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ABSTRACT 

This paper presents a simple heuristic model for COVID 19 spreading. The model is based on a 

propagation unit of time. The state of the epidemic at the end of the time unit is then related to that at 

the start through recurrence relationships. By propagating these relationships over the required number 

of time units, a projection can be made over time. The model is readily implemented on a spreadsheet 

and is therefore potentially widely accessible. It can serve as a useful tool for scenario planning and 

forecasting not just for an entire population, but also for a specific community within a population.  

1 Introduction 

The COVID 19 pandemic has challenged a lot of our conventional notions derived from previous 

experience. Many questions regarding this pandemic remain unanswered to date and some of these 

relates to the manner in which the epidemic unfolds and the strategies of controlling the epidemic. 

Much of the work to date relates to characterising the virus, development of testing technology, cures 

and vaccines. Some models have also been advanced to simulate the spread of the disease.  Fang et al. 

(2020) modelled the transmission dynamics of COVID 19 using a variation of Kermack and 

McKendrick’s (1927) SIR model. Yeghikyan (2020) also used Wesolowski et al.’s (2014) variation of 

the SIR model which took into account mobility patterns. Other forecasts have also been made by 

research organisations, using mainly data-driven softwares (e.g. IHME 2020; Adam 2020). Many of 

these are based on the SIR approach, but implemented in highly proprietary frameworks which are not 

readily accessible to third parties. Other approaches have also been used. For instance, Sanche et al. 

(2020) proposed that, if the basic reproduction number R0 is 6.7, then even “if as low as 20% of infected 

persons are asymptomatic and can transmit the virus, then even 95% quarantine efficacy will not be 

able to contain the virus”. However, Sanche et al.’s (2020) findings were based on the basic theory on 

the force of infection, rather than a full simulation and focused on the asymptomatic cases. Hence, it 

is a partial model. Furthermore, current understanding appear to suggest that infectivity is probably 

much higher amongst the symptomatic cases, especially within the first three days of symptoms onset, 

compared to the asymptomatic case (WHO 2020). Kermack and McKendrick’s (1927) original SIR 

model was expressed in closed-form mathematical relationships. Individual researchers are now much 

more empowered in terms of computing facilities than their predecessors in Kermack and 

McKendrick’s era. There is thus a case for the development of models which are readily implemented 

on personal computers, but at the same time, sufficiently reliable in their prediction. 
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This paper presents a heuristic epidemic spreading model, which can be readily implemented, modified, 

up-scaled and generalised personal computer spreadsheet. The model based on two parameters, namely 

detection efficiency and daily infectivity. The model formulation is first discussed. Examples are then 

presented to verify and calibrate the parameters, with respect to COVID 19. Some findings from the 

simulation, relevant to COVID 19, particularly for the Singapore context, are highlighted. Finally, an 

extension of the model is also made to include the effects of herd immunity and asymptomatic period. 

2 A Simple Framework 

The proposed model is akin to the SIR model, in that both are process-based. However, this model is 

formulated in discrete format, wherein the starting point is a propagation unit, taken herein to be of a 

duration of 1 day. Fig. 1 illustrates the propagation process of this model. At the start of day 0, an 

assumed number of active infected cases is seeded into the population. During the course of the day, 

detection processes will identify and remove a certain fraction, designated by k, from the infected cases. 

The remaining undetected cases will then go on to re-infected other cases, based on a daily infectivity 

ratio r. The typical sequence of operations for three days is shown in Fig. 1, wherein the variables are 

defined as follows: 

Ni, Ni+1 and Ni+2 = the active number of infected cases still in the population at the start of the three 

respective days i.e. i, i+1 and i+2. This does not include those cases which have been previously 

detected and removed from the infected reservoir. Hence, it is not the same as the total number of 

infected cases. 

k = the detection efficiency. k = 1 means 100% detection, i.e. every infected case is detected. 

r = the average daily infectivity of each undetected infected case, e.g. r = 2 means every undetected 

case went on to infect another 2 persons within a day. 

As the arrows highlighting the sequence of operations in Fig. 1 show, the number detected during the 

course of each day is subtracted from the number at the start of the day. The undetected number is then 

allowed to re-infect new cases which, together with the undetected cases, goes on to form the active 

cases at the start of the following day. For simple scenarios, mathematical relationships for this 

recurrence model can be derived, as shown in the sections below. 

3 Total Number of Reported Case (Mj) 

The total number of case that is usually reported M is actually the cumulative number of cases 

detected. Summing over j days, 
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If k and r are constants, then Eq. 1 is a geometric series, which, when summed to the jth term gives 
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We note that Mj increases monotonically with j, i.e. the number of days.  

