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Abstract

Meta-analytic methods are powerful resources to summarize the existing evidence concerning a given research
question, and are widely used in many fields of biomedical science. However, meta-analyses can be vulnerable to
various sources of bias, which should be considered to avoid inaccuracies. Many of these sources can be related
to study authorship, as both methodological choices and researcher bias may lead to deviations in results between
different research groups. In this work, we describe a method to objectively attribute study authorship within a
given meta-analysis to different research groups by using graph cluster analysis of collaboration networks. We
then provide empirical examples of how the research group of origin can impact effect size in distinct types of
meta-analyses, demonstrating how non-independence between within-group results can bias effect size estimates
if uncorrected. Finally, we show that multilevel random-effects models using research group as a level of analysis
can be a simple tool for correcting biases related to study authorship.
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Introduction

The scientific process is prone to several types of bias
that can undermine the reliability of the research literature
[1]. The origins and consequences of this problem have
been extensively described; however, attempts at solutions
have so far been insufficient, as recent analyses of the
literature indicate that issues such as publication [2,3] and
sponsorship [4] biases are still widespread. Moreover,
intrinsic aspects of the current publication, peer-review and
reward systems have been shown to lead to bias towards
overly positive and inflated results [5—7].

As a consequence of bias in the original studies,
summarizations and meta-analysis of the existing literature
can lead to misleading outcomes [8,9]. Moreover, the
meta-analytic process itself can be biased by the selective
inclusion of studies [10]. On the other hand, meta-analytic
methods can also be used to detect and quantify sources
of bias. A number of methods have been created for this
purpose, focusing mainly on publication and reporting
biases [11,12], as well as study quality assessment [13].
However, other sources of bias have received less attention,
and new approaches are needed for their systematic study.

A possible source of bias in meta-analyses is the non-
independence between study results, which violates the
assumptions usually required by statistical models used
for data synthesis. When groups of non-independent
results are easily identifiable (e.g. outcomes from the same
experiment or experiments within the same experimental
article), using an additional level of analysis to account
for non-independence within experiments or articles can
be readily accomplished by multilevel meta-analysis [14].
Nevertheless, other sources of non-independence can be
harder to approach objectively.

The research group of origin of a study is an obvious
source of non-independence between results. Certain
authors or groups might be more prone to find certain
outcomes, either due to methodological factors (i.e. use of
particular protocols, methods or populations) or to biases

in performing, analyzing or reporting experiments. As
different research groups will not contribute equally to a
meta-analysis, this phenomenon, which we will refer to
as authorship bias, can potentially distort meta-analytical
results. Nevertheless, objective detection of authorship
bias within a meta-analysis is hampered by the lack of a
clear definition of what constitutes a research group. As
academic mobility is high, collaboration is frequent and
authorship criteria are flexible, it is unlikely that two sets
of studies from a group will have exactly the same set
of authors. At the same time, it is not clear at what point
differences between author lists become large enough to
attribute studies to different groups.

In this work, we describe a straightforward method to
define research groups based on collaboration graphs,
which can be used to assess and quantify authorship biasin a
meta-analysis. To demonstrate its usefulness, we apply this
procedure in different meta-analyses to show that results
coming from the same research group can impact results
in different ways, leading to potential misinterpretations of
the data. We then demonstrate how the use of multilevel
random-effects models based on author networks can
correct effect size estimation in these cases. The use of
these tools might not only increase precision in data
synthesis, but also provide a window to study the impact of
authorship on results in different fields of research.

Results
Meta-analysis features

As shown in the study outline presented in Fig. 1, we
extracted data from four meta-analyses from different areas
of biomedical research to use as case studies. Two of them
[15,16] were of clinical intervention studies, one concerned
behavioral studies in rodents [17], and the other comprised
biomarker studies in patients [18]. There was significant
heterogeneity in all four, as reflected by Q-tests and I?
values (Table 1). Publication bias was detected by Egger’s
regression in two of them, but only one had a high number

Reference articles kNl P pvalue missing studies
Chen et al. 2014 (Fig. 2) ¥ 22 22 <0.001 67.76% 0.8059 0
Mathie et al. 2017; (Fig. 2) ['® 51 54 <0.001 63.00% 0.0018 17
Kredlow et al. 2016; (Fig. 2) ['" 10 34 <0.0001 78.57% 0.2219 1
Munkholm et al. 2016; (Fig. 1S) ('8 32 34 <0.0001 90.62% 0.0011 0

