ were set to 0.32 and 0.1 respectively, this 220

was ensure that R0 value of the model was broadly in line with other models [43,44]. 221

Immediate end to lockdown scenario 222

Under the baseline scenario, characterised by the sudden and complete cessation of 223

lockdown measures, we explored the impact of infection testing. Under this formulation 224

the initial conditions of the model in this scenario is that the all of the population in QS 225

transition to S in the first iteration. The impact of infection testing under this scenario 226

was analysed in Fig 5 using the parameters shown in Table 2. 227

Model Parameters
σA τA TA CA GA β γ
- 0.9 0.8 - True 0.32 0.1

Initial Population split
Population S I R QS QI QR

6.7 × 107 0.984 0.01 0.001 0 0.004 0.001

Table 2. Fixed parameters used for Fig 5 analysis. Antibody tests were disabled for
this analysis.

These scenarios consider the impact of attempts to control the disease through 228

increased testing capacity and a more sensitive test. A test capacity range between 229

1 × 105 and 2 × 105 was considered as representative of the capabilities of a country 230

such as the UK. To illustrate the sensitivity of the model to testing scenarios an 231

evaluation was conducted with a range of infection test sensitivities, from 50% (i.e of no 232

diagnostic value) to 98%. The specificity of these tests has a negligible impact on the 233

disease dynamics in these scenarios. A false positive would mean people are 234
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Days

50 100

σA = 0.50 σA = 0.75 σA = 0.90 σA = 0.98

Fig 5. A comparison of different infection test sensitivities σA shown from red to blue.
Three different infection test capacities are considered. Left: test capacity = 1 × 105.
Centre: test capacity = 1.5 × 105. Right: test capacity = 2 × 105. Top: The number of
infected individuals (I +QI population) over 100 days. Bottom: The proportion of the
population that has been released from quarantine (S + I +R population) over 100
days. Model parameters are shown in Table 2.

unnecessarily removed from the susceptible population, but the benefit of a reduction in 235

susceptible population is negligibly small. 236

As would be expected the model indicates a second wave is an inevitability and as 237

many as 20 million people could become infected within 30 days. A high-sensitivity test 238

has little impact beyond quarantining a slightly higher percentage of the population if 239

capacities are low. At higher capacities this patterns remains, though peak infection 240

counts are marginally reduced. Overall it is clear that reliance on infection testing, even 241

with a highly sensitive test and high capacities, is not enough to prevent widespread 242

infection. 243

Immunity passports scenario 244

The immunity passport is an idiom describing an approach to the relaxation of 245

lockdown measures that focuses heavily on antibody testing. Wide-scale screening for 246

antibodies in the general population promises significant scientific value, and targeted 247

antibody testing is likely to have value for reducing risks to NHS and care-sector staff, 248

and other key workers who will need to have close contact with COVID-19 sufferers. 249

The authors appreciate these other motivations for the development and roll-out of 250

accurate antibody tests. This analysis however focuses on the appropriateness of this 251

approach to relaxing lockdown measures by mass testing the general population. 252

Antibody testing has been described as a ‘game-changer’ [45]. Some commentators 253

believe this could have a significant impact on the relaxation of lockdown measures [41], 254

but others note that there are severe ethical, logistical and medical concerns which need 255

to be resolved before antibody testing could support a strategy such as this [46]. 256
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Much of the discussion around antibody testing in the media has focused on the 257

performance and number of these tests. The efficacy of this strategy however is far 258

more dependent on the prevalence of antibodies in the general population. Without 259

wide-scale antibody screening it is impossible to know the prevalence of antibodies in 260

the general population, so there is scientific value in such an endeavour. However, the 261

prevalence is the dominant factor to determine how efficacious antibody screening would 262

be for relaxing lockdown measures. 263

Presumably, only people who test positive for antibodies would be allowed to leave 264

quarantine. The more people in the population with antibodies, the more people will 265

get a true positive, so more people would be correctly allowed to leave quarantine 266

