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ABSTRACT 

Background: Several studies have shown that machine learning algorithms using MRI data 

can accurately discriminate parkinsonian syndromes. Validation under clinical conditions is 

missing. 

Objectives: To evaluate the accuracy for the categorization of parkinsonian syndromes of a 

machine learning algorithm trained with a research cohort and tested on an independent 

clinical replication cohort. 

Methods: 361 subjects, including 94 healthy controls, 139 patients with PD, 60 with PSP 

with Richardson's syndrome, 41 with MSA of the parkinsonian variant (MSA-P) and 27 with 

MSA of the cerebellar variant (MSA-P), were recruited. They were divided into a training 

cohort (n=179) scanned in a research environment, and a replication cohort (n=182), scanned 

in clinical conditions on different MRI systems. Volumes and DTI metrics in 13 brain regions 

were used as input for a supervised machine learning algorithm. 

Results: High accuracy was achieved using volumetry in the classification of PD versus PSP, 

PD versus MSA-P, PD versus MSA-C, PD versus atypical parkinsonian syndromes and PSP 

versus MSA-C in both cohorts, although slightly lower in the replication cohort (balanced 

accuracy: 0.800 to 0.915 in the training cohort; 0.741 to 0.928 in the replication cohort). 

Performance was lower in the classification of PSP versus MSA-P and MSA-P versus MSA-

C. When adding DTI metrics, the performance tended to increase in the training cohort, but 

not in the replication cohort. 

Conclusions: A machine learning approach based on volumetric and DTI data can accurately 

classify subjects with early-stage parkinsonism, scanned on different MRI systems, in the 

setting of their clinical workup. 
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Introduction 

The diagnosis of idiopathic Parkinson’s disease (PD) and atypical parkinsonism, whose most 

frequent types are progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), 

rely on clinical criteria.1–3 At initial presentation, a correct diagnosis may be difficult with 

high clinical uncertainty. However, an accurate diagnosis is crucial to provide prognostic 

assessment and adequate counseling and for the categorization of patients before inclusion in 

therapeutic trials. It has been shown that the diagnostic accuracy of PD was much improved 

when clinical experts in movement disorders made the diagnosis with a sensitivity of 91.1% 

and a specificity of 98.4%1,4 

Degeneration of dopaminergic neurons within the substantia nigra pars compacta is the 

hallmark of all neurodegenerative parkinsonian syndromes.5–7 While PD patients only exhibit 

nigral abnormalities in a limited number of small brainstem nuclei at the early stages of the 

disease,5–8 PSP patients show a larger involvement of other structures, predominating in the 

midbrain, the dentate nucleus and superior cerebellar peduncles 6,7,9–11 and MSA patients are 

characterized by damages particularly affecting the posterior putamen in the parkinsonian 

variant (MSA-P) and the pons, middle cerebellar peduncles and cerebellum in the cerebellar 

variant (MSA-C).6,7,12 

Multimodal magnetic resonance imaging (MRI) can detect these differential patterns of brain 

involvement.13–17 In vivo neuroimaging biomarkers that correlate with neuropathological 

alterations can be extracted from MRI data sensitive to several properties of the underlying 

brain tissue. Indeed, brain atrophy is visible on T1-weighted images, tissue microstructure 

alterations are detected using diffusion-weighted images, and iron deposition can be 

evidenced using iron-sensitive sequences.13–17 

Recently, several studies have demonstrated that machine learning algorithms trained with 

MRI data could differentiate between parkinsonian syndromes with high accuracy.18–25 

Nevertheless, most of these studies were based on one single type of MRI acquisition 

protocol, either T1-weighted volumetry18–20 or diffusion-weighted data,25 with three studies 

using a multimodal approach combining volumetry and diffusion21 or including R2* 

relaxometry22 or spectroscopy.23 Two studies have relied on large cohorts, including 100225 or 
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464 subjects,19 whereas others studies have investigated smaller samples.18,20–23 Only two 

studies have included at the same time PD, PSP, MSA-P and MSA-C subjects,19,23 while other 

studies have not differentiated between MSA-P and MSA-C, 18 have only included MSA-P 

patients 25 or MSA-C patients 24 or have not included MSA 20,21 or PSP patients. 22 Moreover, 

these studies have mainly been designed in a research environment and tested without an 

independent replication cohort.19–22 To translate an automated machine-learning-based 

classification into clinical practice, there is a need for multimodal studies based on large 

cohorts and tested on clinical populations including all types of parkinsonian syndromes. 

Our objective was to evaluate the predictive performance of a machine learning algorithm for 

the categorization of parkinsonian syndromes including MSA-C, MSA-P and PSP compared 

with PD and healthy controls (HC). This algorithm was trained on a research cohort and 

tested on an independent replication cohort scanned on different MRI scanners in clinical 

conditions in a Neuroradiology department, using volumetric and diffusion-weighted MRI 

data. 

Material and methods 

Population 

Two populations of subjects were included: a training cohort to train and validate the 

algorithm and a replication cohort to independently evaluate the algorithm’s performance. 

Subjects in the training cohort were enrolled in the frame of three research studies conducted 

between 2007 and 2012 at the Brain and Spine Institute (ICM), Paris: Genepark (LSHB-CT-

2006-037544), BBBIPPS (DGS 2006/0524) and Nucleipark (RCB 2009-A00922-55). 

Inclusion criteria for patients were: 1) a diagnosis of PD, PSP or MSA established by 

movement disorders specialists according to published consensus criteria for PD (UK 

Parkinson's Disease Society Brain Bank clinical diagnostic criteria 1 and no or minimal 

cognitive disturbances with Mini Mental State Examination>24), PSP with a Richardson 

syndrome (National Institute of Neurological Disorders and Stroke criteria) 26 or MSA 

(Second consensus statement on the diagnosis of multiple system atrophy).3 

Subjects in the replication cohort were consecutively and prospectively enrolled between 

2013 and 2019 in the movement disorders clinic and the Neuroradiology department of the 

Pitié-Salpêtrière University Hospital, Paris. Diagnosis of probable PD, PSP or MSA were 
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retrospectively established in 2019 by movement disorders specialists according to the above 

mentioned clinical criteria based on all available clinical data throughout the follow-up.  

The clinical examination included the Unified Parkinson’s Disease Rating Scale part III 

scores (UPDRS III). Baseline MRI scans were obtained on the same day of the clinical 

examination. For both cohorts, HCs matched for age with patients were included. They had no 

history of neurological or psychiatric disease. Subjects were excluded if they had any 

additional neurological disorder including stroke or brain tumor on MRI examinations. 

Institutional review boards approved the studies (Genepark: CPP Paris II, 2007-A00208-45; 

BBBIPPS: CPP Paris VI, P040410 – 65-06; Nucleipark: CPP Paris VI, 65-09; Park Atypique: 

CPP Ile-de-France VI, 08012015). Written informed consent was obtained from all 

participants. 

Image acquisition 

Subjects in the training cohort were scanned at the Brain and Spine Institute using a 3.0T 

TRIO (Siemens, Erlangen, Germany) with a 32-channel head coil. Subjects in the replication 

cohort were scanned in clinical conditions for diagnostic purposes at the hospital’s 

Neuroradiology department using four MRI systems: 1) 1.5T GE OPTIMA 450 (General 

Electrics Medical Systems, Milwaukee, USA) using a 32-channel head coil, 2) 3T GE SIGNA 

HDxt (General Electrics Medical Systems, Milwaukee, USA) using a 32-channel head coil, 3) 

3T GE Discovery MR750 (PET/MR) (General Electrics Medical Systems, Milwaukee, USA), 

using a 8-channel head coil, 4) 3T Siemens SKYRA (Siemens, Erlangen, Germany), using a 

64-channel head coil. HCs in the replication cohort were scanned twice during different 

sessions on 3T SKYRA and 3T SIGNA MRI systems. 