4 Number of undetected infected persons 

Mj does not relate directly to the probability of encountering an infected person at any point in the 

population. This probability is represented more by the active number of undetected infected persons 

on a given day, say the jth day, Pj, which is given by  
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and decrease as j increases. Hence, the total number of reported cases is not representative of the actual 

probability of encountering an infected person in the population. 

5 Number of active, detected and undetected cases 

The number of active cases at the start of the jth day is Nj. For this number not to increase,  

Ni+2 ≤ Ni+1 ≤ Ni…..≤ ….Nj, which would require that 

(1 – k)(1 + r) ≤ 1         (5) 

Or 
1

r
k

r



           (6) 

If  r = 2, then k ≥ 0.67  (67% efficiency). 

If  r = 3, then k ≥ 0.75  (75% efficiency). 

If  r = 4, then k ≥ 0.80  (80% efficiency). 

Hence, to decrease the active number of infection day-by-day, the detection efficiency has to be 

sufficiently high in relation the daily infectivity. As discussed below, the latter is a function of the 

disease, infectious period, community and social setting. For instance, a disease in a setting where 

people are isolated may be a low r-value. The same disease in a setting where people are highly 

socialised would have a higher r-value. 

It should be noted that the N-value is not the number of new cases detected each day. That number Qj 

is given by Qj = kNj. However, the criterion for stabilization is similar, if the number detected each 

day is to remain steady or decrease, then 
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which also requires Eq. 6 to be satisfied. It should be noted that if the incremental number of reported 

cases is steady day-upon-day, then 

1 2 1 2 i i i i i ikN kN kN N N N              (8) 

which requires 
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Hence, Eq. 9 is the condition for the curve of cumulative reported number of case to reach the point of 

inflexion. At this point inflexion, the rate of detection is just sufficient to offset the rate of new infection. 

At this point, the battle is not won, but it is also not lost. It is akin to a stalemate situation. 

The undetected cases in each day Pj is given by  1 jk N etc.. and can be related to Qj by 
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The number of undetected cases Pj affects the probability of encountering an infected person in the 

population. If k can be estimated, then Pj can be readily estimated from Qj. 

To illustrate the significance of this, if the number of detected cases on a certain day Qj = 120 (this 

being the peak number in Singapore, on 5 April 2020) and the detection efficiency k = 0.5, then number 

of undetected cases Pj = 120. If the daily infectivity r = 2, then at the start of the following day, we 

would expect the number of active cases to be ~360 and an upper-bound estimate of the probability of 

encountering an infected person in Singapore ~ 5

6

360
6.5 10

5.5 10
x

x

  or roughly 1 in 15000, based on a 

population size of 5.5 million. In other words, one can, on average, expected to encounter an infected 

person in every 15000 encounters. On the other hand, using the cumulative number of detected cases 

would give a probability of 235 per million population 

(https://www.worldometers.info/coronavirus/#countries), or 1 in 4200, which is ~3.6 times higher. 

Hence, the cumulative number of detected cases is not directly related to the chances of encountering 

an infected person. On the other hand, if k = 0.1, then Pj = 9Qj and every detected cases implies 9 

undetected cases. In other words, the reservoir of undetected active cases will far exceed the number 

of detected cases and the latter ceases to be meaningful.  

6 Programming the framework 

The mathematical results presented above only applies to very simple scenarios. However, the 

recurrence relationships can be readily upscaled and generalised to more complex scenarios using a 

spreadsheet or other programming environments. The examples below were calculated by 

incorporating these recurrence relationships into a Excel spreadsheet. 
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6.1 Examples of application 

6.1.1 Constant k and r 

We now consider the simplest case where the daily detection efficiency k and infectivity r are both 

constant. Figs. 2a and b shows the effect of different values of k for r = 2. As can be seen, the trend is 

highly sensitive to the detection efficiency and daily infectivity. A slight drop in k or a slight increase 

in r is enough to cause a drastic increase in the numbers of cumulative and incremental detected cases. 

