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Abstract

Does the implementation of social distancing measures have merit in controlling
the spread of the novel coronavirus? In this study, we develop a mathematical model
to explore the effects of social distancing on new disease infections. Mathematical
analyses of our model indicate that successful eradication of the disease is strongly
dependent on the chosen preventive measure. Numerical computations of the model
solution demonstrate that the ability to flatten the curve becomes easier as social
distancing is strictly enforced. Based on our model, we also formulate an optimal
control problem and solve it using Pontryagin’s Maximum Principle and an efficient
numerical iterative method. Our numerical results of an optimal 2019-nCoV treatment
protocol that yields a minimum disease burden from this disease indicates that social
distancing is vitally important.

∗Corresponding author; e-mail: abhishek.mallela@gmail.com

1 Introduction

The novel coronavirus 2019-nCoV has been spreading around the globe at a frightening pace.
Academic institutions around the world have canceled in-person instruction, traveling be-
tween places is strongly discouraged, and organizations have endorsed teleworking policies.
These efforts are collectively referred to as social distancing. The main idea behind these
efforts is to reduce human contact in order to reduce the risk of infectivity. How can we
assess the value of such strategies and model the spread of the disease?

Mathematical models are a useful tool to investigate disease dynamics. Existing models
on coronavirus have provided greater insights into the transmission dynamics, the prevention
of new infections, and methods of parameter estimation [3, 5, 7]. However, none of these
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models have explored a viable social distancing strategy using optimal control theory. In
this study we develop an epidemiological model that assesses the value of social distancing
strategies. Using our model, we also formulate an optimal control problem to identify the
optimal treatment protocol that provides a minimum disease burden from the coronavirus.

The paper is organized as follows: in Section 2, we formulate the SEIR model. In Section
3, we conduct mathematical analyses, including the formulation of the basic reproduction
number and the stability analysis of the disease-free equilibrium. In Section 4, numerical
computations of the model solution are performed to explore the effects of social distancing.
In Section 5, we formulate an optimal control problem, provide a method of numerical
computation, and discuss optimal control results. We summarize our findings with conclusion
in Section 6.

2 Model Description

To address the key question of this study, we use the SEIR compartmental model framework,
where S, E, I and R denote the susceptible, exposed, infected, and recovered populations
respectively. A schematic diagram of the model is given in Fig. 1. Upon introduction of
the disease, individuals transition among these compartments. For the sake of simplicity,
we assume that a recovered individual is no longer able to be infected. The incubation
frequency of the virus is denoted by α and the inverse of the average length of infection
is given by γ. The parameter β is defined as the average rate of person-to-person contact
times the infectivity (the probability per that an infected individual transmits the disease to
a susceptible individual). We account for the effect of social distancing with the parameter
σ. Social distancing refers to the absence of large gatherings, avoidance of physical contact,
and other efforts necessary to mitigate the spread of 2019-nCoV.

Thus, we can write the model mathematically as:

dS

dt
= −σβSI

N
(2.1)

dE

dt
=
σβSI

N
− αE (2.2)

dI

dt
= αE − γI (2.3)

dR

dt
= γI (2.4)

where the total population is N(t) = S(t) + E(t) + I(t) +R(t).

Using our model, we can compute the total number of new infections TN as follows:

TN =

∫ tf

0

σβSI

N
dt, (2.5)

2

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.10.20061069doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.10.20061069
http://creativecommons.org/licenses/by-nd/4.0/


where tf denotes the final time of the study period.

The number of new infections is a major concern of 2019-nCoV epidemiology and treat-
ment. Therefore, we take a simple approach and define the total disease burden for the fixed
time interval, [0, tf ], as A1TN , where A1 is a weighting coefficient.

3 Model Analysis

The variables in the model system (2.1) - (2.4) remain non-negative for all t ≥ 0 with non-
negative initial conditions, because dN

dt
= 0 implies that N is a non-negative constant (in

order for the system to be biologically meaningful).

3.1 Basic Reproduction Number

The basic reproduction number, R0, is defined as the effective number of secondary infec-
tions caused by a typical infected individual during his/her entire period of infectiousness,
when he/she is introduced into a population consisting of susceptible individuals only. Here,
we formulate R0 using the next-generation matrix method [1, 9]. The model has a unique
disease-free equilibrium (DFE): E0 = (N, 0, 0, 0). For the next-generation method, we con-
sider equations corresponding to the infectious compartments only (i.e. E and I). The
non-negative matrix, F , corresponding to the new infections in the population, evaluated at
the disease-free equilibrium E0, is given by:

F =

[
0 σβ
0 0

]
The nonsingular matrix, V , corresponding to the transfer of individuals in and out of com-
partments, is:

V =

[
α 0
−α γ

]
Then R0, which corresponds to the dominant eigenvalue of the matrix FV−1, is given by

R0 =
σβ

γ
. (3.1)

3.2 Stability Analysis of Disease-Free Equilibrium

From results in [9], R0 provides the local stability criteria for the DFE:

Proposition 3.2.1. The DFE of (2.1) - (2.4) is locally asymptotically stable if R0 < 1
and is unstable if R0 > 1.