All subjects were scanned using a standardized protocol adapted to each scanner. The 

protocols included a high-resolution T1-weighted gradient-recalled echo sequence 

(Magnetization-prepared rapid acquisition with gradient-recalled echo, MPRAGE, or Spoiled 

Gradient Recalled Acquisition in Steady State, SPGR) and diffusion tensor imaging (DTI) 

with 15 (1.5T GE), 30 (3T SKYRA, 3T GE SIGNA and GE PET/MR system), 60 or 64 (3T 

TRIO) gradient-encoding directions. The acquisition parameters are provided in the 

supplementary Table S1. DTI sequences were missing in 19 patients in the training cohort and 

17 patients in the replication cohort. Quality control was performed by visual inspection; T1-
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weighted and diffusion-weighted images with significant motion artifacts or image distortions 

were excluded. 

Data processing and analysis 

Image processing and analysis were performed using in-house software written in Matlab 

(R2017b, The MathWorks, Inc., Natick, MA, USA). 

T1-weighted images were automatically segmented using Freesurfer (http://freesurfer.net/, 

MGH, Boston, MA, USA). DTI preprocessing was performed using the FMRIB Software 

Library (FSL) v5.0 (FMRIB, Oxford, UK). Motion and eddy currents were corrected using 

the eddycor function. Fractional anisotropy (FA) and diffusivity maps were computed with 

the DTIfit function for the entire brain volume. The diffusion maps were coregistered to the 

3D T1-weighted volume using the SPM coregister function. The volumes, mean values of FA, 

mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were calculated in 

all segmented regions of interest (ROI). 

Thirteen ROI known for being involved in parkinsonian syndromes were included: midbrain, 

pons, third ventricle (V3), fourth ventricle (V4), superior cerebellar peduncles (SCP), 

cerebellum white matter (including the middle cerebellar peduncles), putamen, posterior 

putamen, caudate, thalamus, pallidum, precentral cortex and insular cortex. 

SVM classification 

Using the scikit-learn package,27 four supervised machine learning algorithms were 

developed: a logistic regression, a support-vector machine (SVM) with a linear kernel, a SVM 

with a radial basis function kernel and a random forest. They were trained and validated on 

the training cohort, then tested on the replication cohort. Only the results obtained using the 

SVM with a linear kernel were reported as it tended to provide the best performance (results 

with the three other algorithms provided in the supplementary Tables S2 and S3). 

The cross-validation procedure on the training cohort included two nested loops: an outer loop 

evaluating the classification performances and an inner loop used to optimize the 

hyperparameters of the algorithms. More precisely, repeated stratified random splits with five 

repetitions were used for outer cross-validation. For hyperparameter optimization, an inner 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.27.20042671doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.27.20042671


loop with five-fold cross-validation was used. For each split, the model allowing the highest 

area under the ROC curve (AUC) among the five selected models was selected.  

The input features were volumes, including the ratio between midbrain and pons volumes, 

FA, MD, AD and RD in the different ROI. Age and sex were added as covariables in the 

algorithm. 

All subjects volumetric and DTI values (subjects referring to patients and controls) in the 

replication cohort were normalized by subjects values in the training cohort (subtraction of 

each individual value by the mean of all subjects in the training cohort, divided by the 

standard deviation). 

To harmonize data across scanners and reduce potential scanner-dependent effects in the 

images, a separate analysis was conducted on a subset of the replication cohort including 

subjects scanned on the machines where HCs were available, namely SKYRA (n=84) and 

SIGNA (n=79). First, subject values in the replication cohort were normalized by subject 

values in the training cohort. Second, a normalization of subjects data by HCs data in both 

cohorts was performed (subtraction between each patient’s value and the mean of HCs, 

divided by the standard deviation of HCs). 

The following classifications were evaluated: PD versus PSP, PD versus MSA-P, PD versus 

MSA-C, PD versus atypical parkinsonism, PSP versus MSA-P, PSP versus MSA-C and 

MSA-P versus MSA-C. 

Weighting factors 

Weighting factors for each feature were extracted from SVM with linear kernel training. They 

reflected the contribution of each feature to group differentiation. A rescaling to a range of -1 

to +1 was done to highlight the relative importance of each feature: the higher the absolute 

value, the bigger the contribution of the feature. This assertion relied on the assumption that 

each feature had the same scale, which was a reasonable assumption because of the 

standardization of each feature. When the coefficient was positive, the algorithm favored the 

first group if the value of the feature was high or the second group if the value was low. 

Conversely, when the coefficient was negative, the algorithm favored the second group if the 

value of the feature was high, or the first group if the value was low.19 
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Statistical analyses 

To evaluate the performance of the algorithm, Receiver operating characteristic (ROC) curves 

were generated; balanced accuracy (BA), AUC, sensitivity and specificity were calculated for 

each group comparison. The BA was defined as the average sensitivity and specificity in each 

group. BA avoids overestimation of classification performance due to imbalanced group 

sizes.19 

Results 

Clinical characteristics of the patients 

In total, 361 subjects were analyzed, divided into a training cohort (n=179) with 72 HCs, 63 

patients with PD, 21 with PSP, 11 MSA-P and 12 MSA-C, and a replication cohort (n=182) 

with 22 HCs, 76 patients with PD, 39 with PSP, 30 MSA-P and 15 MSA-C (Table 1).  

In both cohort, there was no significant difference between patient groups in terms of age, sex 

and disease duration. In the training cohort, PD patients had lower UPDRS scores (21.0 ± 

13.1) compared to PSP (38.5 ± 15.7, p<0.001), MSA-P (42.2 ± 13.9, p<0.001) and MSA-C 

(47.4 ± 14.4, p<0.001) patients. In the replication cohort, MSA-C patients had lower UPDRS 

scores than PSP patients (16.7 ± 7.7 versus 32.2 ± 16.9, p=0.0014). No other difference was 

seen in both cohorts 

When comparing disease groups between both cohorts, HCs (64.7 ± 7.3 versus 60.8 ± 8.2, 

p=0.008), PD (66.6 ± 10.8 versus 60.7 ± 9.7, p=0.001) and PSP patients (71.4 ± 5.9 versus 

65.6 ± 9.1, p=0.013) were older in the replication cohort. The disease durations were shorter 

for PD (4.3 ± 3.4 versus 6.0 ± 4.0, p=0.014), MSA-P (3.5 ± 1.7 versus 5.0 ± 1.9, p=0.004) and 

MSA-C (2.6 ± 1.6 versus 5.2 ± 1.8, p=0.012) patients in the replication cohort compared to 

the training cohort. PSP patients also had a shorter disease duration in the replication cohort 

though the difference was not significant (3.4 ± 1.8 versus 4.2 ± 1.9, p=0.088). UPDRS scores 

were lower in the replication cohort for MSA-P (24.6 ± 10.4 versus 42.2 ± 13.9, p<0.001) and 

MSA-C (16.7 ± 7.7 versus 47.4 ± 14.4, p=0.003) patients. 

Performances in the training cohort and the whole replication cohort 
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In the training cohort, when using volumetric data solely, the BAs ranged between 0.800 and 

0.906, with AUCs between 0.945 and 1.000. The best classification performances were 

obtained in decreasing order for PD versus MSA-C (BA: 0.915; AUC: 1.000), PD versus PSP 

(BA: 0.907; AUC: 0.981), PSP versus MSA-C (BA: 0.850; AUC: 0.983), PD versus atypical 

parkinsonian syndromes (BA: 0.826; AUC: 0.945) and PD versus MSA-P (BA: 0.800; AUC: 

0.946). Including DTI metrics improved BAs, the best differentiation being achieved for the 

classifications of PD versus PSP (BA: 0.935; AUC: 0.973) and PD versus MSA-C (BA: 

0.923, AUC: 1.000) (Table 2). For the classifications of PSP versus MSA-P and MSA-C 

versus MSA-P, the performances were lower, with BAs equal to 0.660 and 0.733 and AUCs 

equal to 0.640 and 0.833, respectively. Combining volumetric and diffusion-weighted data did 

not improve BAs (Table 2). 

In the replication cohort, when using volumetric data solely, the BAs were slightly lower for 

the classifications of PD versus PSP, PD versus MSA-P, PD versus MSA-C, PD versus 

atypical parkinsonian syndromes, in comparison with the training data set, ranging between 

0.741 and 0.881, with AUCs between 0.823 and 0.945. By contrast, better accuracies were 

obtained in the replication cohort for the classifications of PSP versus MSA-P and PSP versus 

MSA-C (BAs of 0.795 versus 0.660 and 0.928 versus 0.850, respectively). Adding the DTI 

metrics decreased categorization performances in most cases (Table 2). 

