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Abstract
Meta-analytic methods are powerful resources to summarize the existing evidence concerning a given research 
question, and are widely used in many fields of biomedical science. However, meta-analyses can be vulnerable to 
various sources of bias, which should be considered to avoid inaccuracies. Many of these sources can be related 
to study authorship, as both methodological choices and researcher bias may lead to deviations in results between 
different research groups. In this work, we describe a method to objectively attribute study authorship within a 
given meta-analysis to different research groups by using graph cluster analysis of collaboration networks. We 
then provide empirical examples of how the research group of origin can impact effect size in distinct types of 
meta-analyses, demonstrating how non-independence between within-group results can bias effect size estimates 
if uncorrected. Finally, we show that multilevel random-effects models using research group as a level of analysis 
can be a simple tool for correcting biases related to study authorship.
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Introduction
The scientific process is prone to several types of bias 

that can undermine the reliability of the research literature 
[1]. The origins and consequences of this problem have 
been extensively described; however, attempts at solutions 
have so far been insufficient, as recent analyses of the 
literature indicate that issues such as publication [2,3] and 
sponsorship [4] biases are still widespread. Moreover, 
intrinsic aspects of the current publication, peer-review and 
reward systems have been shown to lead to bias towards 
overly positive and inflated results [5–7]. 

As a consequence of bias in the original studies, 
summarizations and meta-analysis of the existing literature 
can lead to misleading outcomes [8,9]. Moreover, the 
meta-analytic process itself can be biased by the selective 
inclusion of studies [10]. On the other hand, meta-analytic 
methods can also be used to detect and quantify sources 
of bias. A number of methods have been created for this 
purpose, focusing mainly on publication and reporting 
biases [11,12], as well as study quality assessment [13]. 
However, other sources of bias have received less attention, 
and new approaches are needed for their systematic study.

A possible source of bias in meta-analyses is the non-
independence between study results, which violates the 
assumptions usually required by statistical models used 
for data synthesis. When groups of non-independent 
results are easily identifiable (e.g. outcomes from the same 
experiment or experiments within the same experimental 
article), using an additional level of analysis to account 
for non-independence within experiments or articles can 
be readily accomplished by multilevel meta-analysis [14]. 
Nevertheless, other sources of non-independence can be 
harder to approach objectively.

The research group of origin of a study is an obvious 
source of non-independence between results. Certain 
authors or groups might be more prone to find certain 
outcomes, either due to methodological factors (i.e. use of 
particular protocols, methods or populations) or to biases 

in performing, analyzing or reporting experiments. As 
different research groups will not contribute equally to a 
meta-analysis, this phenomenon, which we will refer to 
as authorship bias, can potentially distort meta-analytical 
results. Nevertheless, objective detection of authorship 
bias within a meta-analysis is hampered by the lack of a 
clear definition of what constitutes a research group. As 
academic mobility is high, collaboration is frequent and 
authorship criteria are flexible, it is unlikely that two sets 
of studies from a group will have exactly the same set 
of authors. At the same time, it is not clear at what point 
differences between author lists become large enough to 
attribute studies to different groups. 

In this work, we describe a straightforward method to 
define research groups based on collaboration graphs, 
which can be used to assess and quantify authorship bias in a 
meta-analysis. To demonstrate its usefulness, we apply this 
procedure in different meta-analyses to show that results 
coming from the same research group can impact results 
in different ways, leading to potential misinterpretations of 
the data. We then demonstrate how the use of multilevel 
random-effects models based on author networks can 
correct effect size estimation in these cases. The use of 
these tools might not only increase precision in data 
synthesis, but also provide a window to study the impact of 
authorship on results in different fields of research.

Results
Meta-analysis features

As shown in the study outline presented in Fig. 1, we 
extracted data from four meta-analyses from different areas 
of biomedical research to use as case studies. Two of them 
[15,16] were of clinical intervention studies, one concerned 
behavioral studies in rodents [17], and the other comprised 
biomarker studies in patients [18]. There was significant 
heterogeneity in all four, as reflected by Q-tests and I² 
values (Table 1). Publication bias was detected by Egger’s 
regression in two of them, but only one had a high number 

Table 1 - Features of included meta-analyses. Table shows the reference for each meta-analysis (including the corresponding figure 
in the original article) and the following features: number of articles, number of results (k), and indicators of heterogeneity (Q-test 
p values and I² values) and publication bias (Egger’s regression p-value and number of missing studies in trim-and-fill analysis) 
calculated by the R metaphor package.
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of missing studies according to trim-and-fill analysis, as 
shown by the funnel plots in S1 Fig.
Defining research groups by collaboration networks

To define research groups, we constructed graph networks 
using individual study authors in each meta-analysis as 
nodes, with the weights of edges defined by the number 
of studies coauthored within the meta-analysis. We then 
applied modularity analysis (see Methods) to separate 
these authors into clusters representing research groups, 
represented in different colors in Fig. 2. 