We are also able to prove that R0 < 1 implies global stability of the DFE as shown in
the following theorem:
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Theorem 3.2.2. The DFE of (2.1) - (2.4) is globally asymptotically stable if R0 < 1.

Proof: Let IC denote the total number of infected individuals, i.e., IC = E + I. Then,

dIC

dt
=
σβSI

N
− γI ≤ εI,

where ε = (σβ − γ). If R0 < 1, then ε < 0. This implies that the solution curve IC(t)
is bounded above by a solution that decays exponentially to zero if R0 < 1. Therefore, if
R0 < 1 and (E, I) 6= (0, 0), then IC(t) decreases and eventually approaches zero as t→∞.
Since E, I ≥ 0, both E and I approach zero in the limit as t→∞. This implies that

dS

dt
= −σβSI

N

approaches 0 as t→∞. Thus we have:

(∀ν > 0)(∃tT > 0) such that (t > tT ) =⇒
∣∣∣∣dSdt

∣∣∣∣ < ν.

Thus, we can conclude that limt→∞S(t) = N. Hence, the disease-free equilibrium is globally
asymptotically stable if R0 < 1.

4 Model Predictions

4.1 Parameter Estimation

We estimated the model parameters based on the literature survey [3, 5, 7]. The parameters
used for our simulations are given in Table 1. For our model predictions, we focus on the
total new infections, TN . For the sake of demonstration, we compute the totals over a period
of 200 days, i.e., tf = 200 days. Since we do not know the value for the weightage coefficient,
for simplicity, we take A1 = 1 for our model simulations.

4.2 Effect of Social Distancing

In Fig. 2, the trajectories of the exposed and infected subpopulations are shown as a func-
tion of time. By decreasing σ from 1 to 0.5, we can see the effect of flattening the curve
as social distancing is increased. This is a natural consequence of the model because the
effective contact rate is reduced (i.e. σβ is reduced). The base-case, in which the effective
contact rate is unchanged (i.e. σ = 1), results in a peak population infection rate of 9%
after just 44 days since the disease starts spreading. With σ = 0.75, the peak infection rate
reduces to 6.3% after an additional 16 days, and σ = 0.5 results in an infection rate of only
2.6% nearly 46 days later. This shows that social distancing may play an important role,
not only in reducing the prevalence of infection, but also in providing people more time to
equip themselves with resources to combat the spread of the disease.
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In Fig. 3, we see that for σ ∈ [0, 0.3], there is a small number of new infections TN
in the population compared to the number of infections for σ > 0.3. In this region, TN
grows rapidly until the curve saturates (i.e. nearly the entire population is infected). Thus,
the added value of enforcing social distancing for 100% of the population, corresponding to
σ = 0, is insignificant when compared to the case σ = 0.3, where only 70% of the population
obeys the protocol. Furthermore, there is only one new infection in the population when
σ = 0.149, but nearly 90% of the population is infected when σ = 0.763. This behavior sug-
gests that a recommendation for the value of σ would benefit from this analysis, by avoiding
the extremes of the unit interval.

Thus, our numerical results suggest that there is a significant impact of social distancing
on the outcome of a treatment program for this disease, thereby necessitating an optimal
treatment protocol, which we discuss in the sections to follow.

5 Optimal Control

Our goal here is to find an optimal treatment strategy that will minimize the total disease
burden, while minimizing the cost of implementing such a strategy.

5.1 Formulation

We introduce a time-dependent control σ = u(t), representing the effect of social distancing,
in the model. This results in the following system:

dS

dt
= −uβSI

N
(5.1)

dE

dt
=
uβSI

N
− αE (5.2)

dI

dt
= αE − γI (5.3)

dR

dt
= γI (5.4)

where N(t) = S(t) + E(t) + I(t) +R(t).

Note that for non-negative initial conditions and bounded Lebesgue-measurable controls,
the state system admits non-negative bounded solutions [6]. The objective functional that
we seek to minimize over a finite time horizon [0, tf ] is:

J(u) = A1TN + A2

∫ tf

0

u2 dt =

∫ tf

0

{
A1
uβSI

N
+ A2u

2

}
dt (5.5)

In (5.5), we assume the cost term is a quadratic function of the control [4, 6]. Here A1

represents the balancing factor associated with the total number of new infections TN . The
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balancing factor associated to the cost component u2 is denoted by A2.