Effect of the normalization using HCs in the subset of the replication cohort 

In the subset of the replication cohort, after normalization using HCs, adding DTI metrics to 

volumetric data increased BAs and/or AUCs of most classifications, except for the 

classifications of PSP versus MSA-P and MSA-C versus MSA-P (supplementary Table S4). 

Both methods of normalization were compared in the subset. Combining volumetric and DTI 

metrics significantly increased accuracy for the normalization by HCs as compared with 

normalization by the training cohort for differentiation between PD and PSP (AUCs: 0.833 

versus 0.935, p = 0.01). There was no significant difference between the classifications of PD 

versus MSA-C (AUCs: 0.992 versus 0.998, p>0.05) and PSP versus MSA-C (AUCs: 0.982 

versus 0.997, p>0.05) (Table 3). 

Weighting factors 

The weighting factors are represented in Table 4 and Figure. 
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The best features for the differentiation between PD and PSP were midbrain (1), third 

ventricle (-1) and fourth ventricle (-1) volumes, followed by FA in the SCP (- 0.87) and the 

putamen (0.79). 

For discriminating subjects with MSA-C, the most relevant features were midbrain to pons 

ratio (-0.93 to -1), pons volume (-0.78 to 1), cerebellum volume (0.51 to 0.76). Moreover 

MSA-C was well differentiated from MSA-P using putamen volume (-1), V3 volume (0.70), 

FA in the cerebellum (0.80), MD and RD in the SCP (0.72 and 0.74, respectively), and FA 

and RD in the insula (0.67 and 0.73, respectively). For the classification of PD versus MSA-

C, FA in the midbrain (0.53), the pons (0.54) and the SCP (0.59) were also relevant. DTI 

metrics in the brainstem and the cerebellum did not efficiently differentiate between PSP and 

MSA-C. 

MSA-P differentiation relied mostly on putamen volume (versus PSP: 0.99, versus PD: 1, 

versus MSA-C: -1) and midbrain to pons ratio (-0.93 to -1). FA, MD and AD in the SCP (-

0.51, -0.62, -0.85) were relevant for the differentiation of PSP and MSA-P, unlike diffusion in 

the putamen. 

Discussion 

Our study demonstrated the feasibility of an automated classification of parkinsonian 

syndromes in a clinical setting using a machine learning algorithm developed in a research 

environment. To date, we provide the third largest cohort ever analyzed.19,25. The originality 

of the study is that the algorithm was tested on a large independent replication cohort 

composed of patients recruited in a movement disorders clinic and scanned across four 

different scanners in a Neuroradiology department, in the frame of their routine diagnostic 

workup. Patients in the replication cohort had a shorter disease duration than those in the 

training cohort, making the algorithm more robust for the differentiation of patients with early 

to moderately advanced parkinsonism. A further strength is that patients with both 

parkinsonian and cerebellar subtypes of MSA were included in addition to PD and PSP, 

which was done in only two previous studies.19,23 

Our results were consistent with previous publications showing high accuracy in the machine-

learning-based differentiation of parkinsonian syndromes, as BAs ranged between 69 and 

89% in the study by Huppertz et al.,19 and AUCs were respectively greater than 93% and 95% 
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in the studies by Archer et al.,25 and Scherfler et al.18 Nevertheless, the performances are 

difficult to compare across studies given differences regarding study designs in terms of input 

data and group diseases, classification problems (binary or multiclass approaches) and 

performance indices used. It has been shown that morphometric measurements are robust 

MRI markers for the discrimination of parkinsonism.18–20 This finding was confirmed by our 

study in both the training and replication cohorts, though the accuracy was lower for the 

classification of PSP versus MSA-P and MSA-P versus MSA-C. These results may be 

explained in our study by the relative small number of MSA-P and MSA-C patients in the 

training cohort that might have reduced the performances of the algorithm. Moreover, MSA-P 

and MSA-C patients may often have overlapping features, a clinical and brain imaging 

continuum existing between both variants.5 In our study, patients exhibiting both patterns of 

MSA were pooled with MSA-P patients as isolating a group with putaminal abnormalities 

appeared to be more relevant. 

In the training cohort, including DTI metrics improved BAs for most group comparisons 

(except for the classifications of PSP versus MSA-P and MSA-C versus MSA-P), the best 

differentiation being achieved for the classifications of PD versus PSP and PD versus MSA-

C. These results suggest that DTI metrics standardized in a research protocol provide 

additional information useful for the group differentiation. Conversely, in the replication 

cohort, adding DTI metrics decreased categorization performances in most cases. The 

heterogeneity of data in the replication cohort, which comprised images acquired using 

distinct MRI systems and variable acquisition parameters, probably accounted for such a 

decrease in categorization accuracy. More specifically, DTI image resolution was isotropic 

with no inter-slice gap in the training cohort, whereas it was anisotropic with a variable inter-

slice gap in the replication cohort. In contrast, the structural T1-weighted images had a very 

similar isotropic resolution (close to1 mm3) in all cohorts. In the replication cohort, the 

inconsistent DTI image resolution across subjects scanned using distinct MRI systems could 

have resulted in the inconsistent sampling of tissue diffusion properties, thus contributing to 

decreasing the performance of machine-learning-based patient categorization when 

combining DTI data with isotropic structural data. It is probable that such an effect was not 

observed in the training cohort because both structural and diffusion tissue properties were 

sampled isotropically. 

To evaluate the scanner effect, a second analysis was performed on a subset of the replication 

cohort using a normalization by HCs values. BAs and/or AUCs increased when combining 
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volume and diffusion except for the classifications of PSP versus MSA-P and MSA-C versus 

MSA-P. When comparing both methods of normalization in the subset, the performances only 

slightly increased for the classification between PD and PSP, showing the difficulty to 

manage the scanner effect. Improvement in DTI acquisition parameters, especially 

standardization of the resolution and slice gap, may improve classification performances as 

suggested previously. 25  

In line with previous pathological and imaging studies, the best features for the differentiation 

between PD and PSP were midbrain and third ventricle volumes 6,7,13,17,28,29 and FA in the 

SCP.17,29–31 The putamen volume was highly discriminant between MSA-P and PD, PSP and 

MSA-C patients in our study, MSA-P being characterized by a prominent putamen 

atrophy.14,17,28,30 DTI metrics in the SCP were also relevant for the differentiation of MSA-P 

and PSP as shown in previous studies.14,17,30–32  

Unlike atrophy, diffusion in the whole putamen and posterior putamen did not significantly 

contribute to the differentiation of MSA-P versus other disease groups in our study. 

Diffusivity in the posterior putamen was shown to be highly affected in MSA-P versus HCs 

and PD patients,33–35 with higher iron depositions.36,37 Conversely, several studies have 

demonstrated overlapping values in the entire putamen between PSP and MSA-P patients 

regarding diffusivity 32,38,39 and relaxometry.39,40 In one study, ADC values were increased in 

the posterior putamen in MSA-P patients compared to PSP patients.35 In our study, echo 

planar imaging distortions seen on DTI images and due to susceptibility artifacts may have 

resulted in the imperfect overlay between putamen masks derived from T1-weighted images 

and diffusion-weighted images. Therefore, co-registration inaccuracies have likely reduced 

the accuracy of the diffusion measurements and the performance of the algorithm.  

One of the limitations of our study was the lack of neuropathological confirmation, which is 

intrinsic to most neurodegenerative studies. For now, the clinical follow-up is the only 

diagnostic “gold standard” we can rely on. In our institution, most patients are followed up by 

experts in movement disorders with a systematic visit two years after the first consultation, 

allowing to improve clinical diagnostic accuracy. Second, there was a large heterogeneity 

between DTI protocols, which indeed corresponds to clinical environment. In this context, it 

appears important to standardize DTI protocols across scanners and centers in order to 

improve categorization performances. Future work could involve calculating free-water and 
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free-water-corrected measurements in clinical protocols for improved classification 

accuracy.25 

In conclusion, our study showed that an automated categorization of parkinsonian syndromes 

was applicable to patients with early to moderately advanced parkinsonism recruited in a 

clinical environment, despite the variability in scanners and acquisition parameters, volumetry 

being a robust discriminative biomarker. Medical centers could benefit from such an approach 

in order to increase diagnostic accuracy and patient management. Implementing a machine 

learning algorithm in the clinical workflow of a Neuroradiology department may thus be 

relevant to help clinicians improve diagnosis of parkinsonism. 
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Tables 

Table 1: Demographic and clinical characteristics of the population. 