The case of k=0.6 in Fig. 2a also shows what happens in a yet-to-stabilised epidemic situation. As can 

be seen, the upper part of this curve is almost linear, indicating a log-linear relationship between Mj 

and number of days N, of the form 

 ln j jM N            (11) 

So that     0 expj jM N N          (12) 

In which  N0 = exp(β)  is the initial number of infected persons (at 0th day). The parameter α governs 

the rate of exponential increase and is dependent upon k and r. The effect of α can be assessed by 

considering the value of Mj at intervals of a specified number of days ΔN. For instance, on the jth day,  

  0 expj jM N N          (13) 

On the (j + ΔN)th day,  
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Or  
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If SΔN is chosen to be 2 and ΔN2 is the number of days for a doubling of the detected cases, then 

2

0.6931

N
 


          (17) 

This is consistent with the exponential growth of an epidemic. This log-linear trend is also 

demonstrated in the early-day trends in several countries, Fig. 3. This indicates the projection results 

are consistent with conventional wisdom as well as data of COVID 19 cases. For instance, in Fig. 3, 

initial Chinese data show a doubling once every ~1.5 days. Substituting SΔN = 2 and ΔN = 1.5 gives α 

= 0.462. The US data show a doubling once every ~2.5days, indicating that α = 0.277. This motivates 

the possibility of back-calibrating the value of k through α, if r can be independently estimated. This 

is further discussed below. 
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As Figs. 4a – c show, the ratio 
j

j

P

M
decreases monotonically in all cases. In scenarios which have yet 

to stabilise e.g. Fig. 4c for k = 0.6, 
j

j

P

M
 stagnates at a relatively high value, but which is, nonetheless, 

still significantly less than 1, indicating that the cumulative detected cases may not serve as a good 

representative of the number of active cases.  

6.1.2 Variable k, constant r 

We now consider a case where the detection efficiency starts at a lower level but was ramped up at 

different points and with different rates, using the following strategies: 

(a) k = 0.6 up to the 10th day and then ramped up to 0.9 on the 16th day. 

(b) k = 0.6 up to the 15th day and then ramped up to 0.9 on the 30th day. 

(c) k = 0.5 up to the 15th day and then ramped up to 0.9 on the 35th day. 

As Fig. 5a shows, the initial exponential followed by inflexion and then stabilisation is now clearly 

reflected. Furthermore, as Fig. 5b shows, the peaking of the incremental number of detected cases is 

also reflected in all three cases but is more pronounced in Strategy 3 owing to the later and slower 

ramp-up. Finally, the effect of increasing the k-value is also reflected in a decrease in 
j

j

P

M
. 

7 The nature of the detection efficiency k and daily infectivity r 

The daily infectivity r is similar, but not identical to the basic reproduction number R0 widely used in 

epidemiology (https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1a-

epidemiology/epidemic-theory). The basic reproduction number R0 is defined as “the average number 

of secondary infections produced by a typical case of an infection in a population where everyone is 

susceptible”. This ignores the effect of herd immunity. To account for herd immunity, an effective 

reproductive number R is also defined, such that 

 R = R0x          (18) 

Where x is the fraction of the population that is still susceptible. Since R0 is the reproduction number 

over the infectious period of an infected individual and r is a daily rate 

 
R

r
n

           (19) 

where n = the number of days over which infection can occur. If herd immunity is insignificant, then 

R ~ R0. 

It is well-established that R0 is not just dependent upon the infecting agent or the disease, it is also 

dependent upon a host of other factors including 
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 The rate of contacts in the community. This depends upon the social setting, proximity between 

people and whether they are using protective equipment and practising good personal hygiene 

etc. For instance, Zhang et al. (2020), using early stage data from the Diamond Princess cruise 

ship, estimated the R0 to range from 2.06–2.52, with a median at 2.28. Li et al. (2020) also 

estimated a similar range for R0, from 2.2 to 2.7. Leung et al. (2020) also estimated an R0 = 

2.68. On the other hand, Sanche et al. (2020) estimated a much higher R0 ranging from 4.7 to 

6.6. These differences may be attributed to different social settings and data accuracy. There 

may also be issues relating to undetected cases which may impact the estimated R0. Niehus et 

al. (2020), for instance, postulated that “…the global ability to detect imported cases is 38% 

(95% HPDI 22% - 64%) of Singapore’s capacity”.  