Histogram distributions for the number of results per 
article and research group (Fig. 3) show that the majority 
of clinical studies had a single result per article. On the 
other hand, in the meta-analysis of rodent studies by 
Kredlow et al. [17], a much higher number of outcomes per 
article is found. After aggregating results by author cluster 
in Chen et al [15]. and Mathie et al. [16], we could identify 
only a few groups with more than one study, and none with 
more than 3. On the other hand, after applying the same 
procedure in Kredlow et al. and Munkholm et al. [18], we 
observed the appearance of author clusters contributing up 
to 15 results.
Influence of article and author cluster of origin on effect 
sizes

To measure how much of the heterogeneity in each meta-

analysis could be attributed to the author cluster and/or 
to the article of origin, we calculated the amount of the 
total between-results variance that could be explained by 
grouping the results according to either cluster or article 
membership (Table 2). In meta-analyses where most 
articles contributed a single result, the article of origin 
explained none of the overall heterogeneity. However, in 
Kredlow et al., the article of origin explained most of the 
observed heterogeneity across experiments, an influence 
that was also captured at the author cluster level. For Chen 
et al. and Mathie et al., there was no statistically significant 
influence of authorship on the variance, although a high 
R² was found in the latter due to the high variability of 
this measure when the number of clusters is small (see 
S2 Fig. for R2 distributions for each cluster structure). 
In Munkholm et al., on the other hand, the amount of 
heterogeneity explained by authorship was smaller, but 
statistically more robust.
Detecting deviant author clusters

The approach described above allowed us to quantify 
the influence of authorship on heterogeneity, but not to 
attribute this effect to specific author clusters. In order to 
do that, we compared the effect estimates of each author 
cluster with that of the remaining studies within the meta-
analysis. When applying this method to Chen et al. (Fig. 4) 

Figure 1 -  Study flow diagram. After study selection, we used modularity algorithms from graph networks to define author clusters 
within each meta-analysis. We then adopted different approaches to measure authorship bias: i. Evaluating the influence of author clus-
ter in meta-analysis heterogeneity by R2 estimation; ii. Detecting clusters with results diverging from the remaining studies; iii. Using 
multilevel analysis to separate article- and cluster-level variance and correct meta-analytic estimates. Software tools used are shown 
for each individual step. CMA (Comprehensive Meta-Analysis v3); Gephi (version 0.9.2); Matlab (MathWorks MATLAB 2017b); R 
(R-3.5.2 on RStudio 1.1.463); VOSviewer (version 1.6.11); WoS (Web of Science database).
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and Mathie et al. (Fig. 5), in which the authorship effect is 
small, just one cluster out of 16 (6.2%) in the former and 
3 out of 40 (7.5%) in the latter were significantly different 
from the rest of the results after controlling for multiple 
comparisons. Conversely, in Kredlow et al. (Fig. 6), where 
the number of clusters was smaller and there was a high 
impact of authorship on heterogeneity, 4 out of 6 clusters 

(66.7%) were significantly different from a meta-analysis 
excluding their own results. In Munkholm et al. (Fig. 7), 
there was also evidence of authorship bias, with 5 of 21 
clusters (23.8%) differing significantly from the rest of the 
meta-analysis. 
Correcting effect estimates by multilevel analysis

After quantifying the amount of variance attributable to 

Figure 2 - Author networks. The complete network of authors for each meta-analysis used in the study is shown, with nodes repre-
senting authors and edges representing collaborations between them within the meta-analysis. Edge weights, defined by the number 
of coauthored studies between an author pair, are not shown in the figure, but are considered when performing modularity analysis. 
Clusters emerging from this process are shown in different arbitrary colors. (A) Chen et al., 2014 (83 nodes, 195 edges, 16 clusters); 
(B) Mathie et al., 2017 (183 nodes, 467 edges, 40 clusters); (C) Kredlow et al., 2016 (34 nodes, 72 edges, 6 clusters); (D) Munkholm 
et al., 2016 (202 nodes, 1010 edges, 21 clusters).
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articles and author clusters, we used multilevel modeling 
including these two levels of grouping simultaneously. This 
allowed us not only to differentiate the effects of article 
and author cluster membership (which are aggregated 
within the same level when they are analyzed separately), 
but also to correct for the effect of non-independence on 
effect size estimates. For that purpose, we used random-
effects multilevel models using both cluster and article as 
nested levels to summarize the results, as an alternative to 
a standard random-effects model that does not take article 
or cluster of origin into account (Table 3). 

