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Abstract 

A deeper understanding of the causal links from education level to health outcomes may shed 

a light for disease prevention. We conducted a wide-angled Mendelian randomization to 

disentangle the causal role of education level from intelligence for 31 health outcomes and 

explore to what extent body mass index and smoking mediate the associations. Genetically 

higher education level was associated with lower risk of major psychiatric disorders and most 

somatic diseases independent of intelligence, including suicide attempts, large artery stroke, 

heart failure, lung cancer, rheumatoid arthritis and type 2 diabetes, insomnia, major depressive 

disorder, total and ischemic stroke, coronary artery disease, breast cancer, ovarian cancer and 

gout. Adjustment for body mass index and smoking attenuated the associations between 

education and several outcomes, especially for type 2 diabetes and heart failure. These findings 

emphasize the importance of education to reduce the burden of common diseases. 

 

Keywords: education; intelligence; Mendelian randomisation analysis; somatic disorder; 

psychiatric disorder.  
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Introduction 

Education level is an important health social determinant and has been proposed as a 

modifiable risk factor for a number of disorders and diseases, such as depression 1, age-related 

cognitive decline 2, suicide 3, cardiovascular disease 4, cancer 5, and several other diseases 6-8. 

However, it is unclear whether the associations are causal and independent of intelligence. 

Understanding the causal effects of education level on diseases can facilitate the aetiology 

pathway exploration of diseases as well as development of new strategies for disease 

prevention. Notwithstanding, randomized controlled trials are ethically and practically 

infeasible on this topic. 

Exploiting genetic variants as instrumental variables for an exposure (e.g., education 

level), Mendelian randomization (MR) can strengthen the causal inference of an exposure-

outcome association 9. Comparing the risk of disease across individuals who have been 

classified by their genotype enables the causal effect of an exposure to be estimated with 

substantially less bias, such as confounding and reverse causality, than in a traditional 

observational analysis 9. The rationale for diminished bias in MR studies is that genetic variants 

are randomly assorted and fixed at conception and therefore largely independent of 

confounders and cannot be modified by disease development 9.  

We conducted an MR study to disentangle the causal role of education level from 

intelligence in major mental and neurological disorders and somatic diseases. A secondary aim 

was to explore whether intelligence is causally related to the same health outcomes 

independently of education. We additionally investigated the causal associations of education 

level and intelligence with modifiable health-related risk factors and whether main lifestyle 

factors mediate the pathway from education to health outcomes. 

 

Methods 

Study design 

The design and hypothesis of the present study are displayed in Supplementary Figure 1. We 

used summary-level data from large genome-wide association studies (GWASs) and genetic 

consortia (Table 1). Totally, our study included 11 mental and neurological disorders 10-20, 20 

major somatic diseases 21-36, and 10 health-related risk factors 31,34,35,37-39. A systematic review 

was conducted to find meta-analyses of observational studies of education level and diseases 

(Supplementary table 1).  

 

Selection of instrumental variables  
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Instrumental variables for education level and intelligence were identified from GWASs of, 

respectively, 1 131 881 and 269 867 individuals of European ancestries 40,41. In total, 1271 and 

205 single-nucleotide polymorphisms (SNPs) at the genome-wide significance threshold 

(p<5×10-8) were proposed as instrumental variables for education level and intelligence. All 

used SNPs explained around 12.2% and 5.2% variance for education level and intelligence, 

respectively. Education level was defined as number of years of education and was unified 

across included studies according to an International Standard Classification of Education 

category. Across all cohorts, the sample-size-weighted mean of education year was 16.8 years 

of schooling with a standard deviation (SD) of 4.2 years. For the definition of intelligence as 

an instrumental variable in our analysis, included cohorts extracted a single sum score, mean 

score, or factor score from a multidimensional set of cognitive performance tests in GWAS 

with linear model, with the exception of High-IQ/Health and Retirement Study where a logistic 

regression GWAS was run with “case” status (high intelligence) versus controls (normal 

intelligence level). All included GWASs adjusted for key covariates, such as age, sex and 

principal components for ancestry. The numbers of SNPs used as instrumental variables in 

each analysis are displayed in Table 1.  

 

Outcome sources 

Summary-level data for the associations of the education- and intelligence-associated SNPs 

with the outcomes were extracted from large-scale GWASs or genetic consortia. In the present 

MR study, we included 11 mental and neurological disorders 10-20, 9 cardiovascular diseases 21-

25, 4 major cancers 26-29, 7 other diseases 30-36 and 10 established health-related risk factors for 

major diseases 31,34,35,37-39. Detailed information, such as the number cases and controls, 

population structure and the source for each outcome, is presented in Table 1. Definitions of 

the diseases are presented in Supplementary Table 2.  