 The infectious period. According to WHO (2020), “…Data from clinical and virologic studies 

that have collected repeated biological samples from confirmed patients provide evidence that 

shedding of the COVID-19 virus is highest in upper respiratory tract (nose and throat) early 

in the course of the disease. That is, within the first 3 days from onset of symptoms.  Preliminary 

data suggests that people may be more contagious around the time of symptom onset as 

compared to later on in the disease…….The incubation period for COVID-19, which is the 

time between exposure to the virus (becoming infected) and symptom onset, is on average 5-6 

days, however can be up to 14 days. During this period, also known as the “presymptomatic” 

period, some infected persons can be contagious. Therefore, transmission from a pre-

symptomatic case can occur before symptom onset. In a small number of case reports and 

studies, pre-symptomatic transmission has been documented through contact tracing efforts 

and enhanced investigation of clusters of confirmed cases. This is supported by data suggesting 

that some people can test positive for COVID-19 from 1-3 days before they develop 

symptoms….Thus, it is possible that people infected with COVID-19 could transmit the virus 

before significant symptoms develop. It is important to recognize that pre-symptomatic 

transmission still requires the virus to be spread via infectious droplets or through touching 

contaminated surfaces……An asymptomatic laboratory-confirmed case is a person infected 

with COVID-19 who does not develop symptoms….Asymptomatic transmission refers to 

transmission of the virus from a person, who does not develop symptoms. There are few reports 

of laboratory-confirmed cases who are truly asymptomatic, and to date, there has been no 

documented asymptomatic transmission. This does not exclude the possibility that it may occur. 

Asymptomatic cases have been reported as part of contact tracing efforts in some countries”.  
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 The probability of infection being transmitted during contact, which is largely a characteristics 

of the disease.  

Based on this, one can surmise that the infected person is likely to highly contagious within the first 3 

days of onset of symptoms. Some transmission may occur during the asymptomatic period but does 

not appear to be as significant. It is also likely that after the first 3 days, he would have sought medical 

attention and would likely have been detected. Hence, it is postulated herein that an average estimate 

of the infectious period n ~ 4 to 5 days. Together with the upper bound value of R0 of 6.6, this would 

imply r ~ 1.3 – ~1.7. However, this is an average figure; for special social setting, r may be much 

higher.  

Less is known about the detection efficiency k. Niehus et al.’s (2020) postulation only relates to the 

relative (rather than absolute) detection capacity and they noted that Singapore’s detection capacity is 

likely to be  less than 100% (or 1.0) and some other countries may be much lower. One way to back-

estimate k is through the geometric rate of increase. If we assume a median value of r ~1.5, based on 

the discussion above, then k can be estimated by back-fitting the α-value, Table 1. As Table 1 shows, 

Singapore’s back-fitted detection efficiency k is significantly higher than that of China (in the early 

stage) and the US. This is consistent with Niehus et al.’s (2020) postulated that “…the global ability 

to detect imported cases is 38% (95% HPDI 22% - 64%) of Singapore’s capacity”. The current back-

fitted results indicate a somewhat higher percentage (53%) instead of 38%. Nonetheless, the trend is 

generally correct and it explains the slower rise in infected cases in Singapore. Moreover, the detection 

rate of 35.5% for China is also reasonably consistent with Wang et al.’s (2020) finding that “at least 

59% of infected cases were unascertained in Wuhan”. The latter would imply a detection efficiency 

of 41% or less. 

Fig. 6 shows the cumulative number of cases from dormitory clusters, non-dormitory clusters and 

unlinked cases from 30 March 2020 till 9 April 2020. As can be seen, both the non-dormitory clusters 

and unlinked cases plot to almost the same gradient, implying almost equal α-value, which can be 

fitted using k = 0.54. This suggests a possible decrease in the detection efficiency from the initial high 

value of 0.67. The alternative explanation is an increase in r-value, but this seems rather unlikely since 

the social setting, virological characteristics and infectious period have not changed. However, there 

may be some over-estimation of the unlinked cases as some of these might have been subsequently 

linked to existing clusters or cases. The dormitory clusters show a much higher α-value. Since the k-

value is unlikely to be different for this group, compared to the non-dormitory clusters and unlinked 

cases, the only alternative explanation is a higher value of r (=2.2). 
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Fig. 6. Cumulative cases from dormitory clusters, non-dormitory clusters and unlinked cases starting 

from 30 March 2020. 

8 Modelling of Herd Immunity 

Herd immunity can be readily incorporated through Eqs. 18 and 19 together with  

 1
jT

x
G

           (20) 

in which Tj is the total number infected up to the point of time, and G is the size of the population. Fig. 

7 shows the effect of herd immunity on a population size of 5.7 million, with an initial r of 1.5, and 

different values of k. As can be seen, the stabilization time and number are both affected by the 

detection efficiency k.  With a low detection efficiency, stabilization occurs faster as the epidemic 

works through the population, but stabilization occurs at a higher total number of infected cases. 