 

 

Age at MRI scan, disease duration and UPDRS III scores are expressed in mean ± standard deviation. They were compared using one way linear 

analysis of variance (ANOVA), followed by post hoc Student tests if case of significance. Sex were compared using a Chi-squared test. 

a p<0.05 for HCs, PD and PSP patients between both cohorts 

b p<0.001 for HCs versus PD in the training cohort 

c p<0.05 for HCs versus PSP in the replication cohort 

d p<0.05 for PD, MSA-P and MSA-C patients between both cohorts 

 Training cohort Replication cohort 

Groups HC PD PSP MSA-P MSA-C HC PD PSP MSA-P MSA-C 

n 72 63 21 11 12 22 76 39 30 15 

Age at scan 60.8 ± 8.2
 a

 60.7 ± 9.7 a 65.6 ± 9.1 a 62.8 ± 7.1 60.3 ± 7.4 64.7 ± 7.3 66.6 ± 10.8 71.4 ± 5,9 63.1 ± 7.4 60.6 ± 9.1 

Sex ratio (M/F) 0.5 (24/48) 1.4 (37/26) b 0.9 (10/11) 0.6 (4/7) 1.4 (7/5) 1.2 (12/10) 1.7 (48/28) 4.6 (32/7) c 3.3 (23/7) 2.0 (10/5) 

Disease duration  6.0 ± 4.0 
d 4.2 ± 1.9 5.0 ± 1.9 

d
 5.2 ± 1.8 

d
  4.3 ± 3.4 3.4 ± 1.8 3.5 ± 1.7 2.6 ± 1.6 

UPDRS III scores 0.4 ± 0.7 21.0 ± 13.1e 38.5 ± 15.7 

 

42.2 ± 13.9 47.4 ± 14.4 0.1 ± 0.3 22.0 ± 10.2 32.2 ± 16.9
 f
 24.6 ± 10.4 16.7 ± 7.7 
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e p< 0.001 for PD versus PSP, MSA-P and MSA-C in the training cohort 

f p=.01 for PSP versus MSA-C in the replication cohort 

HC: healthy controls; PD: Parkinson’s disease; PSP: Progressive supranuclear palsy; MSA-C: cerebellar variant of multiple system atrophy; 

MSA-P: parkinsonian variant of multiple system atrophy; UPDRS III: Unified Parkinson’s Disease Rating Scale part III; M: male; F: female. 
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Table 2: Performances of the linear SVM classification in the training cohort and in the whole replication cohort using volumetric data and the 

combination of volumetric and DTI data. 

Disease groups Volumetry only Volumetry & DTI 

PD vs PSP Training Test Training Test 

BA 0.906 (0.053) 0.857 0.935 (0.057) 0.673 

AUC 0.981 (0.027) 0.919 0.973 (0.050) 0.744 

Se 0.950 (0.112) 0.846 0.900 (0.137) 0.359 

Sp 0.862 (0.126) 0.868 0.969 (0.042) 0.987 

PD vs MSA-P Training Test Training Test 

BA 0.800 (0.083) 0.741 0.804 (0.116) 0.710 

AUC 0.946 (0.034) 0.823 0.969 (0.069) 0.839 

Se 0.600 (0.167) 0.816 0.708 (0.138) 0.553 

Sp 1.000 (0.000) 0.667 0.900 (0.224) 0.867 

PD vs MSA-C Training Test Training Test 

BA 0.915 (0.074) 0.881 0.923 (0.038) 0.802 

AUC 1.000 (0.000) 0.945 1.000 (0.000) 0.932 

Se 0.831 (0.148) 0.829 0.846 (0.077) 0.671 

Sp 1.000 (0.000) 0.933 1.000 (0.000) 0.933 

PD vs atypical 

parkinsonism Training Test Training Test 

BA 0.826 (0.103) 0.769 0.835 (0.088) 0.775 

AUC 0.945 (0.051) 0.866 0.942 (0.033) 0.861 

Se 0.831 (0.158) 0.908 0.892 (0.069) 0.895 
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Sp 0.822 (0.169) 0.631 0.778 (0.208) 0.655 

PSP vs MSA-C Training Test Training Test 

BA 0.850 (0.105) 0.928 0.858 (0.091) 0.756 

AUC 0.983 (0.037) 0.978 0.967 (0.075) 0.950 

Se 0.900 (0.137) 0.923 0.850 (0.224) 0.513 

Sp 0.800 (0.183) 0.933 0.867 (0.183) 1.000 

PSP vs MSA-P Training Test Training Test 

BA 0.660 (0.222) 0.795 0.650 (0.224) 0.56 

AUC 0.640 (0.251) 0.956 0.680 (0.259) 0.834 

Se 0.720 (0.228) 0.923 0.600 (0.316) 0.154 

Sp 0.600 (0.418) 0.667 0.700 (0.447) 0.967 

MSA-C vs MSA-P Training Test Training Test 

BA 0.733 (0.181) 0.617 0.567 (0.149) 0.633 

AUC 0.833 (0.204) 0.833 0.667 (0.118) 0.811 

Se 0.800 (0.274) 0.367 0.600 (0.224) 0.400 

Sp 0.667 (0.236) 0.867 0.533 (0.298) 0.867 

 

HC: healthy controls; PD: Parkinson’s disease; PSP: Progressive supranuclear palsy; MSA-C: cerebellar variant of multiple system atrophy; 

MSA-P: parkinsonian variant of multiple system atrophy; DTI: diffusion tensor imaging; BA: balanced accuracy; Se: sensitivity; Sp: specificity; 

SVM: support-vector machine 
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Table 3: Performances of the linear SVM classification in the subset of the replication cohort after normalization using subjects of the training 

cohort (normalization 1) and normalization using healthy controls (normalization 2), for volumetric data and the combination of volumetric and 

DTI data. 

Disease groups  Volumetry only Volumetry & DTI 

PD vs PSP Normalization 1 Normalization 2 Normalization 1 Normalization 2 

BA 0.895 0.741 0.733 0.786 

AUC 0.957 0.959 0.833 0.935 

Se 0.933 1.000 0.467 1.000 

Sp 0.857 0.482 1.000 0.571 

PD vs MSA-P Normalization 1 Normalization 2 Normalization 1 Normalization 2 

BA 0.756 0.673 0.723 0.732 

AUC 0.834 0.831 0.848 0.832 

Se 0.804 0.429 0.571 0.589 

Sp 0.708 0.917 0.875 0.875 

PD vs MSA-C Normalization 1 Normalization 2 Normalization 1 Normalization 2 

BA 0.920 0.759 0.875 0.821 

AUC 0.995 0.994 0.992 0.998 

Se 0.839 0.518 0.750 0.643 

Sp 1.000 1.000 1.000 1.000 

PD vs atypical 

parkinsonism 
Normalization 1 Normalization 2 Normalization 1 Normalization 2 

BA 0.817 0.710 0.800 0.731 

AUC 0.896 0.891 0.892 0.892 

Se 0.911 0.482 0.893 0.554 

Sp 0.723 0.938 0.708 0.908 

PSP vs MSA-C Normalization 1 Normalization 2 Normalization 1 Normalization 2 

BA 0.983 0.983 0.817 0.950 
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AUC 0.991 0.991 0.982 0.997 

Se 0.967 0.967 0.633 0.900 

Sp 1.000 1.000 1.000 1.000 

PSP vs MSA-P Normalization 1 Normalization 2 Normalization 1 Normalization 2 

BA 0.762 0.892 0.562 0.812 

AUC 0.950 0.962 0.890 0.881 

Se 0.900 0.867 0.167 0.833 

Sp 0.625 0.917 0.958 0.920 

MSA-C vs MSA-P Normalization 1 Normalization 2 Normalization 1 Normalization 2 

BA 0.663 0.705 0.705 0.659 

AUC 0.867 0.848 0.867 0.833 

Se 0.417 0.500 0.500 0.500 

Sp 0.909 0.909 0.909 0.818 

 

HC: healthy controls; PD: Parkinson’s disease; PSP: Progressive supranuclear palsy; MSA-C: cerebellar variant of multiple system atrophy; 

MSA-P: parkinsonian variant of multiple system atrophy; DTI: diffusion tensor imaging; BA: balanced accuracy; Se: sensitivity; Sp: specificity; 

SVM: support-vector machine 
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Table 4: Weighting factors extracted from the linear SVM training for the different group comparisons.  