We consider the set of admissible (bounded) control functions given by

Γ =
{
u ∈ L∞(0, tf ) | u(t) ∈ [0, ub] ∀t ∈ [0, tf ]

}
,

where tf denotes the final time of the study period and u is Lebesgue-measurable with upper
bound ub. Thus, we seek an optimal control u∗ such that

J(u∗) = min
Γ
J(u).

5.2 Optimality System

The existence of the optimal control follows from standard results due to the structure of the
state system and the uniform L∞ bounds on the states and the controls [2]. To characterize
the optimal control we use Pontryagin’s Maximum Principle [8], which allows us to utilize
adjoint functions to transform the optimization problem into a problem of determining the
pointwise minimum of the Hamiltonian, relative to u. The Hamiltonian is constructed from
the functional (5.5), with the underlying state dynamics attached:

H = A1
uβSI

N
+ A2u

2 + λ1

(
−uβSI

N

)
+ λ2

(
uβSI

N
− αE

)
+ λ3 (αE − γI) + λ4γI (5.6)

where λ1, λ2, λ3, λ4 are the adjoint variables associated to the states S,E, I, R.

For our system of ODEs, we are able to use Pontryagin’s Maximum Principle to obtain
adjoint functions, which track the changes in our objective functional due to the state vari-
ables. The theorem below gives the ODE system and the boundary conditions for our adjoint
functions and the corresponding characterization of an optimal control. The optimality sys-
tem consists of our state and adjoint systems together with this control characterization,
and we will solve this optimality system numerically to obtain the optimal control. The op-
timality system of equations results from taking the appropriate partial derivatives of (5.6)
with respect to the associated state variable.

Theorem 5.2.1 There exists an optimal control u∗ and corresponding solution vec-
tor (S∗, E∗, I∗, R∗) that minimizes J(u) over Γ. Furthermore, there exist adjoint functions
λ1(t), λ2(t), λ3(t), λ4(t) with transversality conditions

λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = 0

Also, the following characterization holds:

u∗(t) = min

{
ub,max

(
0,
βSI(λ1 − λ2 − A1)

2A2N

)}
(5.7)

Proof: Corollary 4.1 of [2] gives the existence of an optimal control due to the convexity
of the integrand of (5.5) with respect to the control u, a priori boundedness of the state
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solutions, and the Lipschitz property of the state system with respect to the state variables.
Applying Pontryagin’s Maximum Principle, we obtain the adjoint system

dλ1

dt
= −∂H

∂S
,
dλ2

dt
= −∂H

∂E
,
dλ3

dt
= −∂H

∂I
,
dλ4

dt
= −∂H

∂R
,

with zero final time conditions. To get the characterizations of the optimal control given by
(5.7), we solve the equations on the interior of the control set ∂H

∂u
= 0. Using the bounds on

the control, we obtain the desired characterization.

The optimality system consists of the state system with the initial time conditions, the
costate (adjoint) system with the terminal time conditions, and the control characterization.
Due to a priori boundedness of the state and adjoint systems, we obtain the uniqueness of
the optimal control for small final time tf . This small time condition is due to opposite time
orientations of the state system and the adjoint system [4].

For the sake of completeness, we provide the adjoint functions here:

λ′1 =
βIu (A1 − λ1 + λ2)

N
λ′2 = α(λ3 − λ2)

λ′3 = γ(λ4 − λ3) +
βSu (A1 − λ1 + λ2)

N
λ′4 = 0

5.3 Method of Numerical Computations

We implement an iterative procedure to numerically solve the boundary value problem of
the optimality system, consisting of eight ordinary differential equations comprising the state
and adjoint equations, coupled with the control characterization. Numerical computation
begins with an initial guess for the control and then uses a forward fourth-order Runge-
Kutta scheme to solve the state equations over the time interval [0, tf ] partitioned into n
subintervals. Using the resulting state values and the given final time values, the adjoint
system is then solved backward in time (due to the transversality conditions), again using a
fourth-order Runge-Kutta method. Then, the control is updated by using a convex combi-
nation of the previous control and the value from the characterization. This iterative process
continues until convergence, which is set to occur when the relative error between all state
variables, the adjoint functions, and the control function is less than a specified value δ, i.e.,

when ‖x(k)−x(k−1)‖
x(k) < δ, where ‖ · ‖ is the L∞-norm. The method of numerical computation

discussed above can be summarized as the algorithm below [4, 6]:

Here, ~x = (x1, x2, x3, x4) and ~κ = (κ1, κ2, κ3, κ4) denote the vector approximations for
the states and adjoints.