For meta-analyses with no significant article or authorship 
effect on heterogeneity (Chen et al. and Mathie et al.), 
the multilevel model showed negligible influences of the 
article-level and cluster-level components on heterogeneity, 
leading to effect estimates that were almost identical to 
those of the standard two-level model. On the other hand, 

for Kredlow et al., in which strong evidence of authorship 
bias was found, we observed a twofold change in the 
estimate of the multilevel model when compared to the 
standard one. Multilevel analysis also showed that variance 
was explained both by the cluster and article levels, with 
a higher value for the cluster component. For Munkholm 
et al., the cluster component maintained its effect on 
heterogeneity, but there was no evidence of article-level 
influence. Furthermore, the multilevel model slightly 
changed the effect estimate, leading to a wider confidence 
interval and a higher p-value than the standard model. 

Discussion
Meta-analyses and systematic reviews have been used 

for decades to synthesize scientific data, shaping evidence-
based policies, and guiding medical decisions [19]. For 
these summaries to be reliable, however, meta-analyses 

Figure 3 - Distribution of results with-
in meta-analyses. Histograms show 
how the results in each meta-analysis 
are aggregated when articles or author 
clusters are used as subgroups. Each 
bar represents a particular subgroup 
size (X axis), while the Y axis represent 
the number of subgroups of that size 
within the meta-analysis when results 
are grouped by article (left side, blue 
bars) or cluster (right side, green bars 
(A) Chen et al., 2014. Article: n=22, 
size=1; Cluster: n=16, size=1 to 3. 
(B) Mathie et al., 2017. Article: n=51, 
size=1 to 3]; Cluster: n=40, size=1 to 3. 
(C) Kredlow et al, 2016. n=10; size=1 
to 6, Cluster: n=6, size= 1 to 15. (D) 
Munkholm et al., 2016. Article: n=32, 
size=1 to 2; Cluster: n=21, size=1 to 10.

Table 2 - R² calculations for article and 
author cluster groups. After grouping 
the results according to either cluster or 
article membership, we computed the 
amount of the total between-results vari-
ance explained by subgroup membership, 
where τ2

total is the estimated between-re-
sults variance for the full set of studies 
and τ2

within is the pooled between-results 
variance within subgroups. R2 is defined 
by 1-(τ2

within/τ
2

total). A p-value for each R² 
was calculated based on 1,000 reshufflings 
of the results within each meta-analysis 
structure, maintaining the same number 
of articles or clusters (see Fig. S2).
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Figure 4 - Forest plot of Chen 
et al., 2014. The plot shows the 
effect size and error (95% C.I.) 
of individual studies (squares), 
the estimates of meta-analyses 
for each author cluster (red 
diamonds) and the overall estimate 
(black diamond) using standard 
random-effects models. Each 
sub-group was compared against 
the remaining studies within the 
meta-analysis by a Wald-type test, 
yielding Bonferroni-corrected 
p-values shown on the right 
column. Estimates and p values 
of clusters significantly differing 
from the rest of the meta-analysis 
at a corrected α of 0.05 are shown 
in red.

Figure 5 - Forest plot of Mathie et al., 2017. Effect size, error and estimates are represented as in Figure 4.
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Figure 6 - Forest plot of Kredlow et al., 2017. Effect size, error and estimates are represented as in Figure 4.

Figure 7 - Forest plot of Munkholm et al., 2017. Effect size, error and estimates are represented as in Figure 4.
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should not simply summarize the literature, but also help to 
identify biases and other pitfalls in order to correct for them 
[20]. Many of these methods are used routinely nowadays, 
such as Egger’s funnel plot [21] and trim-and-fill analyses 
[22] to detect publication bias, I² calculations to evaluate 
heterogeneity [23], and excess significance tests [24] to 
detect preferential reporting of significant findings and/or 
p hacking.