Table 1 - Features of included meta-analyses. Table shows the reference for each meta-analysis (including the corresponding figure
in the original article) and the following features: number of articles, number of results (k), and indicators of heterogeneity (Q-test
p values and I? values) and publication bias (Egger’s regression p-value and number of missing studies in trim-and-fill analysis)

calculated by the R metaphor package.


https://doi.org/10.1101/19001305
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/19001305; this version posted July 8, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Selection of meta-analyses
Chen et al. 2014; Figure 2
Mathie et al. 2017; Figure 2
Kredlow et al. 2016; Figure 2
Munkholm et al. 2016; Figure 15

Graph network construction
Method 1: Matlab code
Method 2: WoS and VOSviewer

Cluster detection by
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Figure 1 - Study flow diagram. After study selection, we used modularity algorithms from graph networks to define author clusters
within each meta-analysis. We then adopted different approaches to measure authorship bias: i. Evaluating the influence of author clus-
ter in meta-analysis heterogeneity by R2 estimation; ii. Detecting clusters with results diverging from the remaining studies; iii. Using
multilevel analysis to separate article- and cluster-level variance and correct meta-analytic estimates. Software tools used are shown
for each individual step. CMA (Comprehensive Meta-Analysis v3); Gephi (version 0.9.2); Matlab (MathWorks MATLAB 2017b); R
(R-3.5.2 on RStudio 1.1.463); VOSviewer (version 1.6.11); WoS (Web of Science database).

of missing studies according to trim-and-fill analysis, as
shown by the funnel plots in S1 Fig.
Defining research groups by collaboration networks

To define research groups, we constructed graph networks
using individual study authors in each meta-analysis as
nodes, with the weights of edges defined by the number
of studies coauthored within the meta-analysis. We then
applied modularity analysis (see Methods) to separate
these authors into clusters representing research groups,
represented in different colors in Fig. 2.

Histogram distributions for the number of results per
article and research group (Fig. 3) show that the majority
of clinical studies had a single result per article. On the
other hand, in the meta-analysis of rodent studies by
Kredlow et al. [17], a much higher number of outcomes per
article is found. After aggregating results by author cluster
in Chen et al [15]. and Mathie et al. [16], we could identify
only a few groups with more than one study, and none with
more than 3. On the other hand, after applying the same
procedure in Kredlow et al. and Munkholm et al. [18], we
observed the appearance of author clusters contributing up
to 15 results.

Influence of article and author cluster of origin on effect
sizes

To measure how much of the heterogeneity in each meta-

analysis could be attributed to the author cluster and/or
to the article of origin, we calculated the amount of the
total between-results variance that could be explained by
grouping the results according to either cluster or article
membership (Table 2). In meta-analyses where most
articles contributed a single result, the article of origin
explained none of the overall heterogeneity. However, in
Kredlow et al., the article of origin explained most of the
observed heterogeneity across experiments, an influence
that was also captured at the author cluster level. For Chen
et al. and Mathie et al., there was no statistically significant
influence of authorship on the variance, although a high
R? was found in the latter due to the high variability of
this measure when the number of clusters is small (see
S2 Fig. for R? distributions for each cluster structure).
In Munkholm et al., on the other hand, the amount of
heterogeneity explained by authorship was smaller, but
statistically more robust.
Detecting deviant author clusters

The approach described above allowed us to quantify
the influence of authorship on heterogeneity, but not to
attribute this effect to specific author clusters. In order to
do that, we compared the effect estimates of each author
cluster with that of the remaining studies within the meta-
analysis. When applying this method to Chen et al. (Fig. 4)
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and Mathie et al. (Fig. 5), in which the authorship effect is
small, just one cluster out of 16 (6.2%) in the former and
3 out 0of 40 (7.5%) in the latter were significantly different
from the rest of the results after controlling for multiple
comparisons. Conversely, in Kredlow et al. (Fig. 6), where
the number of clusters was smaller and there was a high
impact of authorship on heterogeneity, 4 out of 6 clusters
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(66.7%) were significantly different from a meta-analysis
excluding their own results. In Munkholm et al. (Fig. 7),
there was also evidence of authorship bias, with 5 of 21
clusters (23.8%) differing significantly from the rest of the
meta-analysis.
Correcting effect estimates by multilevel analysis