 PD vs PSP PD vs MSA-P PD vs MSA-C 
PD vs atypical 

parkinsonism 
PSP vs MSA-C PSP vs MSA-P MSA-C vs MSA-P 

Midbrain -1.00 0.18 0.55 1.00 -0.02 -0.60 0.39 

Pons -0.34 0.30 1.00 0.80 0.73 0.25 1.00 

Midbrain to pons 

ratio 
-0.04 -0.78 -1.00 -0.60 -1.00 -1.00 -0.93 

SCP -0.38 0.15 0.55 0.64 0.34 0.10 0.53 

V3 0.99 -0.25 0.32 -0.63 1.00 1.00 0.70 

V4 1.00 -0.88 -0.31 -1.00 0.14 0.12 -0.24 

Cerebellum -0.10 0.00 0.51 0.45 0.53 0.18 0.76 

Thalamus -0.09 -0.05 0.12 0.14 -0.01 -0.04 -0.02 

Caudate 0.63 -0.04 -0.01 -0.32 0.28 0.51 -0.12 

Putamen -0.12 1.00 0.05 0.58 0.09 0.99 -1.00 

Pallidum -0.66 0.64 0.39 0.86 0.00 0.18 -0.45 

Insula 0.32 -0.13 0.13 -0.23 0.38 0.27 0.53 

Precentral 0.50 -0.11 -0.16 -0.30 0.14 0.40 -0.13 

Midbrain FA -0.43 0.05 0.53 0.50 0.22 -0.11 0.39 

Pons FA -0.28 0.28 0.54 0.43 0.33 0.22 0.25 

SCP FA -0.87 0.34 0.59 0.90 -0.09 -0.51 0.22 

Putamen FA 0.79 -0.63 -0.03 -0.66 0.42 0.01 0.63 

Posteriorputamen 

FA 
0.63 -0.53 -0.02 -0.49 0.33 0.13 0.28 

Pallidum FA 0.19 -0.29 0.31 0.01 0.41 0.13 0.39 

Thalamus FA 0.23 -0.16 0.20 -0.12 0.18 -0.31 0.55 

Caudate FA 0.60 -0.33 0.18 -0.30 0.45 0.22 0.52 

Cerebellum FA -0.11 -0.08 0.57 0.24 0.38 -0.14 0.80 

Insula FA 0.68 -0.35 0.26 -0.31 0.52 0.24 0.67 

Precentral FA 0.19 -0.24 0.33 0.05 0.35 -0.04 0.62 

Midbrain MD 0.65 -0.24 0.08 -0.39 0.45 0.51 0.32 

Pons MD 0.47 -0.49 -0.01 -0.33 0.15 -0.10 0.39 

SCP MD 0.39 -1.00 0.06 -0.46 0.15 -0.62 0.72 
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Putamen MD 0.33 -0.12 0.19 -0.15 0.35 0.36 0.35 

Posteriorputamen 

MD 
0.13 -0.27 0.01 -0.15 0.18 0.18 0.26 

Pallidum MD 0.13 0.25 0.41 0.19 0.43 0.55 0.40 

Thalamus MD 0.13 0.15 0.50 0.23 0.52 0.55 0.32 

Caudate MD 0.44 -0.23 0.35 -0.20 0.47 0.33 0.36 

Cerebellum MD 0.11 -0.35 0.10 0.04 0.07 -0.26 0.27 

Insula MD 0.48 -0.07 0.36 -0.15 0.53 0.52 0.28 

Precentral MD 0.10 0.26 0.56 0.20 0.48 0.47 0.31 

Midbrain AD 0.36 0.06 0.18 -0.09 0.41 0.63 0.12 

Pons AD 0.27 -0.35 0.01 -0.17 0.07 -0.11 0.23 

SCP AD -0.20 -0.67 0.26 0.07 -0.02 -0.85 0.59 

Putamen AD 0.47 -0.22 0.13 -0.30 0.35 0.30 0.41 

Pallidum AD 0.07 0.34 0.51 0.31 0.47 0.60 0.41 

Thalamus AD 0.07 0.21 0.52 0.30 0.51 0.53 0.31 

Caudate AD 0.45 -0.23 0.38 -0.18 0.49 0.33 0.37 

Cerebellum AD 0.02 -0.31 0.20 0.11 0.09 -0.31 0.39 

Insula AD 0.55 -0.06 0.40 -0.15 0.57 0.55 0.33 

Precentral AD 0.01 0.33 0.67 0.35 0.51 0.43 0.39 

Midbrain RD 0.67 -0.29 -0.11 -0.51 0.40 0.64 0.39 

Pons RD 0.45 -0.27 -0.19 -0.31 0.14 0.22 0.27 

SCP RD 0.59 -0.87 -0.09 -0.61 0.39 0.22 0.74 

Putamen RD 0.14 0.05 0.24 0.05 0.44 0.31 0.64 

Pallidum RD -0.04 0.41 0.59 0.44 0.56 0.54 0.53 

Thalamus RD 0.12 0.29 0.41 0.22 0.55 0.62 0.41 

Caudate RD 0.46 -0.10 0.29 -0.23 0.52 0.48 0.34 

Cerebellum RD 0.34 -0.38 -0.12 -0.27 0.01 -0.16 0.07 

Insula RD 0.53 -0.14 0.30 -0.30 0.59 0.54 0.73 

Precentral RD 0.27 0.14 0.56 0.00 0.62 0.66 0.60 
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Weighting factors were scaled to a range of -1 to +1. The higher the absolute value, the bigger the contribution of the feature. When the 

coefficient was positive, the algorithm favored the first disease group if the value of the feature was high or the second group if the value was 

low. Conversely, when the coefficient was negative, the algorithm favored the second group if the value of the feature was high, or the first group 

if the value was low. Positive values are highlighted in shades of red while negative values are highlighted in shades of blue. 

HC: healthy controls; PD: Parkinson’s disease; PSP: Progressive supranuclear palsy; MSA-C: cerebellar variant of multiple system atrophy; 

MSA-P: parkinsonian variant of multiple system atrophy; AD: axial diffusivity; FA: fractional anisotropy; MD: mean diffusivity; RD: radial 

diffusivity; SCP: superior cerebellar peduncles; V3: third ventricle; V4: fourth ventricle. 
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Figure legend   

Contribution of each region of interest for the group classification using volumetry. 

A color shade was attributed to the weighting factor corresponding to each brain region depending on its relevance for the group differentiation. 

Weighting factors were rescaled to the range of 0 to 1.  

The most relevant regions were the midbrain, the third ventricle and the fourth ventricle for the classification of PD versus PSP, the putamen and 

the fourth ventricle for PD versus MSA-P, the pons for PD versus MSA-C, the third ventricle and the pons for PSP versus MSA-C, the putamen 

and the third ventricle for PSP versus MSA-P, the putamen and the pons for MSA-P versus MSA-C. 

HC: healthy controls; PD: Parkinson’s disease; PSP: Progressive supranuclear palsy; MSA-C: cerebellar variant of multiple system atrophy; 

MSA-P: parkinsonian variant of multiple system atrophy 
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Supplementary tables 

Table S1: Magnetic resonance imaging acquisition parameters. 