In this work, we describe a simple method to detect 
and correct for authorship bias in meta-analyses. This 
phenomenon happens when results from the same 
laboratory or research group are summarized without 
proper correction for non-independence, potentially giving 
excessive weight to results from a single group in estimate 
calculations. This type of bias has mostly gone unattended 
in the available literature, perhaps because most clinical 
meta-analyses are performed based on a small number of 
studies, usually containing a single result each [25]. 

Isolated evidence has suggested the presence of 
authorship bias in specific fields of research. For instance, 
in a meta-analysis of violence risk assessment tools, it was 
shown that tool designers found more positive results than 
independent investigators evaluating other researchers’ 
tools [26]. A recent meta-regression study on randomized 
trials on the safety of hydroxyethyl starch also identified 
that a specific research group, with a history of retractions 
due to data manipulation, had significantly different effect 
sizes when compared to other groups [27]. Nevertheless, 
these analyses have been carried out on an individual basis, 
using different methodologies in each case. We believe 
that having a standard method for automatically attributing 
authorship to different groups can allow this kind of 
investigation to be performed more systematically in meta-
analyses.

The problem of non-independence among results is much 
more marked in meta-analyses from preclinical studies, 

which have been on the rise in recent years [28]. These 
types of studies often have smaller sample sizes and greater 
heterogeneity among them than clinical studies; moreover, 
each article frequently contributes with several different 
experiments to the same meta-analysis [28,29]. Thus, it 
is not uncommon for a single lab to account for a large 
fraction of the research in a given area. Accordingly, in our 
example of a preclinical meta-analysis [17], we identified 
a strong influence of both the article and research group 
of origin on effect sizes. We believe that this kind of non-
independence may be the rule for meta-analyses of non-
human biomedical research; thus, tools that can detect and 
account for this phenomenon can be especially useful in 
this field.

The main contribution of our method is to provide an 
objective, unbiased definition of a research group. This 
definition is usually highly subjective, as group affiliation 
and collaboration patterns are variable and dynamic. We 
have circumvented this issue by creating a collaboration 
network graph based on the meta-analysis itself and using 
modularity algorithms to detect author communities 
within it. This method is based on collaboration between 
researchers – thus, even scientists who are not currently in 
the same research group or laboratory can be aggregated 
if they are highly collaborative. We believe that this 
method can capture groups of researchers with similar 
views, methodological preferences and interpretations, and 
thus provide an objective, data-driven approach to detect 
authorship bias. The fact that authorship influence was 
detected in 2 out of 4 meta-analyses evaluated in our study 
shows that this form of clustering captures real sources of 
heterogeneity, and provides initial validation of our method 
as a useful tool for further analyses of the literature.

Our method of creating graphs was fully based on 
co-authorship within the studies included in the meta-
analysis – thus, it is likely that many collaborations will go 

Table 3. Standard random-effects model and multilevel random-effects model analyses. The standard two-level model does not 
take article or author cluster into consideration, while the multilevel model uses both of these as levels (with article nested within 
author cluster). The table shows the effect estimate, 95% confidence interval and p-value for both models, the overall between-study 
variance component τ2 for the two-level model and the separate within-level variance components (σ2) for author cluster, article and 
individual result in the multilevel analysis.  
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undetected, as authors can work together in articles outside 
of this sample. We attempted to circumvent this issue and 
improve our detection of collaborations by using PubMed 
searches of single authors in order to construct lifetime 
collaboration graphs (S3 Fig.). However, the sheer lack of 
specificity of names and initials – which are still the seeds for 
most database searches in science – generated a prohibitive 
amount of false-positive collaborations that distorted the 
resulting graphs (S1 Table). As unique author identifiers 
such as ORCID [30] become more popular, however, it 
is likely that such approaches will be more feasible in the 
near future – and in that case, lifetime collaborations might 
ultimately yield better authorship maps than individual 
meta-analyses.

A simple tool such as ours might plausibly be 
incorporated in meta-analysis packages to provide a simple 
assessment of authorship bias. Although it currently runs 
on partly on proprietary software (i.e. MATLAB), similar 
implementations can be obtained using other platforms – a 
preliminary analysis shows that using VOSViewer, a tool 
for constructing bibliometric networks [31], leads to very 
similar results (S4 Fig.). The clustering algorithm itself is 
built with open-source software (Gephi) and based on well-
known mathematical algorithms for dealing with graph 
clustering [32]. Thus, although our initial implementation 
and validation of the tool has been performed on different 
software platforms, a plausible short-term development 
is to incorporate these different functions within a unified 
package.