After quantifying the amount of variance attributable to
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Figure 2 - Author networks. The complete network of authors for each meta-analysis used in the study is shown, with nodes repre-
senting authors and edges representing collaborations between them within the meta-analysis. Edge weights, defined by the number
of coauthored studies between an author pair, are not shown in the figure, but are considered when performing modularity analysis.
Clusters emerging from this process are shown in different arbitrary colors. (A) Chen et al., 2014 (83 nodes, 195 edges, 16 clusters);
(B) Mathie et al., 2017 (183 nodes, 467 edges, 40 clusters); (C) Kredlow et al., 2016 (34 nodes, 72 edges, 6 clusters); (D) Munkholm

et al., 2016 (202 nodes, 1010 edges, 21 clusters).
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articles and author clusters, we used multilevel modeling
including these two levels of grouping simultaneously. This
allowed us not only to differentiate the effects of article
and author cluster membership (which are aggregated
within the same level when they are analyzed separately),
but also to correct for the effect of non-independence on
effect size estimates. For that purpose, we used random-
effects multilevel models using both cluster and article as
nested levels to summarize the results, as an alternative to
a standard random-effects model that does not take article
or cluster of origin into account (Table 3).

For meta-analyses with no significant article or authorship
effect on heterogeneity (Chen et al. and Mathie et al.),
the multilevel model showed negligible influences of the
article-level and cluster-level components on heterogeneity,
leading to effect estimates that were almost identical to
those of the standard two-level model. On the other hand,
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Figure 3 - Distribution of results with-
in meta-analyses. Histograms show
how the results in each meta-analysis
are aggregated when articles or author
clusters are used as subgroups. Each
bar represents a particular subgroup
size (X axis), while the Y axis represent
the number of subgroups of that size
within the meta-analysis when results
are grouped by article (left side, blue
bars) or cluster (right side, green bars
(A) Chen et al., 2014. Article: n=22,
size=1; Cluster: n=16, size=1 to 3.
(B) Mathie et al., 2017. Article: n=51,
size=1 to 3]; Cluster: n=40, size=1 to 3.
(C) Kredlow et al, 2016. n=10; size=1
to 6, Cluster: n=6, size= 1 to 15. (D)
Munkholm et al.,, 2016. Article: n=32,
size=1 to 2; Cluster: n=21, size=1 to 10.

for Kredlow et al., in which strong evidence of authorship
bias was found, we observed a twofold change in the
estimate of the multilevel model when compared to the
standard one. Multilevel analysis also showed that variance
was explained both by the cluster and article levels, with
a higher value for the cluster component. For Munkholm
et al.,, the cluster component maintained its effect on
heterogeneity, but there was no evidence of article-level
influence. Furthermore, the multilevel model slightly
changed the effect estimate, leading to a wider confidence
interval and a higher p-value than the standard model.

Discussion

Meta-analyses and systematic reviews have been used
for decades to synthesize scientific data, shaping evidence-
based policies, and guiding medical decisions [19]. For
these summaries to be reliable, however, meta-analyses

Table 2 - R? calculations for article and

Reference Grouping (n) @ within T total R? p-value author cluster groups. After grouping

the results according to either cluster or

Chen et al. 2014 18! Article (21) 72 0.185 0 - article membership, we computed the
' Cluster (16)  0.627 0.185 0 0.492 amount of the total between-results vari-

) ance explained by subgroup membership,

Mathie et al. 2017 [16! Article (51) 0.067 0.019 0 0607 where 7% is the estimated between-re-
Cluster (40)  0.005 0.019 0.737 0.117  sults variance for the full set of studies

Aticle (10) 0182 0.789  0.769  <0.001 2nd T\, is the pooled between-results

Kredlow et al. 2016 ['”] variance within subgroups. R? is defined
Cluster (6) 0.298 0.789 0.622 <0.001 by 1-(% /2 ). A p-value for cach R?