 

Systematic review for meta-analysis of observational studies 

A systematic literature search was conducted in the PubMed database before November 1st, 

2019 to find meta-analyses of observational studies of education level in relation to diseases 

studied in the present MR study. We found latest published meta-analysis on 13 diseases and 

two risk factors, including major depressive disorders 42, suicide attempts 43, posttraumatic 

stress disorder 44, amyotrophic lateral sclerosis 45, Alzheimer’s disease 46, coronary artery 

disease 47, heart failure 48, stroke 49, breast cancer 50, prostate cancer 51, lung cancer 52, type 2 

diabetes 53, chronic kidney disease 54, body mass index 55 and hypertension (blood pressure) 56. 
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We extracted publication data (PMID number, the first author's name and year of publication), 

sample size, and risk estimates with their corresponding confidence intervals. Search strategy 

and characteristics of included meta-analyses are shown in Supplementary Table 1.  

 

Statistical analysis 

The random-effects inverse-variance weighted method was used to assess the associations of 

education and intelligence with the outcomes. The weighted median method and MR-Egger 

regression were used as sensitivity analyses to examine the consistency of results and to detect 

potential pleiotropy. The weighted median method gives accurate estimates if at least 50% of 

the instrumental variables are valid 57. The MR-Egger regression can detect and adjust for 

pleiotropy albeit rendering low precision of the estimates 58. Given the phenotypical and 

genetic correlation between education level and intelligence 59, we used a multivariable 

inverse-variance weighted method to disentangle the causal effect of education level on 

outcomes independent of intelligence and vice versa 60. Considering that smoking and body 

mass index are modifiable risk factors linking education level to the most diseases, we also 

used multivariable-adjusted MR analysis to determine the effects of body mass index and 

smoking behaviour on health outcomes for associations reaching the conventional significance 

level (p<0.05) in both univariable and intelligence-adjusted inverse-variance weighted model 

to explore the mediation effects of body mass index and smoking, 61. Proportions of attenuated 

effect size were calculated to present the magnitude of mediation effects. Odds ratios (ORs) 

and 95% confidence intervals (CIs) of diseases and changes of levels of risk factors were scaled 

to an SD increase in genetically predicted years of education (4.2 years) and intelligence. We 

calculated the power for the analyses of education level using a web-tool 62 and results are 

displayed in Table 1. All statistical analyses were two-sided and performed using the mrrobust 

package in Stata/SE 15.0 63 and TwoSampleMR in R 3.6.0 software and MR-Base 64. P values 

were not used strictly to define statistical significance; however, we interpreted the results 

based on the magnitude and strengths of the associations 65. 

 

Results 

Genetically predicted education level and diseases 

Genetically predicted education level was causally associated with most diseases, including 8 

out of 11 mental and neurological disorders, all 9 studied cardiovascular diseases, all 4 studied 

cancers, and 4 of 7 other common diseases in the univariable inverse-variance weighted MR 

analysis (Figure 1). In multivariable inverse-variance weighted analysis with adjustment for 
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intelligence, higher education level was additionally associated with higher odds of 

schizophrenia and anxiety (these associations were not observed in the univariable analysis) 

(Figure 1). However, the inverse associations of education level with amyotrophic lateral 

sclerosis, Alzheimer’s disease, cardioembolic stroke, intracerebral haemorrhage and 

inflammatory bowel disease observed in the crude MR analysis did not remain after adjustment 

for intelligence (Figure 1). In the intelligence-adjusted model, higher education level was 

associated with lower odds of rheumatoid arthritis (OR 0.45; 0.33, 0.61), type 2 diabetes (OR 

0.48; 0.43, 0.55), suicide attempts (OR 0.48; 0.37, 0.62), large artery stroke (OR 0.50; 0.36, 

0.68), heart failure (OR 0.51; 0.42, 0.63), lung cancer (OR 0.52; 0.42, 0.65), ovarian cancer 

(OR 0.53; 0.43, 0.66), small vessel stroke (OR 0.62; 0.47, 0.81), any ischemic stroke (OR 0.69; 

0.61, 0.78), insomnia (OR 0.69; 0.64, 0.75), gout (OR 0.71; 0.60, 0.84), major depressive 

disorder (OR 0.78; 0.72, 0.85) and breast cancer (OR 0.85; 0.77, 0.94). Conversely, higher 

education level adjusted for intelligence was associated with an increased risk of obsessive-

compulsive disorder (OR 2.24; 1.47, 3.41), bipolar disorder (OR 2.04; 1.64, 2.54), 

schizophrenia (OR 1.88; 1.49, 2.36), anorexia nervosa (OR 1.88; 1.53, 2.30) and anxiety (OR 

1.84; 1.33, 2.56) (Figure 1). Results of sensitivity analyses were directionally similar but with 

wider CIs (Supplementary Figure 2). We detected possible pleiotropy in the analysis of 

obsessive-compulsive disorder, inflammatory bowel disease and rheumatoid arthritis (p for 

intercept in MR-Egger <0.05).  