In this work, we have focused on the immediate advantages 
of detecting authorship bias within an individual meta-
analysis. After detecting and quantifying the percentage of 
heterogeneity due to authorship, we showed that this effect 
could be attributed to individual clusters in some meta-
analyses. This resembles sensitivity analysis, a procedure 
that is routinely performed in meta-analyses [33], but 
is based on groups rather than individual results, thus 
providing a way to detect research groups yielding results 
that deviate from the remaining ones. The interpretation 
of these discrepant results can vary, but an objective way 
to prevent the output of a single research group from 
inappropriately distorting meta-analytical estimates is to 
perform multilevel modeling based on author clusters. In 
our work, we show that this approach can have a large effect 
on individual estimates, especially in situations with high 
clustering of results, as in the case of preclinical research.

Although we have referred to the effect of authorship 
on effect sizes as ‘authorship bias’, it should be clear that 

such bias is not necessarily due to authors’ perceptions 
and beliefs. There are myriad sources of variability that 
can occur due to methodological choices that, if consistent 
within a research group, can lead to bias towards smaller 
or larger effects. Studies of inter-laboratory variability in 
basic science have shown that, even when careful measures 
are taken to ensure methodological homogeneity, a large 
amount of the variance among experiments is attributable 
to the laboratory where they are performed [34,35]. The 
same is true for clinical populations, which are likely 
to be more similar within the work of a single research 
group than across groups. Meta-regression of specific 
methodological variables within studies can help to assess 
whether these variables can account for the effect of 
authorship; nevertheless, even if no such moderators are 
found, one cannot rule out the possibility that unassessed 
methodological factors can be responsible for variability in 
results among research groups.  

Finally, although our work was focused on the 
application of authorship clusters to provide insights 
on the meta-analyses themselves (e.g. effect estimate 
correction and detection of deviant groups), a tool for 
evaluating authorship bias can also have more widespread 
applications in understanding how authorship influences 
results in different fields of science. Although our limited 
sample does not allow us to generalize our conclusions, it 
is interesting to note that the impact of authorship on effect 
sizes was very different between meta-analyses of clinical 
and preclinical data. Whether these and other patterns of 
authorship bias hold true in larger, representative samples 
of meta-analyses from different fields of research is an open 
question that tools such as ours can help to tackle, providing 
wider insights on the interactions between authorship and 
study results.

Methods
Selection of meta-analyses examples and data extraction

We extracted data from 4 meta-analyses [15–18] to test 
our method for research group definition and evaluation of 
authorship bias. They are referred to in the text by their 
article reference, although the specific meta-analyses 
analyzed were usually one of many included in the original 
studies (Table 1). The first one, from Chen et al. [15], 
describes the effects of eye-movement desensitization and 
reprocessing therapy on the symptoms of posttraumatic 
stress disorder. Mathie et al. [16] performed a meta-analysis 
on double-blind, placebo-controlled trials of homeopathic 
treatment. Kredlow et al. [17] studied the post-retrieval 
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extinction effects on fear memories of rodent models. 
Finally, Munkholm et al. [18] estimated levels of BDNF 
in bipolar disorder patients (irrespective of affective state). 

We obtained the effect size, sample size and standard error 
for each study from figures in the articles (Fig. 2 in Chen 
et al., 2014, Kredlow et al., 2016 and Mathie et al. 2017; 
Fig. 1S in Munkholm et al., 2016) except for Kredlow et 
al., 2016, in which standard error data was obtained by 
contact with the first author. From the reference sections, 
we obtained the PubMed ID (or DOI, when PubMed ID 
was not available) of the original studies included in the 
meta-analyses, which we used to generate author networks 
for each of them. We used the R metafor package to obtain 
estimates of heterogeneity (Q-test and I2) and publication 
bias (Egger’s regression and trim-an-fill-analysis) for each 
meta-analysis.  
Construction of author networks 

We developed two methods for the construction of 
the graph networks describing connections between 
authors (Fig. 2): (a) by a MATLAB code, available as 
supplementary material, that uses the PubMed ID or DOI 
of the original studies and accesses PubMed to search for 
the authors of each study, connecting those with common 
publications within the meta-analysis; and (b) by manual 
search of articles in the Web of Science database and data 
processing with VOSviewer software [31]. Both methods 
are described in detail hereafter.
MATLAB code 