(under the paradigms of an immunity passport). 267

The danger of such an approach are false positives. We demonstrate the impact of 268

people reentering the susceptible population who have no immunity. We assume their 269

propensity to contract the infection is the same as those without the false sense of 270

security a positive test may engender. On an individual basis, and even at the 271

population level, behavioural differences between those with false security from a 272

positive antibody test, versus those who are uncertain about their viral history could be 273

significant. The model parametrisation here does not include this additional 274

confounding effect. 275

To simulate the prevalence of antibodies in the general population the model is 276

preconditioned with different proportions of the population in the QS and QR states. 277

This is analogous to the proportion of people that are currently in quarantine who have 278

either had the virus and developed some immunity, and the proportion of the 279

population who have not contracted the virus and have no immunity. Of course the 280

individuals in these groups do not really know their viral history, and hence would not 281

know which state they begin in. The model evaluations explore a range of sensitivity 282

and specificities for the antibody testing. These sensitivity and specificities, along with 283

the capacity for testing, govern the transition of individuals from QR to R (true positive 284

tests), and from QS to S (false positive tests). 285

Figs 6 and 7 show the results of the model evaluations, the parameters for these runs 286

are shown in Tables 3 and 4. The top row of each figure corresponds to the number of 287

infections in time, the bottom row of each figure is the proportion of the population 288

that are released from quarantine and hence are now in the working population. 289

Maximising this rate of reentry into the population is of course desirable, and it is 290

widely appreciated that some increase in the numbers of infections is unavoidable. The 291

desirable threshold in the trade-off between societal activity and number of infections is 292

open to debate. 293

Model Parameters
σB τB TB CB GB β γ
- 0.9 0.8 2 × 105 True 0.32 0.1

Initial Population split
Population S I R QS QI QR

6.7 × 107 0.035 0.01 0.001 0.95 (1 − P0) 0.004 0.95P0

Table 3. Fixed parameters used for Fig 6 analysis. Infection tests were disabled for
this analysis.

Each of the plots in Figs 6 and 7 show the effect of different prevalences of 294

antibodies in the population. To be clear, this is the proportion of the population that 295

has contracted the virus and recovered but are in quarantine. The analysis has explored 296

a range of prevalences from 0.1% to 50%. Fig 6 explores the impact of a variation in 297

sensitivity, from a test with 50% sensitivity to tests with a high sensitivity of 98%. 298
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Fig 6. A comparison of different antibody test sensitivities σB , with varying levels of
prevalence. Top: The number of infected individuals (I +QI population) over one year.
Bottom: The proportion of the population that has been released from quarantine
(S + I +R population) over one year. Model parameters are shown in Table 3.

Model Parameters
σB τB TB CB GB β γ
0.9 - 0.8 2 × 105 True 0.32 0.1

Initial Population split
Population S I R QS QI QR

6.7 × 107 0.035 0.01 0.001 0.95 (1 − P0) 0.004 0.95P0

Table 4. Fixed parameters used for Figure 7 analysis. Infection tests were disabled for
this analysis.

It can be seen, considering the top row of Fig 6, that the sensitivity of the test has 299

no discernible impact on the number of infections. The prevalence entirely dominates. 300

This is possibly counter intuitive, but as was discussed above, even a highly accurate 301

test produces a very large number of false positives when prevalence is low. In this case 302

that would mean a large number of people are allowed to re-enter the population, 303

placing them at risk, with a false sense of security that they have immunity. 304

The bottom row of Fig 6 shows the proportion of the entire population leaving 305

quarantine over a year of employing this policy. At low prevalence there is no benefit to 306

better performing tests. This again may seem obscure to many readers. If you consider 307

the highest prevalence simulation, where 50% of the population have immunity, higher 308

sensitivity tests are of course effective at identifying those who are immune, and gets 309

them back into the community much faster. 310

A more concerning story can be seen when considering the graphs in Fig 7. Now we 311

consider a range of antibody test specificities. Going from 50% to 98%. Low specificities 312

(τ < 0.9) lead to extreme second peaks, and could possibly lead to more. This is due to 313

the progressive release of false-positives from the quarantined population, which 314
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Fig 7. A comparison of different antibody test specificities τB shown from left to right,
with varying levels of prevalence shown from red to blue. Top: The number of infected
individuals (I +QI population) over one year. Bottom: The proportion of the
population that has been released from quarantine (S + I +R population) over one year.
Model parameters are shown in Table 4.