 

Genetically predicted intelligence and diseases 

The associations between intelligence and diseases are presented in Supplementary Figure 3 

and 4. The effects of intelligence on psychiatric and somatic diseases showed the same patterns 

with that of education level with the exception for schizophrenia (OR 0.47; 95% CI, 0.33, 0.67), 

bipolar disorder (OR 0.72; 95% CI, 0.52, 1.00), and Alzheimer’s disease (OR 0.77, 95% CI, 

0.59, 1.01) after adjustment for education level (Supplementary Figure 3). Similar results 

were obtained from the weighted median method and pleiotropy was detected in the analysis 

of heart failure in the MR-Egger regression analysis (Supplementary Figure 4).  

 

Education, intelligence and risk factors  

Genetically predicted higher education level was associated with later age of smoking initiation 

(=0.31; 95% CI, 0.29, 0.33), higher bone mineral density (=0.05; 95% CI, 0.03, 0.08), lower 

serum urate levels (=-0.12; 95% CI, -0.15, -0.09), lower systolic (=-0.13; 95% CI, -0.15, -
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0.11) and diastolic (=-0.18; 95% CI, -0.20, -0.15) blood pressure, lower waist-to-hip ratio 

(=-0.29; 95% CI, -0.31, -0.27), lower body mass index (=-0.34; 95% CI, -0.37, -0.31) and 

fewer cigarettes smoked per day (=-0.37; 95% CI, -0.42, -0.32) in the univariable model; the 

estimates were similar in the intelligence-adjusted model (Figure 2). Findings were consistent 

in sensitivity analyses and no pleiotropy was observed (Supplementary Figure 5). The same 

patterns of associations were observed for genetically predicted intelligence (Supplementary 

Figure 6). Nevertheless, after adjustment for education level, the magnitude of associations 

attenuated largely (Supplementary Figure 6). 

 

Comparison with observational studies 

The present MR findings were generally similar in the direction and magnitude to the estimates 

based on meta-analyses of observational studies (Supplementary Table 3). However, there 

were discrepancies concerning the effects of education level on suicide attempts, breast cancer 

and prostate cancer.  

 

Mediation effects of body mass index and smoking 

Table 2 shows the results of mediation analyses after adjusting for body mass index and 

smoking behaviour in the pathway from education to health outcomes. Although not apparent 

for all disease outcomes, body mass index and smoking partly mediated most associations 

between education and diseases (Table 2). A strong mediation effect of body mass index was 

observed in the associations of education with gout (68%), type 2 diabetes (57%) and heart 

failure (34%). With regard to smoking, a strong mediation effect was detected in the association 

of education with major depressive disorder (24%), type 2 diabetes (20%) and lung cancer 

(19%). After adjustment for both body mass index and smoking, the direct causal effect of 

education on outcomes was substantially attenuated for gout (64%), type 2 diabetes (63%), 

heart failure (36%), obsessive-compulsive disorder (32%), suicide attempts (31%), coronary 

artery disease (31%) and lung cancer (29%).  

 

Discussion 

In the present MR study with up to 1.3 million individuals, genetic predisposition to higher 

education level was causally associated with the majority of major health outcomes and related 

risk factors. Specifically, genetic predisposition to higher education level, independent of 

intelligence, was associated with lower risk of major depressive disorder, insomnia, suicide 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.01.20020008doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.01.20020008


 8 

attempts, stroke, heart failure, coronary artery disease, breast cancer, ovarian cancer, lung 

cancer, gout, type 2 diabetes, and rheumatoid arthritis. Conversely, higher education level was 

associated with higher risk of obsessive-compulsive disorder, anorexia nervosa, bipolar 

disorder, and prostate cancer. Genetically predicted higher intelligence, independent of 

education, was inversely related to bipolar disorder, schizophrenia and Alzheimer’s disease. 

Body mass index and smoking displayed strongest mediation effects observed for gout, type 2 

diabetes, obsessive-compulsive disorder, suicide attempts and heart failure.  

 

Comparison with previous studies 

Our findings are broadly in line with a vast body of observational studies showing a protective 

association of high educational level on major depressive disorder 42, amyotrophic lateral 

sclerosis 45, Alzheimer’s disease 46, coronary heart disease 47, heart failure 48, stroke 49, lung 

cancer 52, type 2 diabetes 53, chronic kidney disease 54, hypertension 56 and obesity 55. However, 

for suicide attempts, posttraumatic stress disorder, breast cancer and prostate cancer, our MR 

findings differ from observational findings. The discrepancies might be attributed by reverse 

causality in the observational studies, heterogeneity and small sample sizes in the meta-

analyses. A substantial heterogeneity (I2=85%; p<0.001) was observed among included 

observational studies in the meta-analysis of breast cancer 50, and the sample size was small 

for prostate cancer 51. Some studies have proposed that the higher risk of prostate cancer among 

men with high education level was driven by higher prostate-specific antigen screening rate 

among educated men compared with men with low education level 66. With regard to the 

inverse associations of higher education level with breast and ovarian cancer, these associations 

may in part be mediated by reproductive or hormone-related factors, or other health behaviours 

such as healthier diet and physical activity. We are not aware of any previous MR studies on 

education or intelligence in relation to prostate, breast, or ovarian cancer, but a protective causal 

effect of higher education on lung cancer risk has been reported recently 67. 