. Article (32) 0.447 0.432 0 0.490 was calculated based on 1,000 reshufflings

Munkholm et al. 2016 Cluster (21)  0.335 0432 0225 0035 ©f the results within each meta-analysis

structure, maintaining the same number
of articles or clusters (see Fig. S2).
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Figure 4 - Forest plot of Chen
et al., 2014. The plot shows the
effect size and error (95% C.I.)
of individual studies (squares),
the estimates of meta-analyses
for each author cluster (red
diamonds) and the overall estimate
(black diamond) using standard
random-effects models. Each
sub-group was compared against
the remaining studies within the
meta-analysis by a Wald-type test,
yielding Bonferroni-corrected
p-values shown on the right
column. Estimates and p values
of clusters significantly differing
from the rest of the meta-analysis
at a corrected o of 0.05 are shown
in red.
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Figure 5 - Forest plot of Mathie et al., 2017. Effect size, error and estimates are represented as in Figure 4.
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Reference Cluster Number Cluster Estimate Comparison p-value
Baler 2013 (exp 1) 0 —
Baler 2013 (exp 2.1) 0 —
Baler 2013 (exp 2.2) 0 —
Baler 2013 (exp 3) 0 ——
Chan 2010 (exp 1) 0 —_—
Chan 2010 (exp 2a) 1] —_—
Chan 2010 (exp 2b) 0 —_— .
Chan 2010 (exp 3) 0 —
Chan 2010 (exp 4a) 0 —_—
Chan 2010 (exp 4b) 0 ——
Chan 2014 (exp 5a) 0 —
Chan 2014 (exp 6¢) 0 ——
Chan 2014 (exp 7a) 0 —
Chan 2014 (exp 8a) 0 ——t
Chan 2014 (exp 9c) 0 —
- -0.34 [-0.75, 0.07] <10
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Figure 6 - Forest plot of Kredlow et al., 2017. Effect size, error and estimates are represented as in Figure 4.
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Figure 7 - Forest plot of Munkholm et al., 2017. Effect size, error and estimates are represented as in Figure 4.
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should not simply summarize the literature, but also help to
identify biases and other pitfalls in order to correct for them
[20]. Many of these methods are used routinely nowadays,
such as Egger’s funnel plot [21] and trim-and-fill analyses
[22] to detect publication bias, 12 calculations to evaluate
heterogeneity [23], and excess significance tests [24] to
detect preferential reporting of significant findings and/or
p hacking.

In this work, we describe a simple method to detect
and correct for authorship bias in meta-analyses. This
phenomenon happens when results from the same
laboratory or research group are summarized without
proper correction for non-independence, potentially giving
excessive weight to results from a single group in estimate
calculations. This type of bias has mostly gone unattended
in the available literature, perhaps because most clinical
meta-analyses are performed based on a small number of
studies, usually containing a single result each [25].

Isolated evidence has suggested the presence of
authorship bias in specific fields of research. For instance,
in a meta-analysis of violence risk assessment tools, it was
shown that tool designers found more positive results than
independent investigators evaluating other researchers’
tools [26]. A recent meta-regression study on randomized
trials on the safety of hydroxyethyl starch also identified
that a specific research group, with a history of retractions
due to data manipulation, had significantly different effect
sizes when compared to other groups [27]. Nevertheless,
these analyses have been carried out on an individual basis,
using different methodologies in each case. We believe
that having a standard method for automatically attributing
authorship to different groups can allow this kind of
investigation to be performed more systematically in meta-
analyses.

The problem of non-independence among results is much
more marked in meta-analyses from preclinical studies,

which have been on the rise in recent years [28]. These
types of studies often have smaller sample sizes and greater
heterogeneity among them than clinical studies; moreover,
each article frequently contributes with several different
experiments to the same meta-analysis [28,29]. Thus, it
is not uncommon for a single lab to account for a large
fraction of the research in a given area. Accordingly, in our
example of a preclinical meta-analysis [17], we identified
a strong influence of both the article and research group
of origin on effect sizes. We believe that this kind of non-
independence may be the rule for meta-analyses of non-
human biomedical research; thus, tools that can detect and
account for this phenomenon can be especially useful in
this field.