eventually swells the susceptible population to a size where the infection count can 315

resume exponential growth. High specificities avoid this at the cost of a prolonged 316

lockdown, which is naturally limited by the lower false-positive rate. Clearly some 317

means of release beyond immunity passports would be required to avoid this scenario. 318

Notably, a reasonably specific test (τB = 0.9) is capable of restraining a second peak to 319

reasonably low levels regardless of prevalence. This may allow for other means of 320

reducing lockdown measures, though with very low prevalence this could still be a 321

potentially risky strategy. The dangers of neglecting uncertainties in medical diagnostic 322

testing are pertinent to this decision [47]. 323

Incremental relaxation scenario 324

Considering the above, some form of incremental relaxation of lockdown seems 325

appropriate. This could take many forms, it could be an incremental restoration of 326

certain activities such as school openings, permission for the reopening of some 327

businesses, the relaxation of stay-at-home messaging, etc. Under the parameterisation 328

chosen for this analysis the model is not sensitive to any particular policy change. We 329

consider a variety of rates of phased relaxations to quarantine. To model these rates we 330

consider a weekly incremental transition rate from QS to S, and QR to R. In Fig 8, 331

three weekly transition rates have been applied: 1%, 5% and 10% of the quarantined 332

population. Whilst in practice the rate is unlikely to be uniform as decision makers 333

would have the ability to update their timetable as the impact of relaxations becomes 334

apparent, it is useful to illustrate the interaction of testing capacity and release rate. 335

The model simulates these rates of transition for a year, with a sensitivity and 336

specificity of 90% for active virus tests. The specifics of all the runs are detailed in 337
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Table 5. Fig 8 shows five analyses, with increasing capacity for the active virus tests. In 338

each, the 3 incremental transition rates are applied with a range of targeting 339

capabilities. The value of 0.8 used previously represents an unrealistically extreme case 340

of effective targeting. The PPV , as discussed above, has a greater dependence on the 341

prevalence (at lower values) in the tested population than it does on the sensitivity of 342

the tests, the same is true of the specificity and the NPV . 343

Model Parameters
σA τA TA CA GA DA β γ
0.9 0.9 - - True 1 0.32 0.1
σB τB TB CB GB DB

1 0 0 Rate× Population True 7
Initial Population split

Population S I R QS QI QR

6.7 × 107 0.034 0.01 0.001 0.95 0.004 0.001

Table 5. Fixed parameters used for Fig 8 analysis.
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Fig 8. Total active infections each day over the year after relaxing lock-down, under
different testing intensities (columns) and various epidemiologic conditions. The per-day
testing capacity is varied across the five columns of graphs. Rate, the percentage of the
initial quarantined population being released each week is varied among rows. The
prevalence of infections in the tested population is varied among different colours. To
facilitate comparison within each column of graphs, the gray curves show the results
observed for other Rates and Prevalences with the same testing intensity. Model
parameters are shown in Table 5.

It is important to notice that higher test capacities cause a higher peak of infections 344

for higher release rates. This has a counterintuitive explanation. When there is the 345

sharpest rise in the susceptible population (i.e., high rate of transition), the virus 346

rapidly infects a large number of people. When these people recover after around two 347

weeks they become immune and thus cannot continue the spread of the virus. However, 348

when the infection testing is conducted with a higher capacity up to 150,000 units per 349

day, these tests transition some active viral carriers into quarantine, so the peak is 350

slightly delayed providing more opportunity for those released from quarantine later to 351

be infected, leading to higher peak infections. This continues until the model reaches 352

effective herd immunity after which the number of infected in the population decays 353

very quickly. Having higher testing capacities delays but actually has the potential to 354

worsen the peak number of infections. 355
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At 10% release rate, up to a capacity of testing of 150,000 these outcomes are 356

insensitive to the prevalence of the disease in the tested population . This analysis 357

indicates that the relatively fast cessation of lockdown measures and stay-home advice 358

would lead to a large resurgence of the virus. Testing capacity of the magnitude stated 359

as the goal of the UK government would not be sufficient to flatten the curve in this 360

scenario. 361

The 1% release rate scenario indicates that a slow release by itself is sufficient to 362

lower peak infections, but potentially extends the duration of elevated infections. The 363

first graph of the top row in Fig 8 shows that the slow release rate causes a plateau at a 364

significantly lower number of infections compared to the other release rates. Poorly 365

targeted tests at capacities less than 100,000 show similar consistent levels of infections. 366