Previous MR studies based on much fewer SNPs (up to 162) as predictors of education 

level showed a protective effect of higher educational level on coronary artery disease 68 and 

Alzheimer’s disease 69. The present study based on substantially more SNPs as instrumental 

variables more precisely verified the findings in previous research. Notably, the effects of high 

education level in the previous studies might be influenced by high intelligence given the tight 

phenotype and genetic correlation between intelligence and education level. In the present 

study, we used multivariable MR analysis to assess the direct effect of education level that is 

not mediated via intelligence with coronary artery disease and Alzheimer’s disease. For 
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Alzheimer’s disease, we found that higher intelligence rather than education level may be the 

protective factor, whereas higher education level was the protective factor for coronary artery 

disease. In a previous MR study of the direct effect of education and intelligence on certain 

health outcomes, including diabetes, hypertension, heart attack, total stroke, total cancer, and 

depression, no significant association with education or intelligence was observed despite 

significant or suggestive associations of genetically predicted education with potential risk 

factors (blood pressure, smoking, alcohol consumption, body mass index, vigorous physical 

activity, and television watching) 59. However, the genetic instrument used in that study 

comprised only 219 SNPs associated with education or intelligence and genetic associations 

with the outcomes were estimated in up to 138 670 UK Biobank participants, with relatively 

few outcomes.  Thus, the power may have been insufficient to detect associations. Findings of 

other MR studies of education level in relation to health-related risk factors, such as obesity 70, 

cigarette smoking 71 and blood pressure 72, are consistent with our findings.  

The inverse association between intelligence and schizophrenia was also observed in 

an observational study with 24 706 Swedish adults independent of overlapping genetic risks of 

two traits 73. However, the effects of high intelligence on bipolar disorder were conflicting 

across observational studies. A large-scale cohort study with over 20-year follow-up duration 

proposed a “reversed-J” shape association between intelligence and risk of bipolar disorder, 

which indicated that individuals with the lowest and highest intelligence had the greatest risk 

of bipolar disorder) 74. In a GWAS, it was revealed that bipolar disorder risk alleles were 

associated with better cognitive performance 75, which is opposite to our findings. Since 

education had a contradictory effect, which we observed in the present study, on bipolar disease 

to intelligence, the discrepancy among these studies might be caused by a mixed effect of 

education and intelligence at both aspects of phenotype and gene.  

 

Possible mechanisms 

Based on results of the present MR study and previous observational studies, there are three 

major possible pathways linking education level to health outcomes: 1) modifiable risk factors 

largely mediates the educational effects on diseases 72,76; 2) there may be direct effects from 

education-related brain structures or function change via gene methylation, gene silencing etc. 

77-79, especially for mental and neurological disorders; and 3) subjective well-being, happiness 

and meaning of life influenced by education level exerts effects on psychiatric and somatic 

diseases directly or indirectly 80-83. Education, as measured in this study, can be defined as an 

institutionalized form of social resource, and more specifically a form of cultural capital 
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drawing on the terminology of the French sociologist Pierre Bourdieu. Related forms of 

cultural capital emerge as objectivized resources – such as books, art or scientific tools – or 

incorporated resources, such as knowledge, attitudes and practices 84,85. Our study shows that 

education is a health relevant cultural capital whilst intelligence is not to the same degree 

related with health and risk of disease. 

Observational studies have found that the associations between education level and 

diseases attenuated largely after adjustment for health-related risk factors. Compared with 

unadjusted model, the risk of cardiovascular diseases of low education attainment attenuated 

around 30-45% in statistical models adjusted for multiple risk factors, such as smoking, body 

mass index, hypertension and physical activity 86,87. However, measurement error and 

misclassification of mediators in observational studies often underestimates the mediation 

effects. The mediation effects were also proved in previous MR analysis 72,76. In the present 

study, genetically predicted education level was associated with a favourable risk factor profile: 

with improved smoking behaviours (postponed smoking initiation age and less cigarette per 

day) as well as lower adiposity (body mass index and waist-to-hip ratio), blood pressure and 

serum urate levels, which might mediate associations between education level and diseases. 