Step 1: Make an initial guess for u over the interval [0, tf ].
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Step 2: While (δ‖x(k)‖ − ‖x(k) − x(k−1)‖ < 0), perform Steps 3 to 5.

Step 3: Solve ~x forward in time (using a fourth-order Runge-Kutta scheme)
according to its system of differential equations in the optimality system.

Step 4: Using the transversality condition κ4 = κ(tf ) = 0 and the stored values
for u, ~x, solve ~κ backward in time (using a fourth-order Runge-Kutta scheme)
according to its system of differential equations in the optimality system.

Step 5: Update u by entering the new ~x and ~κ values into the characterization
of the optimal control.

To obtain meaningful optimal control profiles, reasonable estimation of the balancing
factors A1 and A2 is important. To estimate these balancing factors, we first compute the
median value of TN (≈ 6, 816) from the region σ ∈ [0, 1]. We discretized σ into 1, 001 values,
with median value 0.5. In the balanced situation, we have

A1TN = A2

∫ tf

0

u2 dt ≈ A2

∫ 200

0

(0.5)2 dt = 50A2. (5.8)

This implies A2/A1 = 136.32. Hence we take A1 = 1 and A2 = 136.32.

5.4 Numerical Results

We performed all numerical computations in MATLAB R2019b [10]. The value of δ was
set at 10−3 for all computations. For the base-case (A1, A2) = (1, 136.32), we obtain an
optimal control u∗ that is identically zero for t ∈ [0, tf ]. (Fig. 4). From a mathematical
point of view, this is perhaps not surprising since TN is linear in the control and hence the
objective functional J(u) is a multiple of u. From a control standpoint, it is apparent that
u∗ ≡ 0 corresponds to the enforcement of social distancing in the entire population for the
duration of the study. Clearly, this measure may be considered extreme, and in some cases
even logistically infeasible. However, it is a necessary step for the purpose of minimizing
infection risk.

6 Conclusion

Recent months have shown that 2019-nCoV poses a dangerous risk to humans. In this study,
we developed a SEIR model that incorporates social distancing as a preventive measure for
disease spread. We conducted analyses of the model, including formulation of the basic re-
production number and stability of the disease-free equilibrium (defined as a state where the
disease is eradicated). Our analyses show that social distancing play directly affects the ba-
sic reproduction number, and hence the stability of the disease-free equilibrium. Our model
simulations demonstrate that the total disease burden from 2019-nCoV can be mitigated
by flattening the curve with a carefully chosen value for the coefficient of social distancing.
Hence, we also formulated an optimal control problem and identified an optimal preventive
measure for the population.
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Our model has some limitations. In order to simplify the model, we have ignored the
dynamics of age structure, disease mortality, and the presence of quarantined individuals. We
assumed that all individuals in a given compartment are identically infectious, which might
ignore potential effects caused due to population heterogeneity. Finally, further refinement
of the objective functional is necessary in order to ensure a successful control protocol of
2019-nCoV.
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Table 1: Model parameters

Description Entity Estimate Source
Total population N 10,000 Assumed

INITIAL CONDITIONS
Susceptible S(0) 9,999 Assumed
Exposed E(0) 0 Assumed
Infected I(0) 1 Assumed

Recovered R(0) 0 Assumed
PARAMETERS

Incubation rate α 1.818× 10−1 day−1 [3]

Mean contact rate β 1.68 day−1 [5]

Mean infection rate γ 5× 10−1 day−1 [7]
Coefficient of social distancing σ 0 to 1 Varied

S E I R

σβSI

N αE γI

Figure 1: Schematic diagram of the model. The box compartments represent groups
of individuals and the arrows represent disease transmission, disease incubation, and disease
progression. S = susceptible, E = exposed, I = infected, R = recovered
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Figure 2: 2019-nCoV SEIR Model with Social Distancing. The cases σ = 1.0, 0.75, 0.5
are shown respectively by the curves in blue, red, and black. Trajectories for the exposed
population are solid curves and trajectories for the infected populations are dotted curves.
The effect of social distancing on flattening the curve is seen clearly.

11

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.10.20061069doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.10.20061069
http://creativecommons.org/licenses/by-nd/4.0/


0 0.2 0.4 0.6 0.8 1

Social distancing ( )

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
o

ta
l 

n
e

w
 i

n
fe

c
ti

o
n

s
 (

T
N

)

Figure 3: Total new infections as a function of social distancing. The curve exhibits
interesting behavior for σ ∈ [0.149, 0.763].
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Figure 4: Effect of including social distancing in the optimal control. Optimal
control solution profile u∗ for A1 = A2 = 1.
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