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ABSTRACT
We estimate the number of COVID-19 cases from newly reported deaths in a population 
without previous reports. Our results suggest that by the time a single death occurs, 
hundreds to thousands of cases are likely to be present in that population. This suggests 
containment via contact tracing will be challenging at this point, and other response 
strategies should be considered. Our approach is implemented in a publicly available, user-
friendly, online tool.
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As the coronavirus-2019 (COVID-19, (1)) epidemic continues to spread worldwide, there is 
mounting pressure to assess the scale of epidemics in newly affected countries as rapidly as
possible. We introduce a method for estimating cases from recently reported COVID-19 
deaths. Results suggest that by the time the first deaths have been reported, there may be 
hundreds to thousands of cases in the affected population. We provide epidemic size 
estimates for several countries, and a user-friendly, web-based tool that implements our 
model.

Using deaths to infer cases
COVID-19 deaths start to be notified in countries where few or no cases had previously been
reported (2). Given the non-specific symptoms (3), and the high rate of mild disease (4), a 
COVID-19 epidemic may go unnoticed in a new location until the first severe cases or 
deaths are reported (5). Available estimates of the case fatality ratio, i.e. the proportion of 
cases that are fatal (CFR, (6,7)), can be used to estimate the number of cases who would 
have shown symptoms at the same time as the fatal cases. We developed a model to use 
CFR alongside other epidemiological factors underpinning disease transmission to infer the 
likely number of cases in a population from newly reported deaths.

Our approach involves two steps: first, reconstruct historic cases by assuming non-fatal 
cases are all undetected, and, second, model epidemic growth from these cases until the 
present day to estimate the likely number of current cases. We account for uncertainty in the
epidemiological processes by using stochastic simulations for estimation of relevant 
quantities. 

Two pieces of information are needed to reconstruct past cases: the number of cases for 
each reported death, and their dates of symptom onset. Intuitively, the CFR provides some 
information on the number of cases, as it represents the expected number of deaths per 
case, so that CFR-1 corresponds to the expected number of cases per death. In practice, the 
number of cases until the first reported death can be drawn from a Geometric distribution 
with an event probability equal to the CFR. Note that while our approach could in theory use 
different CFR for each case (to account for different risk groups), our current implementation 
uses the same CFR for all cases in a simulation. Dates of symptom onset are simulated from
the distribution of the time from onset to death, modelled as a discretised Gamma 
distribution with a mean of 15 days and a standard deviation of 6.9 days (8). 

Once past cases are reconstructed, we use a branching process model for forecasting new 
cases (9,10). This model combines data on the reproduction number (R) and serial interval 
distribution to simulate new cases ‘yt’ on day ‘t’ from a Poisson distribution:

yt+1 ~ Poisson(λt)   with λ t=R∑
s ≤t

❑

y sw (t−s )

where w(.) is the probability mass function of the serial interval distribution. More details on 
this simulation model can be found in Jombart et al. (10). Optionally, this model can also 
incorporate heterogeneity in transmissibility using a Negative Binomial distribution instead of 
Poisson. The serial interval distribution was characterised as a discretised Lognormal 
distribution with mean 4.7 days and standard deviation 2.9 days (11). We assume that past 
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cases caused secondary transmissions independently (i.e. are not ancestral to each other), 
so that simulated cases for each death can be added. This assumption is most likely to be 
met when reported deaths are close in time. As the time between reported deaths increases,
past cases may come from the same epidemic trajectory rather than separate, additive ones,
in which case our method would overpredict epidemic size.

Further details on model design and parameters values are provided in Supplementary 
Material. Our approach is implemented in the R software (12) and publicly available as R 
scripts (see Supporting Information) as well as in a user-friendly, interactive web-interface 
available at: https://cmmid.github.io/visualisations/inferring-covid19-cases-from-deaths.

How many cases for a single death?
We first used our model to assess likely epidemic sizes when an initial COVID-19 death is 
reported in a new location. We ran simulations for a range of plausible values of R (1.5, 2 
and 3) and CFR (1%, 2%, 3% and 10%), assuming a single death on the 1st March 2020 
(7). 25,000 epidemic trajectories were simulated for each parameter combination. 
Simulations for an ‘average severity’ scenario (7) with R = 2  and CFR = 2% show that by 
the time a death has occured, hundreds to thousands of cases may have been generated in 
the affected population (Figure 1). Results vary widely across other parameter settings, and 
amongst simulations from a given setting (Table 1), with higher R and lower CFR leading to 
higher estimates of the numbers of cases. However, a majority of settings give similar results
to our ‘average’ scenario, suggesting that a single death is likely to reflect several hundreds 
of cases. Results were qualitatively unchanged when incorporating heterogeneity in the 
model using recent estimates (13), but prediction intervals were wider (Supplementary 
Material).