The main contribution of our method is to provide an
objective, unbiased definition of a research group. This
definition is usually highly subjective, as group affiliation
and collaboration patterns are variable and dynamic. We
have circumvented this issue by creating a collaboration
network graph based on the meta-analysis itself and using
modularity algorithms to detect author communities
within it. This method is based on collaboration between
researchers — thus, even scientists who are not currently in
the same research group or laboratory can be aggregated
if they are highly collaborative. We believe that this
method can capture groups of researchers with similar
views, methodological preferences and interpretations, and
thus provide an objective, data-driven approach to detect
authorship bias. The fact that authorship influence was
detected in 2 out of 4 meta-analyses evaluated in our study
shows that this form of clustering captures real sources of
heterogeneity, and provides initial validation of our method
as a useful tool for further analyses of the literature.

Our method of creating graphs was fully based on
co-authorship within the studies included in the meta-
analysis — thus, it is likely that many collaborations will go

Standard two-level analysis

Multilevel analysis

Reference Estimate p-value v Estimate p-value OZ%custer OZarticle OZresult
Chen et al. 2014 [ -0.66 [-0.89,-0.44] .000 .185 -0.66[-0.89,-0.44] .000 0 0 .187
Mathie et al. 2017 '® .0 14[-0.19,-0.09] .000 .019 -0.14[-0.19,-0.09] .000  .004 0 .015
Kredlow et al. 2016 ' 0.34[-0.00,0.68] .052 .789  0.69[-0.07,1.45] .077 .620 .227 .143
Munkholm et al. 2016"® .0 28 [-0.52,-0.04] .021 .432  -0.31[-0.66,0.04] .080 278 0 630

Table 3. Standard random-effects model and multilevel random-effects model analyses. The standard two-level model does not
take article or author cluster into consideration, while the multilevel model uses both of these as levels (with article nested within
author cluster). The table shows the effect estimate, 95% confidence interval and p-value for both models, the overall between-study
variance component 1> for the two-level model and the separate within-level variance components (c?) for author cluster, article and

individual result in the multilevel analysis.
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undetected, as authors can work together in articles outside
of this sample. We attempted to circumvent this issue and
improve our detection of collaborations by using PubMed
searches of single authors in order to construct lifetime
collaboration graphs (S3 Fig.). However, the sheer lack of
specificity of names and initials —which are still the seeds for
most database searches in science — generated a prohibitive
amount of false-positive collaborations that distorted the
resulting graphs (S1 Table). As unique author identifiers
such as ORCID [30] become more popular, however, it
is likely that such approaches will be more feasible in the
near future — and in that case, lifetime collaborations might
ultimately yield better authorship maps than individual
meta-analyses.

A simple tool such as ours might plausibly be
incorporated in meta-analysis packages to provide a simple
assessment of authorship bias. Although it currently runs
on partly on proprietary software (i.e. MATLAB), similar
implementations can be obtained using other platforms — a
preliminary analysis shows that using VOSViewer, a tool
for constructing bibliometric networks [31], leads to very
similar results (S4 Fig.). The clustering algorithm itself is
built with open-source software (Gephi) and based on well-
known mathematical algorithms for dealing with graph
clustering [32]. Thus, although our initial implementation
and validation of the tool has been performed on different
software platforms, a plausible short-term development
is to incorporate these different functions within a unified
package.

In this work, we have focused on the immediate advantages
of detecting authorship bias within an individual meta-
analysis. After detecting and quantifying the percentage of
heterogeneity due to authorship, we showed that this effect
could be attributed to individual clusters in some meta-
analyses. This resembles sensitivity analysis, a procedure
that is routinely performed in meta-analyses [33], but
is based on groups rather than individual results, thus
providing a way to detect research groups yielding results
that deviate from the remaining ones. The interpretation
of these discrepant results can vary, but an objective way
to prevent the output of a single research group from
inappropriately distorting meta-analytical estimates is to
perform multilevel modeling based on author clusters. In
our work, we show that this approach can have a large effect
on individual estimates, especially in situations with high
clustering of results, as in the case of preclinical research.

Although we have referred to the effect of authorship
on effect sizes as ‘authorship bias’, it should be clear that

such bias is not necessarily due to authors’ perceptions
and beliefs. There are myriad sources of variability that
can occur due to methodological choices that, if consistent
within a research group, can lead to bias towards smaller
or larger effects. Studies of inter-laboratory variability in
basic science have shown that, even when careful measures
are taken to ensure methodological homogeneity, a large
amount of the variance among experiments is attributable
to the laboratory where they are performed [34,35]. The
same is true for clinical populations, which are likely
to be more similar within the work of a single research
group than across groups. Meta-regression of specific
methodological variables within studies can help to assess
whether these variables can account for the effect of
authorship; nevertheless, even if no such moderators are
found, one cannot rule out the possibility that unassessed
methodological factors can be responsible for variability in
results among research groups.