 Machine  3T TRIO 1.5T OPTIMA 3T SIGNA 3T SKYRA 3T PET/MR 

n 179 32 79 84 7 

Magnetic field 3T 1.5T 3T 3T 3T 

Vendor Siemens GE GE Siemens GE 

Head coil 32 32 32 64 32 

T1-w sequences           

TE (ms) 2,94 1 2,788 2,34 3,06 

TR (ms) 2200 9,356 6,564 2100 7,208 

TI (ms) 900 300 400 900 400 

Flip angle 10 15° 11° 8° 11° 

Voxel size (mm) 1x1x1 0.9x0.9x1 1x1x1 0.9x0.9x0.9 1x1x1 

DTI Protocol 1 Protocol 2   

Number, range of b-

values 
2, 0-1000 2, 0-1500 2, 0-1000 2, 0-1000 2, 0-1000 2, 0-1000 

Directions 64 60 15 15 30 30 

TE (ms) 101 89 91,8 91,2 77 95 

TR (ms) 14000 12000 9000 17000 3800 11500 

Flip angle 90° 90° 90° 90° 90° 90° 

Voxel size (mm) 2x2x2 1.7x1.7x1.7 1.0938x1.0938x3 1x1x2.5 2x2x2.6 1.25x1.25x2.5 

Slice gap 0 0 0 0 0,6 0 

DTI: Diffusion tensor imaging; n: number of patients scanned with a given MRI system; TE: echo time; TR: repetition time; T1-w: T1-weighted; 

GE: General Electrics Medical Systems 

Two DTI protocols were acquired using the 3T TRIO MRI system.  
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Table S2: Performances of the four machine learning algorithms in the training cohort and in the whole replication cohort after normalization 

using subjects values in the training cohort for volumetric data and for the combination of volumetric and DTI metrics. 

Data   Volumetry only Volumetry & DTI 

 Cohort  Training Replication Training Replication 

 Algorithm  

Logistic 

Regression 

Linear 

SVM 

Random 

Forest 

Radial 

SVM 

Logistic 

Regression 

Linear 

SVM 

Random 

Forest 

Radial 

SVM 

Logistic 

Regression 

Linear 

SVM 

Random 

Forest 

Radial 

SVM 

Logistic 

Regression 

Linear 

SVM 

Random 

Forest 

Radial 

SVM 

PD vs PSP BA 0.944 

(0.078) 

0.906 

(0.053) 

0.844 

(0.080) 

0.600 

(0.224) 0,774 0,857 0,698 0,791 

0.935 

(0.094) 

0.935 

(0.057) 

0.802 

(0.125) 

0.902 

(0.097) 0,685 0,673 0,64 0,794 

AUC 0.985 

(0.025) 

0.981 

(0.027) 

0.967 

(0.048) 

0.992 

(0.011) 0,913 0,919 0,923 0,888 

0.988 

(0.017) 

0.973 

(0.050) 

0.965 

(0.039) 

0.985 

(0.021) 0,858 0,744 0,909 0,866 

Se 0.950 

(0.112) 

0.950 

(0.112) 

0.750 

(0.177) 

0.200 

(0.447) 0,641 0,846 0,436 0,897 

0.900 

(0.137) 

0.900 

(0.137) 

0.650 

(0.224) 

0.850 

(0.224) 0,41 0,359 0,333 0,667 

Sp 0.938 

(0.100) 

0.862 

(0.126) 

0.938 

(0.064) 

1.000 

(0.000) 0,908 0,868 0,961 0,684 

0.969 

(0.069) 

0.969 

(0.042) 

0.954 

(0.069) 

0.954 

(0.069) 0,961 0,987 0,947 0,921 

PD vs MSA-

P 

BA 0.873 

(0.100) 

0.800 

(0.083) 

0.850 

(0.137) 

0.585 

(0.189) 0,637 0,741 0,637 0,5 

0.912 

(0.137) 

0.804 

(0.116) 

0.650 

(0.224) 

0.592 

(0.127) 0,768 0,71 0,643 0,5 

AUC 0.946 

(0.044) 

0.946 

(0.034) 

0.962 

(0.054) 

0.969 

(0.032) 0,82 0,823 0,863 0,725 

0.962 

(0.086) 

0.969 

(0.069) 

0.950 

(0.046) 

0.962 

(0.067) 0,831 0,839 0,859 0,78 

Se 0.846 

(0.094) 

0.600 

(0.167) 

1.000 

(0.000) 

0.969 

(0.069) 0,908 0,816 0,974 1 

0.923 

(0.077) 

0.708 

(0.138) 

1.000 

(0.000) 

0.985 

(0.034) 0,803 0,553 0,987 1 

Sp 0.900 

(0.224) 

1.000 

(0.000) 

0.700 

(0.274) 

0.200 

(0.447) 0,367 0,667 0,3 0 

0.900 

(0.224) 

0.900 

(0.224) 

0.300 

(0.447) 

0.200 

(0.274) 0,733 0,867 0,3 0 

PD vs MSA-

C 

BA 0.992 

(0.017) 

0.915 

(0.074) 

0.985 

(0.021) 

0.500 

(0.000) 0,9 0,881 0,793 0,5 

0.992 

(0.017) 

0.923 

(0.038) 

0.942 

(0.109) 

0.950 

(0.112) 0,94 0,802 0,827 0,567 

AUC 1.000 

(0.000) 

1.000 

(0.000) 

1.000 

(0.000) 

0.992 

(0.017) 0,937 0,945 0,957 0,965 

1.000 

(0.000) 

1.000 

(0.000) 

1.000 

(0.000) 

0.992 

(0.017) 0,932 0,932 0,936 0,949 

Se 0.985 

(0.034) 

0.831 

(0.148) 

0.969 

(0.042) 

0.000 

(0.000) 0,934 0,829 0,987 1 

0.985 

(0.034) 

0.846 

(0.077) 

0.985 

(0.034) 

1.000 

(0.000) 0,947 0,671 0,987 1 

Sp 1.000 

(0.000) 

1.000 

(0.000) 

1.000 

(0.000) 

1.000 

(0.000) 0,867 0,933 0,6 0 

1.000 

(0.000) 

1.000 

(0.000) 

0.900 

(0.224) 

0.900 

(0.224) 0,933 0,933 0,667 0,133 

PD vs 

atypical 

parkinsonism 

BA 0.834 

(0.095) 

0.826 

(0.103) 

0.861 

(0.081) 

0.728 

(0.223) 0,74 0,769 0,734 0,5 

0.855 

(0.099) 

0.835 

(0.088) 

0.843 

(0.059) 

0.824 

(0.093) 0,734 0,775 0,8 0,695 

AUC 0.938 

(0.058) 

0.945 

(0.051) 

0.952 

(0.033) 

0.942 

(0.037) 0,86 0,866 0,888 0,815 

0.938 

(0.041) 

0.942 

(0.033) 

0.953 

(0.048) 

0.932 

(0.063) 0,867 0,861 0,904 0,863 
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HC: healthy controls; PD: Parkinson’s disease; PSP: Progressive supranuclear palsy; MSA-C: cerebellar variant of multiple system atrophy; 

MSA-P: parkinsonian variant of multiple system atrophy; DTI: diffusion tensor imaging; BA: balanced accuracy; Se: sensitivity; Sp: specificity; 

SVM: support-vector machine 

Se 0.846 

(0.144) 

0.831 

(0.158) 

0.877 

(0.140) 

0.923 

(0.109) 0,908 0,908 0,921 1 

0.954 

(0.069) 

0.892 

(0.069) 

0.908 

(0.100) 

0.892 

(0.103) 0,908 0,895 0,934 0,461 

Sp 0.822 

(0.169) 

0.822 

(0.169) 

0.844 

(0.127) 

0.533 

(0.493) 0,571 0,631 0,548 0 

0.756 

(0.214) 

0.778 

(0.208) 

0.778 

(0.111) 

0.756 

(0.093) 0,56 0,655 0,667 0,929 

PSP vs MSA-

C 

BA 0.850 

(0.105) 

0.850 

(0.105) 

0.775 

(0.155) 

0.642 

(0.195) 0,928 0,928 0,921 0,5 

0.858 

(0.091) 

0.858 

(0.091) 

0.867 

(0.139) 

0.842 

(0.205) 0,795 0,756 0,941 0,654 

AUC 0.983 

(0.037) 

0.983 

(0.037) 

0.900 

(0.137) 

0.917 

(0.118) 0,978 0,978 0,975 0,988 

0.950 

(0.075) 

0.967 

(0.075) 

0.908 

(0.104) 

0.950 

(0.112) 0,956 0,95 0,947 0,829 

Se 0.900 

(0.137) 

0.900 

(0.137) 

0.950 

(0.112) 

0.350 

(0.487) 0,923 0,923 0,974 1 

0.850 

(0.224) 

0.850 

(0.224) 

1.000 

(0.000) 