By conducting mediation analysis, we showed that body mass index and smoking behaviour 

partly or entirely mediated the pathway from education level to several health outcomes, in 

particular gout, type 2 diabetes, obsessive-compulsive disorder, suicide attempts, atrial 

fibrillation, heart failure, coronary artery disease and lung cancer. 

Previous studies have found that low education level might influence the changes in 

biochemical response and risk-related brain function, such as inflammation 77, cardiometabolic 

traits 78 and amygdala reactivity 79, via gene methylation, thereby influencing disease risk. In 

addition, genetic studies have also revealed that improvement of subjective well-being 80,81, 

happiness 80,81, meaning of life 82, social interaction 83, possibly derived from high education 

level benefited human health directly and indirectly (e.g. influencing brain morphology, central 

nervous system and adrenal/pancreas tissues). There are other possible explanations, like 

followings: education level also could modify the risk of health outcomes through other 

diseases (comorbidity), the use of health care services, neighbourhood environment, 

occupations, income and marital status, which were amenable if education level was increased.  

The results indicate that more than knowledge itself is affecting how people live their 

life, for instance through pathways regarding reduced smoking or alcohol habits among highly 

educated people. Therefore, we should consider further explanations, such as the relationship 

between high education on the one hand and the status and resources that follow it, on the other, 
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which could by itself have a positive health effect on the individual. A further explanation 

assumes that it is the process itself that can be associated with increased well-being. That is, 

the process of taking part of and acquiring external knowledge rather than remaining with one's 

own innate thinking or being kept oblivious. Should only a fraction of the disease burden be 

explained by this process of mental activity  ̶  given that education leads to a different kind of 

thinking, which is supported by the present study in that health is affected regardless of 

intelligence level  ̶  then increased knowledge through education might lead to longevity 

through mechanisms beyond health literacy pathways of late-onset diseases and beyond the 

influence of social and material factors.  

 

Strengths and limitations 

The present study is the first study that comprehensively investigated the causal effects of 

education and intelligence on a very broad range of major disease outcomes and associated risk 

factors using genetic data from large-scale GWASs and genetic consortia. We used much more 

SNPs deriving from a larger GWAS with around 1.1 million individuals as instrumental 

variables for education level and the latest GWASs with largest sample size for outcomes 

compared to previous MR studies, thereby assuring adequate statistical power to detect weak 

associations. In addition, we disentangled the independent effect of education level from 

intelligence using a multivariable MR approach. Thus, it is a straightforward approach to 

estimate the possible health benefits from education promotion among general population. We 

used mediation analysis to reveal the roles of body mass index and smoking behaviour as 

mediators in the pathway from education level to health outcomes. Even though there were 

genetic data for certain outcomes from GWASs with trans-ancestry populations, the majority 

of included participants were individuals with European ancestry thereby diminishing 

population stratification bias. However, population confinement limited the transferability of 

the present findings to populations of non-European ancestries.  

The major limitation in the present study is the possible unbalanced horizontal 

pleiotropy aroused from used genetic variants marking more generic biological pathways. It 

has been found that lead SNPs related to education level and intelligence are significantly 

overexpressed in the central nervous system, such as hippocampus and cerebral cortex, but not 

other organs 40. For cardiovascular disease, cancers and other physical diseases, we can 

minimize the possibility of pleiotropy from the global or systemic measures of fitness (such as 

mitochondrial function). It is more likely to conclude that the potential pleiotropy might exert 

a large to moderate effect via predominantly neurological pathways (for example, behaviours 
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associated with obesity or smoking) for somatic diseases. In this scenario, the vertical 

pleiotropy would not bias the total causal effect by a higher educational level on disease 

development. With regard to mental and neurological disorders, although gene 

overwhelmingly expressed in brain or central nervous system, studies found no, or at most a 

small, genetic correlation between lower education attainment and psychiatric and neurological 

disorders by using bivariate genomic-relationship-matrix restricted maximum likelihood 

analysis 1. Thus, the associations between education level and mental or neurological diseases 

were not mainly because of measurable pleiotropic genetic effects, but because of education-

related environmental factors. In addition, from a statistical perspective, we detected almost no 

pleiotropy in the results of MR-Egger regression and the estimates were consistent through 

sensitivity analyses, which indicated a negligible distortion by potential pleiotropy. 

Intergenerational effects from parents for certain disease, such as coronary artery diseases and 

type 2 diabetes, could not be assessed by using the data in the present MR study.  

 

Future research direction and implications  

The present study established the findings on the hypothesis that education level influenced the 

risk of mental and neurological disorders and somatic diseases are partly mediated via 

associated modifiable risk factors, including body mass index and smoking. It is of interest to 

investigate the possible mechanisms behind the associations between education level and 

diseases from the perspective of education-related risk factors as mediators in more detail. 