Finally, although our work was focused on the
application of authorship clusters to provide insights
on the meta-analyses themselves (e.g. effect estimate
correction and detection of deviant groups), a tool for
evaluating authorship bias can also have more widespread
applications in understanding how authorship influences
results in different fields of science. Although our limited
sample does not allow us to generalize our conclusions, it
is interesting to note that the impact of authorship on effect
sizes was very different between meta-analyses of clinical
and preclinical data. Whether these and other patterns of
authorship bias hold true in larger, representative samples
of meta-analyses from different fields of research is an open
question that tools such as ours can help to tackle, providing
wider insights on the interactions between authorship and
study results.

Methods
Selection of meta-analyses examples and data extraction
We extracted data from 4 meta-analyses [15-18] to test
our method for research group definition and evaluation of
authorship bias. They are referred to in the text by their
article reference, although the specific meta-analyses
analyzed were usually one of many included in the original
studies (Table 1). The first one, from Chen et al. [15],
describes the effects of eye-movement desensitization and
reprocessing therapy on the symptoms of posttraumatic
stress disorder. Mathie et al. [16] performed a meta-analysis
on double-blind, placebo-controlled trials of homeopathic
treatment. Kredlow et al. [17] studied the post-retrieval
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extinction effects on fear memories of rodent models.
Finally, Munkholm et al. [18] estimated levels of BDNF
in bipolar disorder patients (irrespective of affective state).

We obtained the effect size, sample size and standard error
for each study from figures in the articles (Fig. 2 in Chen
et al., 2014, Kredlow et al., 2016 and Mathie et al. 2017,
Fig. 1S in Munkholm et al., 2016) except for Kredlow et
al., 2016, in which standard error data was obtained by
contact with the first author. From the reference sections,
we obtained the PubMed ID (or DOI, when PubMed ID
was not available) of the original studies included in the
meta-analyses, which we used to generate author networks
for each of them. We used the R metafor package to obtain
estimates of heterogeneity (Q-test and I?) and publication
bias (Egger’s regression and trim-an-fill-analysis) for each
meta-analysis.
Construction of author networks

We developed two methods for the construction of
the graph networks describing connections between
authors (Fig. 2): (a) by a MATLAB code, available as
supplementary material, that uses the PubMed ID or DOI
of the original studies and accesses PubMed to search for
the authors of each study, connecting those with common
publications within the meta-analysis; and (b) by manual
search of articles in the Web of Science database and data
processing with VOSviewer software [31]. Both methods
are described in detail hereafter.
MATLAB code

Network creation using the MATLAB code uses a list of
each result in the meta-analysis and either the respective
PubMed ID or DOI of its study of origin as input. This
information is used to search PubMed for the author list of
each article. A list of authors and related study identifiers
is then created by the code. If there is no match for a
specific search, the DOI number will be listed as an author
by itself, which will ultimately become a cluster with
no connections. The code uses this output to generate a
relationship adjacency matrix of the searches, weighing
every connection between authors by the number of co-
authored results within the meta-analysis. Both the list of
authors and the matrix are saved as CSV files. All routines
are available as supplementary material with running
examples and brief instructions.
VOSviewer software

In order to increase accessibility of our method, we also
explored other software resources for alternative ways to
build authorship networks. For this, we manually searched
the Web of Science database using the PubMed ID (or DOI,

when PubMed ID was not available) of all articles in the
meta-analysis (a search string example for Munkholm et al.
is provided as supplementary data). The retrieved results
were saved as a non-formatted text file for VOSviewer
handling. In the software, we chose the option of creating
a map based on bibliographic data to generate a co-
authorship network. Software options were set to (a) full
counting (so that each co-authorship would weigh equally),
(b) not ignoring documents with large number of authors,
and (c) reducing first names to initials. We did not use any
minimum threshold for number of publications or citations
per author. The output was saved as a GML file.