0.750 

(0.433) 0,59 0,513 0,949 0,974 

Sp 0.800 

(0.183) 

0.800 

(0.183) 

0.600 

(0.365) 

0.933 

(0.149) 0,933 0,933 0,867 0 

0.867 

(0.183) 

0.867 

(0.183) 

0.733 

(0.279) 

0.933 

(0.149) 1 1 0,933 0,333 

PSP vs MSA-

P 

BA 0.640 

(0.185) 

0.660 

(0.222) 

0.650 

(0.260) 

0.580 

(0.091) 0,812 0,795 0,854 0,778 

0.600 

(0.224) 

0.650 

(0.224) 

0.550 

(0.158) 

0.630 

(0.164) 0,56 0,56 0,8 0,617 

AUC 0.640 

(0.251) 

0.640 

(0.251) 

0.640 

(0.270) 

0.580 

(0.349) 0,958 0,956 0,955 0,935 

0.720 

(0.217) 

0.680 

(0.259) 

0.720 

(0.130) 

0.800 

(0.158) 0,833 0,834 0,885 0,635 

Se 0.680 

(0.179) 

0.720 

(0.228) 

0.800 

(0.141) 

0.760 

(0.261) 0,923 0,923 0,974 0,923 

0.600 

(0.316) 

0.600 

(0.316) 

0.600 

(0.316) 

0.560 

(0.297) 0,154 0,154 0,667 0,667 

Sp 0.600 

(0.418) 

0.600 

(0.418) 

0.500 

(0.500) 

0.400 

(0.418) 0,7 0,667 0,733 0,633 

0.600 

(0.548) 

0.700 

(0.447) 

0.500 

(0.500) 

0.700 

(0.447) 0,967 0,967 0,933 0,567 

MSA-C vs P BA 0.767 

(0.160) 

0.733 

(0.181) 

0.650 

(0.216) 

0.750 

(0.204) 0,617 0,617 0,833 0,5 

0.533 

(0.162) 

0.567 

(0.149) 

0.550 

(0.173) 

0.583 

(0.132) 0,683 0,633 0,8 0,5 

AUC 0.833 

(0.204) 

0.833 

(0.204) 

0.867 

(0.139) 

0.833 

(0.167) 0,833 0,833 0,863 0,776 

0.667 

(0.118) 

0.667 

(0.118) 

0.600 

(0.149) 

0.633 

(0.183) 0,804 0,811 0,832 0,776 

Se 0.800 

(0.274) 

0.800 

(0.274) 

0.700 

(0.274) 

0.900 

(0.224) 0,367 0,367 0,8 0 

0.600 

(0.224) 

0.600 

(0.224) 

0.700 

(0.274) 

0.700 

(0.274) 0,5 0,4 0,8 0 

Sp 0.733 

(0.279) 

0.667 

(0.236) 

0.600 

(0.279) 

0.600 

(0.365) 0,867 0,867 0,867 1 

0.467 

(0.298) 

0.533 

(0.298) 

0.400 

(0.279) 

0.467 

(0.380) 0,867 0,867 0,8 1 
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Table S3: Performances of the four machine learning algorithms in the training cohort and in the whole replication cohort after normalization 

using HCs values in each cohort for volumetric data and for the combination of volumetric and DTI metrics. 

Data   
Volumetry only Volumetry & DTI 

 Cohort  

Training Replication Training Replication 

 Algorithm  

Logistic 

Regression 

Linear 

SVM 

Random 

Forest 

Radial 

SVM 

Logistic 

Regression 

Linear 

SVM 

Random 

Forest 

Radial 

SVM 

Logistic 

Regression 

Linear 

SVM 

Random 

Forest 

Radial 

SVM 

Logistic 

Regression 

Linear 

SVM 

Random 

Forest 

Radial 

SVM 

PD vs PSP BA 0.952 

(0.073) 

0.790 

(0.157) 

0.902 

(0.063) 

0.700 

(0.274) 0,904 0,741 0,79 0,876 

0.927 

(0.055) 

0.777 

(0.050) 

0.892 

(0.096) 

0.735 

(0.215) 0,871 0,786 0,781 0,865 

AUC 0.981 

(0.027) 

0.954 

(0.075) 

0.979 

(0.029) 

0.992 

(0.011) 0,958 0,959 0,939 0,95 

0.981 

(0.027) 

0.977 

(0.021) 

0.988 

(0.026) 

0.985 

(0.021) 0,945 0,935 0,951 0,936 

Se 0.950 

(0.112) 

0.950 

(0.112) 

0.850 

(0.137) 

0.400 

(0.548) 0,933 1 0,633 0,967 

0.900 

(0.137) 

1.000 

(0.000) 

0.800 

(0.209) 

0.500 

(0.468) 0,867 1 0,633 0,767 

Sp 0.954 

(0.069) 

0.631 

(0.213) 

0.954 

(0.069) 

1.000 

(0.000) 0,875 0,482 0,946 0,786 

0.954 

(0.069) 

0.554 

(0.100) 

0.985 

(0.034) 

0.969 

(0.069) 0,875 0,571 0,929 0,964 

PD vs MSA-P BA 0.881 

(0.117) 

0.708 

(0.058) 

0.800 

(0.112) 

0.585 

(0.189) 0,804 0,673 0,595 0,5 

0.912 

(0.112) 

0.719 

(0.121) 

0.650 

(0.224) 

0.777 

(0.194) 0,747 0,732 0,574 0,625 

AUC 0.946 

(0.034) 

0.923 

(0.067) 

0.969 

(0.032) 

0.954 

(0.063) 0,85 0,831 0,868 0,827 

0.962 

(0.086) 

0.931 

(0.092) 

0.942 

(0.064) 

0.931 

(0.134) 0,851 0,832 0,813 0,804 

Se 0.862 

(0.034) 

0.415 

(0.117) 

1.000 

(0.000) 

0.969 

(0.069) 0,857 0,429 0,982 1 

0.923 

(0.000) 

0.538 

(0.094) 

1.000 

(0.000) 

0.954 

(0.042) 0,911 0,589 0,982 1 

Sp 0.900 

(0.224) 

1.000 

(0.000) 

0.600 

(0.224) 

0.200 

(0.447) 0,75 0,917 0,208 0 

0.900 

(0.224) 

0.900 

(0.224) 

0.300 

(0.447) 

0.600 

(0.418) 0,583 0,875 0,167 0,25 

PD vs MSA-C BA 1.000 

(0.000) 

0.808 

(0.061) 

0.969 

(0.042) 

0.677 

(0.243) 0,982 0,759 0,955 0,5 

1.000 

(0.000) 

0.908 

(0.070) 

0.892 

(0.131) 

0.750 

(0.250) 0,991 0,821 0,991 0,909 

AUC 1.000 

(0.000) 

0.992 

(0.017) 

1.000 

(0.000) 

0.977 

(0.052) 0,995 0,994 0,99 0,987 

1.000 

(0.000) 

0.992 

(0.017) 

0.992 

(0.017) 

1.000 

(0.000) 0,995 0,998 0,995 0,994 

Se 1.000 

(0.000) 

0.615 

(0.122) 

0.938 

(0.084) 

0.354 

(0.485) 0,964 0,518 0,911 1 

1.000 

(0.000) 

0.815 

(0.140) 

0.985 

(0.034) 

0.600 

(0.548) 0,982 0,643 0,982 1 
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Sp 1.000 

(0.000) 

1.000 

(0.000) 

1.000 

(0.000) 

1.000 

(0.000) 1 1 1 0 

1.000 

(0.000) 

1.000 

(0.000) 

0.800 

(0.274) 

0.900 

(0.224) 1 1 1 0,818 

PD vs atypical 

parkinsonism 

BA 0.827 

(0.100) 

0.821 

(0.095) 

0.831 

(0.096) 

0.803 

(0.184) 0,843 0,71 0,816 0,827 

0.843 

(0.102) 

0.827 

(0.028) 

0.843 

(0.103) 

0.747 

(0.232) 0,829 0,731 0,853 0,833 

AUC 0.938 

(0.049) 

0.935 

(0.053) 

0.955 

(0.044) 

0.952 

(0.046) 0,897 0,891 0,904 0,906 

0.940 

(0.034) 

0.916 

(0.048) 