Whether there are interaction effects within the education-associated risk factors in the pathway 

from education level to diseases needs more investigation. Considering the limited feasibility 

of interaction analysis in MR design, more advanced statistical methods are warranted 61. 

Education benefits on health in addition to direct effects on known risk factors need also to be 

evaluated. Molecular and genetic research are also needed to illuminate the potential 

mechanisms or pleiotropic limitations, and also able to shed light on disease management and 

drug discovery, especially for mental and neurological disorders. For example, given a genetic 

overlap between bipolar disorder and intelligence 75, it will be of interest to use genetic 

approaches to test whether the association between education level and bipolar disorder is 

because of causality or pleiotropy.  

Given the lower risk of major diseases from increasing education level independent of 

intelligence, it is of benefit to encourage education across the whole population. Policies that 

promotes education may also generate social benefits, such as minimizing health inequality, 
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increasing economic productivity and lowering crime 88. However, it needs to be thought 

deeply how to increase education level in an acceptable, affordable and sustainable way.  

 

Conclusion 

The present MR study strengthened the evidence of causal protective effects of high education 

level on the majority of psychiatric and somatic diseases independent of intelligence. Body 

mass index and smoking partly mediated several of the associations between education level 

and health outcomes. These findings strongly suggest increasing education level for overall 

health benefits.  
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Table 1. Characteristics of included studies of psychiatric and somatic disorders 

Disease 
Cases, 

No. 

Controls, 

No. 
Population 

Used 

SNPs, No. 
Source Consortium 

 

Anorexia nervosa 16 992 55 525 European 1227 Watson HJ et al Psychiatric Genomics Consortium 

Anxiety 7016 14 745 European 1207 Otowa T et al Psychiatric Genomics Consortium 

Bipolar disorder 20 352 31 358 European 1271 Stahl EA et al Psychiatric Genomics Consortium 

Insomnia 397 959 933 051 European 1194 Jansen PR et al CNCR 

Major depressive disorder 170 756 329 443 European 1244 Stahl EA et al UK Biobank 

Obsessive-compulsive disorder 2688 7037 European 1265 IOCDF-GC and OCGAS Psychiatric Genomics Consortium 

Posttraumatic stress disorder 30 000 170 000 Mix 1271 Nievergelt CM et al Psychiatric Genomics Consortium 

Suicide attempts 6024 44 240 European 1072 Erlangsen A et al iPSYCH 

Schizophrenia 33 426 54 065 European 1253 Psychiatric Genomics Consortium Psychiatric Genomics Consortium 

Neurological disorder       

Amyotrophic lateral sclerosis 21 982 41 944 European 1268 Kunkle BW et al Project MinE 

Alzheimer’s disease 12 577 23 475 European 1260 van Rheenen W et al IGAP 

 

Atrial fibrillation 65 446 522 000 Mix 1261 Roselli C et al AFGen 

Coronary artery disease 60 801 123 504 Mix 1266 Nikpay M et al CARDIoGRAMplusC4D Consortium 

Heart failure 7382 387 652 European 1255 Aragam KG et al UK Biobank 

Total stroke 67 162 454 450 Mix 1258 Malik R et al MEGASTROKE Consortium 

Any ischemic stroke 60 341 NA Mix 1270 Malik R et al MEGASTROKE Consortium 

Large artery stroke 6688 146 392 Mix 1270 Malik R et al MEGASTROKE Consortium 

Small vessel stroke 11 710 192 662 Mix 1268 Malik R et al MEGASTROKE Consortium 

Cardioembolic stroke 9006 204 570 Mix 1269 Malik R et al MEGASTROKE Consortium 

Intracerebral haemorrhage 1545 1481 Mix 852 Woo D et al ISGC 

Cancer       

Breast cancer 122 977 105 974 Mix 1269 Michailidou K et al BCAC 

Breast cancer ER+ 69 501 NA Mix 1269 Michailidou K et al BCAC 

Breast cancer ER- 21 468 NA Mix 1269 Michailidou K et al BCAC 

Lung cancer 11 348 15 861 European 1230 Wang Y et al ILCCO 

Ovarian cancer 25 509 40 941 European 1213 Phelan CM et al OCAC 
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Prostate cancer 79 194 61 112 European 1175 Schumacher FR et al PRACTICAL Consortium 

 

Atopic dermatitis 21 399 95 464 Mix 1269 Paternoster L et al EAGLE Consortium 

Chronic kidney disease 41 395 439 303 European 1263 Wuttke M et al CKDGen Consortium 

Fracture 53 184 373 611 European 1259 Morris JA et al GEFOS Consortium 

Gout 13 179 750 634 Mix 1271 Tin A et al GUGC 

Inflammatory bowel disease 25 042 34 915 European 1213 de Lange KM et al UK IBD consortium 