An advantage of this method compared to the MATLAB
code is that it allows the use of other databases besides
PubMed, such as Web of Science and Scopus. Moreover,
it may be more user-friendly to some researchers. Despite
minor differences, both methods achieved a similar number
of clusters in our example search (S4 Fig.). However, there
is no automated handling for search errors (i.e. not finding
a DOI number) and the methods to weigh connections
between authors are different (i.e.: edges are weighed by
the number of common articles in VOSviewer, instead of
common results as in the case of our MATLAB code), which
can cause some changes in clustering. Thus, we decided to
use the MATLAB-generated networks for further analysis.
Lifetime PubMed connections

When exploring ways to consider author networks,
we also tried to base connections on the full range of
PubMed publications of each authors, in order to identify
collaborations outside of the meta-analyses under study.
For this purpose, we used a code that, after downloading
the full article list for each author name with initials as
retrieved from a DOI or PMID search from PubMed itself,
crosschecked each pair of authors within this article list,
creating new connections or adding weight to existing
ones according to the matched names if collaborations
were found within the PubMed database (S3 Fig.).
However, after manually revising the retrieved articles
for establishing author identity, we found that this method
created a prohibitive number of spurious associations
between researchers due to articles from homonyms (Table
S1). Using author’s full names as retrieved from articles
instead of initials as search seeds did not fully solve this
problem. Thus, we chose to maintain the approach of using
connections within the meta-analysis for the subsequent
steps in order to prevent spurious clustering of unrelated
authors.
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Modularity analysis

To define author clusters, we used Gephi 0.9.2 to perform
modularity analysis of author networks. We used the
software’s default settings (i.e.: random decomposition;
using weights from edges; resolution = 1), which uses
the Louvain method for community detection [32]. After
separation of authors into clusters, we manually assigned
results from studies to their respective clusters. If a study
had authors from different clusters, its results were assigned
to the cluster with the most authors in the study. In the case
of a tie (something that did not happen in our examples),
effect sizes can be attributed to both groups, halving the
sample size in each of them so as not to distort the meta-
analytic effect estimate; alternatively, they can also be
attributed to a separate cluster. As described previously, if a
DOI did not retrieve any authors from PubMed, the results
from this study became a cluster by itself.
R? estimation for articles and clusters

Data extracted from meta-analyses (effect size, sample
size and standard error) was fed into Comprehensive Meta-
Analysis version 3.3 (CMA, Biostat Inc.), which computed
point estimates and variances for the studies. We then
defined subgroups of experiments either by (a) articles
or (b) author clusters and calculated the proportion of the
variance explained by subgroups at both of these levels by
R=1-(2 . /1? is the estimated between-

within total total
results variance for the full set of studies and rzw. . is the

ithi
pooled between-results variance within subgroups (Table
2). If ¢

Z€1O0.

), where 7?

was bigger than t . R? was considered to be

within total”

Using this calculation, the random distribution of R? is
dependent on the number and size of subgroups — the fewer
and smaller they are, the greater the chance of finding
spurious high values of R? by chance alone. As the grouping
structure varied widely across meta-analyses, we used an
R code to randomly reshuffle results within each meta-
analysis 1,000 times, while maintaining its structure in
terms of number and size of subgroups. We then estimated
p-values for the R? values found in each meta-analysis by
calculating their correspondent percentile in the generated
R? probability density distributions (S2 Fig.). The files
for all meta-analyses in CMA and the R codes for p-value
calculations are available as supplementary material.
Detecting deviant author clusters

To detect research groups with results differing from the
rest of the literature (Figs. 4-7), we used the R package
metafor [36] to compare the estimates of each author
cluster with the meta-analytical estimate of the remaining

studies. For each comparison, we assumed that the cluster
and the remaining studies each represented an independent
random-effects model and calculated the estimate and
standard error for both, using the DerSimonian-Laird
estimator for 2. We then combined these two estimates
in a fixed-effects model, using these two estimates as a
moderator and testing for its significance using a Wald-
type test of the difference between the two estimates. We
recorded the outputs and adjusted all p-values shown on
the figures for the number of comparisons within each
meta-analysis using a Bonferroni correction. The R codes
for these comparisons are also available as supplementary
material.
Correction of estimates by multilevel analysis