However, with a targeted test having a prevalence of 30% or more, the 1% release rate 367

indicates that even with 50,000 tests per day continuous suppression of the infection 368

may be possible. 369

At the rate of 5% of the population in lock-down released incrementally each week 370

the infection peak is suppressed compared to the 10% rate. The number of infections 371

would remain around this level for a significantly longer period of time, up to 6 months. 372

There is negligible impact of testing below a capacity of 100,000 tests. However, with a 373

test capacity of 150,000 tests the duration of the elevated levels of infections could be 374

reduced if the test is extremely well targeted (TA = 0.7), reducing the length of 375

necessary wide-scale lockdown. If this level of targeting is not achieved, increasing 376

capacity may again increase peak infections, so care must be taken to ensure a highly 377

targeted testing strategy. 378

Conclusions 379

This analysis does support the assertion that a bad test is potentially worse than no 380

tests, but a good test is only effective in a carefully designed strategy. More is not 381

necessarily better and over estimation of the test accuracy could be extremely 382

detrimental. 383

This analysis is not a prediction; the numbers used in this analysis are estimates and 384

the SIRQ model used is unlikely to be detailed enough to inform policy decisions. As 385

such, the authors are not drawing firm conclusions about the absolute necessary capacity 386

of tests. Nor do they wish to make specific statements about the necessary sensitivity or 387

specificity of tests or the recommended rate of release from quarantine. The authors do, 388

however, propose some conclusions that would broadly apply when testing and 389

quarantining regimes are used to suppress epidemics, and therefore believe they should 390

be considered by policy makers when designing strategies to tackle COVID-19. 391

� Diagnostic uncertainty can have a large effect on the dynamics of an epidemic. 392

And, sensitivity, specificity, and the capacity for testing alone are not sufficient to 393

design effective testing procedures. Policy makers need to be aware of the 394

accuracy of the tests, the prevelence of the disease at increased granularity and 395

the characteristics of the target population, when deciding on testing strategies. 396

� Caution should be exercised in the use of antibody testing. Assuming that the 397

prevalence of antibodies is low, it is unlikely antibody testing at any scale will 398

support the end of lockdown measures. And, un-targeted antibody screening at 399

the population level could cause more harm than good. 400

� Antibody testing, with a high specificity may be useful on an individual basis, it 401

has scientific value, and could reduce risk for key workers. But any belief that 402
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these tests would be useful to relax lockdown measures for the majority of the 403

population is misguided. 404

� The incremental relaxation to lockdown measures, with all else equal, would 405

significantly dampen the increase in peak infections, by 1 order of magnitude with 406

a faster relaxation, and 2 orders of magnitude with a slower relaxation. 407

� As the prevelence of the disease is suppressed in different regions, it may be the 408

case that small spikes in cases could be the result of false positives. This problem 409

is potentially exacerbated by increased testing in localities in response to small 410

increases in positive tests. Policy decisions that depend on small changes in the 411

number of positive tests may, therefore, be flawed. 412

� For infection screening to be used to relax quarantine measures the capacity needs 413

to be sufficiently large but also well targeted to be effective. For example this 414

could be achieved through effective contact tracing. Untargeted mass screening at 415

any capacity would be ineffectual and may prolong the necessary implementation 416

of lockdown measures. 417

Epidemiological models used for policy making in real time will need to take into 418

account the impact of diagnostic uncertainty of testing, as well as the dynamical 419

behaviour and sensitivity analyses of modelled parameters in an appropriately complex 420

model that may need to include quarantining, contact tracing and other surveillance 421

strategies, test availability and targeting, and multiple subpopulations of susceptible, 422

infected and recovered categories. 423
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