0.950 

(0.040) 

0.937 

(0.061) 0,902 0,892 0,898 0,902 

Se 0.877 

(0.117) 

0.708 

(0.274) 

0.862 

(0.138) 

0.938 

(0.084) 0,839 0,482 0,893 0,839 

0.908 

(0.084) 

0.677 

(0.100) 

0.908 

(0.100) 

0.938 

(0.084) 0,857 0,554 0,875 0,804 

Sp 0.778 

(0.176) 

0.933 

(0.099) 

0.800 

(0.165) 

0.667 

(0.393) 0,846 0,938 0,738 0,815 

0.778 

(0.208) 

0.978 

(0.050) 

0.778 

(0.222) 

0.556 

(0.509) 0,8 0,908 0,831 0,862 

PSP vs MSA-

C 

BA 0.867 

(0.139) 

0.850 

(0.105) 

0.842 

(0.119) 

0.500 

(0.000) 0,983 0,983 0,967 0,5 

0.800 

(0.183) 

1.000 

(0.000) 

0.800 

(0.183) 

0.500 

(0.000) 0,967 0,95 0,938 0,5 

AUC 0.983 

(0.037) 

0.983 

(0.037) 

0.933 

(0.109) 

0.967 

(0.046) 0,991 0,991 0,991 0,991 

1.000 

(0.000) 

1.000 

(0.000) 

0.892 

(0.130) 

1.000 

(0.000) 0,997 0,997 0,97 0,991 

Se 1.000 

(0.000) 

0.900 

(0.137) 

0.950 

(0.112) 

0.000 

(0.000) 0,967 0,967 0,933 1 

1.000 

(0.000) 

1.000 

(0.000) 

1.000 

(0.000) 

0.000 

(0.000) 0,933 0,9 0,967 1 

Sp 0.733 

(0.279) 

0.800 

(0.183) 

0.733 

(0.279) 

1.000 

(0.000) 1 1 1 0 

0.600 

(0.365) 

1.000 

(0.000) 

0.600 

(0.365) 

1.000 

(0.000) 1 1 0,909 0 

PSP vs MSA-P BA 0.660 

(0.248) 

0.730 

(0.175) 

0.630 

(0.286) 

0.560 

(0.134) 0,875 0,892 0,863 0,5 

0.700 

(0.170) 

0.700 

(0.154) 

0.660 

(0.233) 

0.610 

(0.175) 0,775 0,812 0,733 0,771 

AUC 0.720 

(0.192) 

0.780 

(0.228) 

0.600 

(0.292) 

0.600 

(0.255) 0,946 0,962 0,968 0,967 

0.920 

(0.084) 

0.920 

(0.084) 

0.620 

(0.286) 

0.900 

(0.071) 0,885 0,881 0,856 0,881 

Se 0.720 

(0.228) 

0.760 

(0.167) 

0.760 

(0.167) 

0.920 

(0.179) 0,833 0,867 0,933 0 

0.800 

(0.200) 

0.800 

(0.141) 

0.920 

(0.110) 

0.920 

(0.110) 0,8 0,833 0,967 0,833 

Sp 0.600 

(0.418) 

0.700 

(0.274) 

0.500 

(0.500) 

0.200 

(0.447) 0,917 0,917 0,792 1 

0.600 

(0.418) 

0.600 

(0.418) 

0.400 

(0.418) 

0.300 

(0.447) 0,75 0,792 0,5 0,708 

MSA-C vs P BA 0.767 

(0.181) 

0.900 

(0.137) 

0.650 

(0.216) 

0.800 

(0.192) 0,784 0,705 0,705 0,5 

0.700 

(0.173) 

0.733 

(0.181) 

0.517 

(0.109) 

0.833 

(0.177) 0,809 0,659 0,792 0,5 

AUC 0.867 

(0.217) 

0.867 

(0.217) 

0.867 

(0.139) 

0.900 

(0.149) 0,871 0,848 0,85 0,856 

0.867 

(0.217) 

0.833 

(0.236) 

0.600 

(0.091) 

0.867 

(0.217) 0,886 0,833 0,845 0,83 

Se 0.800 

(0.274) 

0.800 

(0.274) 

0.700 

(0.274) 

0.800 

(0.274) 0,75 0,5 0,5 0 

0.800 

(0.274) 

0.800 

(0.274) 

0.700 

(0.274) 

0.800 

(0.274) 0,708 0,5 0,583 0 

Sp 0.733 

(0.149) 

1.000 

(0.000) 

0.600 

(0.279) 

0.800 

(0.298) 0,818 0,909 0,909 1 

0.600 

(0.279) 

0.667 

(0.236) 

0.333 

(0.236) 

0.867 

(0.183) 0,909 0,818 1 1 
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HC: healthy controls; PD: Parkinson’s disease; PSP: Progressive supranuclear palsy; MSA-C: cerebellar variant of multiple system atrophy; 

MSA-P: parkinsonian variant of multiple system atrophy; DTI: diffusion tensor imaging; BA: balanced accuracy; Se: sensitivity; Sp: specificity; 

SVM: support-vector machine 
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Table S4: Performances of SVM classification in the training cohort and in the subset of the replication cohort after normalization using HCs for 

volumetric data; then for the combination of volumetric and DTI metrics. 

  Volumetry only Volumetry & DTI 

PD vs PSP Training Test Training Test 

BA 0.790 (0.157) 0,741 0.777 (0.050) 0,786 

AUC 0.954 (0.075) 0,959 0.977 (0.021) 0,935 

Se 0.950 (0.112) 1,000 1.000 (0.000) 1,000 

Sp 0.631 (0.213) 0,482 0.554 (0.100) 0,571 

PD vs MSA-P Training Test Training Test 

BA 0.708 (0.058) 0,673 0.719 (0.121) 0,732 

AUC 0.923 (0.067) 0,831 0.931 (0.092) 0,832 

Se 0.415 (0.117) 0,429 0.538 (0.094) 0,589 

Sp 1.000 (0.000) 0,917 0.900 (0.224) 0,875 

PD vs MSA-C Training Test Training Test 

BA 0.808 (0.061) 0,759 0.908 (0.070) 0,821 

AUC 0.992 (0.017) 0,994 0.992 (0.017) 0,998 

Se 0.615 (0.122) 0,518 0.815 (0.140) 0,643 

Sp 1.000 (0.000) 1,000 1.000 (0.000) 1,000 

PD vs atypical 

parkinsonism Training Test Training Test 

BA 0.821 (0.095) 0,710 0.827 (0.028) 0,731 

AUC 0.935 (0.053) 0,891 0.916 (0.048) 0,892 

Se 0.708 (0.274) 0,482 0.677 (0.100) 0,554 

Sp 0.933 (0.099) 0,938 0.978 (0.050) 0,908 

PSP vs MSA-C Training Test Training Test 

BA 0.850 (0.105) 0,983 1.000 (0.000) 0,950 

AUC 0.983 (0.037) 0,991 1.000 (0.000) 0,997 

Se 0.900 (0.137) 0,967 1.000 (0.000) 0,900 
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Sp 0.800 (0.183) 1,000 1.000 (0.000) 1,000 

PSP vs MSA-P Training Test Training Test 

BA 0.730 (0.175) 0,892 0.700 (0.154) 0,812 

AUC 0.780 (0.228) 0,962 0.920 (0.084) 0,881 

Se 0.760 (0.167) 0,867 0.800 (0.141) 0,833 

Sp 0.700 (0.274) 0,917 0.600 (0.418) 0,792 

MSA-C vs MSA-P Training Test Training Test 

BA 0.900 (0.137) 0,705 0.733 (0.181) 0,659 

AUC 0.867 (0.217) 0,848 0.833 (0.236) 0,833 

Se 0.800 (0.274) 0,500 0.800 (0.274) 0,500 

Sp 1.000 (0.000) 0,909 0.667 (0.236) 0,818 

 

HC: healthy controls; PD: Parkinson’s disease; PSP: Progressive supranuclear palsy; MSA-C: cerebellar variant of multiple system atrophy; 

MSA-P: parkinsonian variant of multiple system atrophy; DTI: diffusion tensor imaging; BA: balanced accuracy; Se: sensitivity; Sp: specificity; 

SVM: support-vector machine 
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