After clustering results from the meta-analyses, the
effect size estimates obtained across studies are nested
within two higher-level grouping variables (i.e. article and
research group), whose impact on heterogeneity can get
tangled up when they are analyzed separately. Moreover,
unbalanced representations between different articles or
research groups can bias meta-analytic estimates towards
the effects found by a highly-represented research group,
making them less representative of the literature as a
whole. To control for this, we used the R metafor package
to employ the multilevel meta-analytic model described by
Konstantopoulos [14]. We calculated the overall estimate
and variance components for this multilevel model,
adding random effects both at the level of articles and
author clusters. We then compared these results with those
obtained with a standard random-effects model that did
not take article or group of origin into account (Table 3).
The code for these analyses is provided as supplementary
material.
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S1 Figure. Funnel plots of included meta-analyses. After data extraction from the original meta-analyses, funnel plots were built
using the metafor R package. Vertical lines represent the uncorrected meta-analytical estimates, black dots represent existing studies
and white dots represent missing studies according to trim-and-fill assessment.
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S2 Figure. R? probability density distributions. For each meta-analysis, we randomly shuffled results among subgroups, while
maintaining the subgroup structure for each meta-analysis in terms of subgroup number and size. Histograms show the random R?
probability distributions when grouping by article or authorship cluster, which were used to estimate the p-value for the R? found in
each meta-analysis. For Chen et al. R? distribution, calculation for article grouping was not necessary, as each article contributed only
a single result.
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S3 Figure. Comparison between distinct methods for identifying collaborations. We built networks using four different ap-
proaches to detect co-authorships between authors within all three meta-analyses included in the Kredlow et al., 2016 study: (A)
Within-meta-analysis connections, where authors are connected only by articles included in the meta-analysis itself. Notice that
this network is different from that shown in Figure 2, which refers to a specific meta-analysis within the study. Network contains 87
nodes, 248 edges and 14 clusters; (B) Lifetime DOI search, where we used DOI numbers to retrieve researchers’ abbreviated names
from PubMed, which were then used to search lifetime publications for each author. Based on these lists, we identified connections
between authors by automated name crosschecking. Network contains 87 nodes, 293 edges and 9 clusters. (C) Lifetime full name
search, where we manually retrieved authors’ full names (i.e.: non-abbreviated first names) from studies included in the meta-analy-
ses and used these as search seeds to retrieve lifetime publications in PubMed and identify collaborations, in an attempt to minimize
spurious hits caused by homonyms. Network contains 87 nodes, 284 edges, 11 clusters. (D) Lifetime verified connections, where we
searched each pair of researchers using abbreviated names in PubMed, and then manually verified each article in the output to exclude
spurious connections. Network contains 87 nodes, 272 edges, 11 clusters. For all graphs, cluster colors and positions are randomly
generated — thus, clusters of the same color in different graphs do not necessarily correspond to one another.
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S4 Figure. Author network generation using different softwares (A) Author network in from Munkholm et al., 2016 meta-analysis
built using MATLAB code: Network has 202 nodes, 1010 edges, 21 clusters; (B) Same network built using VOSviewer: Network
has 194 nodes, 964 edges, 21 clusters. Although the first method identified more nodes (and consequently more edges), the overall
network structure was similar, with the same number of author clusters. Equivalent clusters are similarly colored, although cluster
positions are randomly assigned.

PubMed Initials PubMed Full Name Within Meta-Analysis

Lost edges 4 3 24
Spurious edges 25 15 0
Decreased-weight edges 13 42 194
Increased-weight edges 35 32 0

Supplementary Table 1. Analysis of differences between networks built using different methods. For each method, we plot the
number of (a) lost edges, (b) spurious edges, (c¢) edges with reduced weight due to lost papers, and (d) edges with increased weights
due to spurious collaborations when each of the 3 automated methods shown on Fig. S3 is compared to a manually verified ‘gold
standard’ network of lifetime collaborations. Lifetime DOI-based search for articles in PubMed using last names and initials added
a significant number of new connections, leading to the spurious aggregation of clusters that were separated in the verified network.
Full-name search on PubMed was able to reduce this effect, but still led to the formation of many spurious edges. As expected, with-
in-meta-analysis searches did not detect many of the edges formed by lifetime collaboration graphs; on the other hand, it did not lead
to the formation of any spurious connections.
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