Recently affected countries
We applied our approach to three countries which recently reported their first COVID-19 
deaths (Spain, Italy, and France), using the same range of parameters as in the single-death
analysis. In order to compare predictions to cases actually reported in these countries, 
projections were run until 4th March. Overall, predictions from the model using the baseline 
scenario (R = 2, CRF = 2%) were in line with reported epidemic sizes (Table 2). Results from
other scenarios are presented in the Supplementary Material. Actual numbers of reported 
cases fell within the 50% quantile intervals of simulations in all three countries Italy (median: 
1 294 ; QI50%: [390 ; 3 034]; reported: 2 037), France (median: 592 ; QI50%: [177 ; 1 705]; 
reported: 190) and Spain, (median: 202 ; QI50%: [95 ; 823]; reported 202).
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Discussion 
Several limitations need to be considered when applying our method. First, our approach 
only applies to the deaths of patients who have become symptomatic in the location 
considered, which should usually be the case in places where traveller screening is in place. 
We also assume constant transmissibility (R) over time, which implies that behaviour change
and control measures have not taken place yet, and that there is no depletion of susceptible 
individuals. Consequently, our method should only be used in the early stages of a new 
epidemic, where these assumptions are reasonable. Similarly, the assumption that each 
death reflects independent, additive epidemic trajectories is most likely to hold true early on, 
when reported deaths are close in time (e.g. no more than a week apart). Used on deaths 
spanning longer time periods, our approach is likely to overestimate epidemic sizes.

Contact tracing has been shown to be an efficient control measure when imported cases can
be detected early on (14), in addition to permitting the estimation of key epidemiological 
parameters (11). When the first cases reported in a new location are mostly deaths, 
however, our results suggest that the underlying size of the epidemic would make control via
contact tracing extremely challenging. In such situations, efforts focusing on social 
distancing measures such as school closures and self-isolation may be more likely to 
mitigate epidemic spread.  
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TABLES

TABLE 1: inferred number of cases for a single death. Inferred number of cases after 
detection of a single death under different values of the reproduction number, and case 
fatality ratio. We estimate the number of expected cases in the population at the day the 
death occurred, and present median, 50%, and 95% estimates of the quantile interval.

R Median

Lower 95%
Quantile
Interval

Lower 50%
Quantile
Interval

Upper 50%
Quantile
Interval

Upper 95%
Quantile
Interval

CFR 1%

1.5 252 5 102 596 2 572

2 519 9 174 1 477 8 325

3 1 733 37 541 7 461 138 624

CFR 2%

1.5 132 2 52 294 1,110

2 276 5 93 780 5 694

3 964 19 300 4 174 49 137

CFR 3%

1.5 75 2 27 191 757

2 181 4 60 465 2 515

3 719 7 173 3 100 89 909

CFR 10%

1.5 29 0 10 65 219

2 46 0 15 136 1,020

3 245 2 63 983 30 708
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TABLE 2: Inferred number of cases for several countries assuming CFR of 2% and R 
of 2. All values are presented for the 4th of March 2020 for different countries. We present 
the predicted case counts as their median, 50%, and 95% estimates of the quantile interval.  
* First suspected death due to within country transmission. 

Country

Date of
first

death*
Initial

deaths
Reported

cases Median

Lower
95%

Quantile
Interval

Lower
  50%

Quantile
Interval

Upper
  50%

Quantile
Interval

Upper
  95%

Quantile
Interval

Spain 4th March 1 202 263 8 95 823 7 829

Italy 26th Feb 1 2 037 1 294 33 390 3 034 19 487

France 21st Feb 1 190 592 10 177 1 705 7 501
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FIGURES

Figure 1. Example of simulated epidemic trajectories from a single death. This figure 
shows results of 200 simulations using a CFR of 2% and R of 2 based on an hypothetical 
situation where a single death occurred on the 1st March 2020, represented by the red line. 
Ribbons of different shades represent, from the lightest to the darkest, the 95%, 75%, 50% 
and 25% quantile intervals.
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