Rheumatoid arthritis 29 880 73 758 Mix 1254 Okada Y et al GARNET consortium 

Type 2 diabetes 74 124 824 006 European 1263 Mahajan A et al DIAGRAM consortium 

 

Body mass index NA 694 649 Mix 1260 Pulit SL et al GIANT consortium 

Waist-to-hip ratio NA 697 734 Mix 1260 Pulit SL et al GIANT consortium 

Blood pressure, systolic NA 317 754 European 1263 Neale lab UK Biobank 

Blood pressure, diastolic NA 317 756 European 1263 Neale lab UK Biobank 

Age of smoking initiation NA 341 427 European 1255 Liu M et al GSCAN 

Cigarettes per day NA 337 334 European 1255 Liu M et al GSCAN 

Alcohol intake per week NA 941 280 European 1255 Liu M et al GSCAN 

Bone mineral density NA 426 824 European 1208 Morris JA et al GEFOS Consortium 

Estimated glomerular filtration rate  NA 765 348 Mix 1264 Wuttke M et al CKDGen Consortium 

Serum urate NA 288 649 European 1264 Tin A et al GUGC 

 

AFGen stands for Atrial Fibrillation Consortium; BCAC, Breast Cancer Association Consortium; CNCR, Center for Neurogenomics and Cognitive Research; 

DIAGRAM, The DIAbetes Genetics Replication And Meta-analysis; EAGLE, The EArly Genetics and Lifecourse Epidemiology; ER, estrogen receptor; GARNET, 

Genetics and Allied research in Rheumatic diseases Networking; GEFOS, GEnetic Factors for Osteoporosis, GUGC, The Global Urate Genetics Consortium; GSCAN, 

Consortium of Alcohol and Nicotine use; IGAP, The International Genomics of Alzheimer's Project; ILCCO, The International Lung Cancer Consortium; ISGC, 

International Stroke Genetics Consortium; NA, Not available; OCAC, The Ovarian Cancer Association Consortium; PRACTICAL, The Prostate Cancer Association 

Group to Investigate Cancer Associated Alterations in the Genome; SNP, single-nucleotide polymorphism; UK IBD consortium, UK Inflammatory Bowel Disease 

Genetics Consortium. 
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Table 2. Mediation analysis to disentangle the effects of body mass index and smoking in the pathway from education level to health outcomes 
 

Health outcome 
Total effect of education Effect after adjusting for BMI Effect after adjusting for smoking Effect after adjusting for both 

ORa 95% CI P ORb 95% CI P %* ORc 95% CI P %* ORd 95% CI P %* 

Mental disorder                

Anorexia nervosa 1.78 (1.60, 1.98) 1.56E-26 1.54 (1.36, 1.75) 1.70E-11 25 1.83 (1.63, 2.05) 3.00E-24 0 1.58 (1.39, 1.80) 4.90E-12 21 

Insomnia 0.72 (0.69, 0.75) 4.15E-58 0.74 (0.71, 0.78) 2.80E-34 8 0.75 (0.72, 0.79) 1.10E-36 12 0.76 (0.73, 0.80) 1.80E-26 16 

Major depressive disorder  0.77 (0.74, 0.80) 1.28E-36 0.80 (0.76, 0.84) 9.60E-20 15 0.82 (0.78, 0.85) 9.40E-19 24 0.83 (0.79, 0.87) 2.80E-13 29 

Obsessive-compulsive disorder 2.12 (1.71, 2.62) 5.66E-12 1.70 (1.31, 2.19) 5.50E-05 29 1.99 (1.57, 2.53) 1.10E-08 8 1.67 (1.28, 2.17) 2.00E-04 32 

Suicide attempts 0.56 (0.49, 0.64) 5.18E-18 0.64 (0.54, 0.75) 3.60E-08 23 0.61 (0.52, 0.70) 2.10E-11 15 0.67 (0.57, 0.79) 2.50E-06 31 

Neurological disease                

Amyotrophic lateral sclerosis 0.88 (0.79, 0.98) 1.50E-02 0.88 (0.78, 1.00) 4.60E-02 0 0.83 (0.74, 0.93) 1.00E-03 0 0.84 (0.74, 0.95) 8.00E-03 0 

Alzheimer’s disease 0.72 (0.66, 0.79) 6.60E-13 0.73 (0.65, 0.81) 4.17E-09 4 0.72 (0.65, 0.79) 3.00E-11 0 0.72 (0.64, 0.80) 5.01E-09 0 

Cardiovascular disease                

Coronary artery disease 0.62 (0.58, 0.66) 8.54E-53 0.70 (0.65, 0.75) 2.30E-21 25 0.66 (0.61, 0.70) 9.30E-34 13 0.72 (0.67, 0.78) 2.50E-17 31 