Modelling of Asymptomatic Spread 

The model can be extended to asymptomatic spread, although this requires some re-organization of 

the spreadsheet, since the detected and undetected cases arising from each day of the asymptomatic 

period need to be tracked. There is also a possibility that the k and r-values may differ between 

asymptomatic and symptomatic periods. To cater for this, separate parameters are used for 

asymptomatic and symptomatic period; these being designated as ka and ks, and ra and rs, where the 

subscripts a and s denote asymptomatic and symptomatic parameter. Fig. 8 shows the effect of 

asymptomatic period on the overall spreading for the values of k and r as shown in Table 2. The main 

effect of a low asymptomatic detection efficiency is a slower pick-up in the initial number of detected 

cases; but this is more than offset by a faster pick-up as the larger number of symptomatic cases kicks 

in. Not much is known about the asymptomatic detection efficiency but one may surmise that this 

should be lower than the symptomatic value. The asymptomatic daily infectivity is also highly debated. 

As more information comes to light in future, these parameters may be more reliably estimated. 

9 Discussion 

An important feature of this model is its simplicity. It can be readily implemented on a spreadsheet or 

any other programming environment, and therefore potentially widely accessible. There are only two 

parameters in the models although these parameters may be not time-invariant. The detection 

efficiency, for instance, may changes as contact tracing and testing are ramped up or down. Similarly, 

the daily infectivity may also be function of the community setting. The fact that these two parameters 

can be related to real changes in conditions is an advantage since they allow the effect of any changes 

in conditions to quantified. As the body of data on the relationship between these parameters and real 

conditions grows, the model will become increasingly reliable and definitive.  
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The detection efficiency is not affected by undetected case because back-fitting is based on the rate of 

increase in the number of detected (or reported) cases rather than the total number of infected cases. 

In fact, as illustrated in the examples above, if the daily infectivity can be independently estimated, the 

detection efficiency can be estimated through back-fitting the rate of increase in the number of detected 

cases.  

It can also be readily up-scaled and adapted to different scenarios and conditions. This is especially 

true for the spreadsheet implementation. As such, this model may be useful as a tool for scenario 

planning and forecasting not just for an entire population, but also for a specific community within a 

population. For instance, back-fitting of the data suggests a higher daily infectivity for the dormitory 

clusters than for the other clusters.  
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Tables 

Table 1. Back-fitted detection efficiency k. 

Country Number of 

days for 

doubling of 

detected cases 

Measured 

α value 

Best-fit α value k-value for 

best-fit α value 

(r-value) 

US 2.5 0.277 0.276 0.48 (1.5) 

China (early stage 

data) 

1.5 0.462 0.461 0.355 (1.5) 

Singapore 10 0.0693 0.069 (curve is sub-

exponential, 

showing that the 

epidemic was 

stabilising. Value 

was fitted to a chord 

on the curve). 

0.67 (1.5) 

Singapore (14/3 – 

9/4 Unlinked 

cases 

 0.141 0.14 0.54 (1.5) 

Singapore (14/3 – 

9/4 Unlinked 

cases 

 0.141 0.14 0.54 (1.5) 

Singapore (14/3 – 

9/4 Dormitory 

linked cases 

 0.376 0. 0.54 (2.2) 

 

Table 2. Parameters for Cases 1 to 3 with asymptomatic periods 

Case Asymptomatic Symptomatic 

Detection 

efficient ka 

Daily infectivity 

ra 

Detection 

efficient ks 

Daily infectivity 

rs 

1 0.3 0.5 0.5 1.5 

2 0.3 0.6 0.5 1.5 

3 0.1 0.6 0.5 1.5 
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Figures 

Fig. 1. Propagation process of proposed model. 
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(a) 

(d) 

Fig. 2. (a) and (b). Cumulative and incremental number of detected cases for k ranging from 0.6 to 0.8 

and r = 2.  
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Fig. 3. Total number of reported coronavirus cases in various countries (after 

https://www.visualcapitalist.com/infection-trajectory-flattening-the-covid19-curve/). 

 

 

Fig. 4. Evolution of 
j

j

P

M
 for different k and r-values. 
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(c) 

Fig. 5. Results for r = 2 and variable k. (a) Cumulative number of detected cases  (b) Incremental 

number of detected cases  (c) 
j

j

P

M
. 

 

Fig. 6. Cumulative cases from dormitory clusters, non-dormitory clusters and unlinked cases starting 

from 30 March 2020 (data from MOH 2020). 
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Fig. 7. Effect of herd immunity on a population size of 5.7 million. 

 

Fig. 8. Effect of asymptomatic period on overall spread for different cases, with parameters as shown 

in Table 2. 
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