Heart failure 0.51 (0.46, 0.57) 4.16E-37 0.64 (0.56, 0.72) 3.50E-13 34 0.54 (0.48, 0.60) 1.80E-26 8 0.65 (0.57, 0.73) 1.20E-11 36 

Total stroke 0.70 (0.67, 0.74) 1.10E-41 0.75 (0.71, 0.80) 1.10E-19 19 0.71 (0.67, 0.75) 5.40E-33 4 0.76 (0.71, 0.80) 3.70E-18 23 

Any ischemic stroke 0.68 (0.64, 0.72) 4.86E-33 0.70 (0.65, 0.76) 8.70E-20 8 0.68 (0.64, 0.73) 2.40E-27 0 0.70 (0.65, 0.76) 1.70E-18 8 

Large artery stroke 0.51 (0.43, 0.60) 7.33E-17 0.55 (0.46, 0.67) 1.60E-09 11 0.53 (0.44, 0.63) 9.00E-13 6 0.56 (0.46, 0.69) 1.40E-08 14 

Small vessel stroke 0.59 (0.51, 0.68) 3.07E-13 0.61 (0.52, 0.73) 1.40E-08 6 0.59 (0.50, 0.69) 2.00E-11 0 0.61 (0.51, 0.72) 2.60E-08 6 

Cancer                

Breast cancer 0.87 (0.83, 0.91) 2.12E-08 0.88 (0.83, 0.94) 4.00E-05 8 0.88 (0.84, 0.93) 8.80E-06 8 0.89 (0.84, 0.95) 3.00E-04 16 

Breast cancer ER+ 0.89 (0.84, 0.94) 2.34E-05 0.90 (0.84, 0.97) 4.00E-03 10 0.90 (0.85, 0.96) 1.00E-03 10 0.91 (0.85, 0.98) 1.20E-02 19 

Breast cancer ER- 0.71 (0.66, 0.77) 6.97E-17 0.70 (0.64, 0.77) 1.80E-13 0 0.72 (0.66, 0.78) 4.20E-17 4 0.71 (0.64, 0.78) 2.50E-12 0 

Lung cancer 0.52 (0.47, 0.58) 3.20E-30 0.58 (0.50, 0.66) 1.30E-15 17 0.59 (0.53, 0.67) 6.30E-17 19 0.63 (0.55, 0.72) 2.90E-11 29 

Ovarian cancer 0.84 (0.78, 0.92) 7.30E-05 0.90 (0.81, 0.99) 3.60E-02 40 0.82 (0.75, 0.90) 4.00E-05 0 0.88 (0.79, 0.98) 1.40E-02 27 

Prostate cancer 1.12 (1.05, 1.20) 1.00E-03 1.06 (0.98, 1.15) 1.45E-01 49 1.07 (1.00, 1.15) 6.00E-02 40 1.04 (0.96, 1.13) 3.23E-01 65 

Other disease                
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Gout 0.77 (0.70, 0.84) 1.75E-09 0.92 (0.84, 1.02) 1.35E-01 68 0.76 (0.69, 0.84) 4.40E-08 0 0.91 (0.81, 1.01) 6.70E-02 64 

Rheumatoid arthritis 0.43 (0.37, 0.49) 5.29E-29 0.41 (0.34, 0.49) 1.50E-21 0 0.44 (0.37, 0.51) 7.90E-23 3 0.42 (0.35, 0.51) 1.40E-19 0 

Type 2 diabetes 0.53 (0.50, 0.57) 9.07E-83 0.76 (0.71, 0.81) 1.20E-12 57 0.60 (0.56, 0.64) 3.30E-48 20 0.79 (0.74, 0.85) 6.30E-11 63 

 

BMI indicates body mass index; ER, estrogen receptor. 

a total effect without any adjustment; 

b adjusted for the effect of body mass index; 

c adjusted for the effect of smoking (cigarettes per day); 

d adjusted for the effects of both body mass index and smoking behaviors; 

*Percentage of the effect of education on the health outcome that is mediated by body mass index, smoking, or both (Formula: log(OR_total)-

log(OR_adjusted)/log(OR_total)*100)). We replaced the values with zero for those percentage below zero.   
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Figure legends 

 

Figure 1. Associations of genetic predisposition to higher education level with diseases in MR analyses without and with adjustment for 

genetically predicted intelligence. CI indicates confidence interval; ER, estrogen receptor; IVW, inverse-variance weighted; OR, odds ratio; SD, 

standard deviation. I2 represents the degree of heterogeneity among included SNPs for education.  

 

Figure 2. Associations genetic predisposition to higher education level and health-related risk factors in MR analyses without and with 

adjustment for genetically predicted intelligence. CI indicates confidence interval; eGFR, estimated glomerular filtration rate; IVW, inverse-

variance weighted; SD, standard deviation. I2 represents the degree of heterogeneity among included SNPs for education.  
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