Network creation using the MATLAB code uses a list of 
each result in the meta-analysis and either the respective 
PubMed ID or DOI of its study of origin as input. This 
information is used to search PubMed for the author list of 
each article. A list of authors and related study identifiers 
is then created by the code. If there is no match for a 
specific search, the DOI number will be listed as an author 
by itself, which will ultimately become a cluster with 
no connections. The code uses this output to generate a 
relationship adjacency matrix of the searches, weighing 
every connection between authors by the number of co-
authored results within the meta-analysis. Both the list of 
authors and the matrix are saved as CSV files. All routines 
are available as supplementary material with running 
examples and brief instructions. 
VOSviewer software

In order to increase accessibility of our method, we also 
explored other software resources for alternative ways to 
build authorship networks. For this, we manually searched 
the Web of Science database using the PubMed ID (or DOI, 

when PubMed ID was not available) of all articles in the 
meta-analysis (a search string example for Munkholm et al. 
is provided as supplementary data). The retrieved results 
were saved as a non-formatted text file for VOSviewer 
handling. In the software, we chose the option of creating 
a map based on bibliographic data to generate a co-
authorship network. Software options were set to (a) full 
counting (so that each co-authorship would weigh equally), 
(b) not ignoring documents with large number of authors, 
and (c) reducing first names to initials. We did not use any 
minimum threshold for number of publications or citations 
per author. The output was saved as a GML file.

An advantage of this method compared to the MATLAB 
code is that it allows the use of other databases besides 
PubMed, such as Web of Science and Scopus. Moreover, 
it may be more user-friendly to some researchers. Despite 
minor differences, both methods achieved a similar number 
of clusters in our example search (S4 Fig.). However, there 
is no automated handling for search errors (i.e. not finding 
a DOI number) and the methods to weigh connections 
between authors are different (i.e.: edges are weighed by 
the number of common articles in VOSviewer, instead of 
common results as in the case of our MATLAB code), which 
can cause some changes in clustering. Thus, we decided to 
use the MATLAB-generated networks for further analysis.
Lifetime PubMed connections

When exploring ways to consider author networks, 
we also tried to base connections on the full range of 
PubMed publications of each authors, in order to identify 
collaborations outside of the meta-analyses under study. 
For this purpose, we used a code that, after downloading 
the full article list for each author name with initials as 
retrieved from a DOI or PMID search from PubMed itself, 
crosschecked each pair of authors within this article list, 
creating new connections or adding weight to existing 
ones according to the matched names if collaborations 
were found within the PubMed database (S3 Fig.). 
However, after manually revising the retrieved articles 
for establishing author identity, we found that this method 
created a prohibitive number of spurious associations 
between researchers due to articles from homonyms (Table 
S1). Using author’s full names as retrieved from articles 
instead of initials as search seeds did not fully solve this 
problem. Thus, we chose to maintain the approach of using 
connections within the meta-analysis for the subsequent 
steps in order to prevent spurious clustering of unrelated 
authors.
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Modularity analysis
To define author clusters, we used Gephi 0.9.2 to perform 

modularity analysis of author networks. We used the 
software’s default settings (i.e.: random decomposition; 
using weights from edges; resolution = 1), which uses 
the Louvain method for community detection [32]. After 
separation of authors into clusters, we manually assigned 
results from studies to their respective clusters. If a study 
had authors from different clusters, its results were assigned 
to the cluster with the most authors in the study. In the case 
of a tie (something that did not happen in our examples), 
effect sizes can be attributed to both groups, halving the 
sample size in each of them so as not to distort the meta-
analytic effect estimate; alternatively, they can also be 
attributed to a separate cluster. As described previously, if a 
DOI did not retrieve any authors from PubMed, the results 
from this study became a cluster by itself.
R² estimation for articles and clusters

Data extracted from meta-analyses (effect size, sample 
size and standard error) was fed into Comprehensive Meta-
Analysis version 3.3 (CMA, Biostat Inc.), which computed 
point estimates and variances for the studies. We then 
defined subgroups of experiments either by (a) articles 
or (b) author clusters and calculated the proportion of the 
variance explained by subgroups at both of these levels by 
R2=1-(τ2

within/τ
2
total), where τ2

total is the estimated between-
results variance for the full set of studies and τ2

within is the 
pooled between-results variance within subgroups (Table 
2). If τ2

within was bigger than τ2
total, R² was considered to be 

zero.
Using this calculation, the random distribution of R² is 

dependent on the number and size of subgroups – the fewer 
and smaller they are, the greater the chance of finding 
spurious high values of R² by chance alone. As the grouping 
structure varied widely across meta-analyses, we used an 
R code to randomly reshuffle results within each meta-
analysis 1,000 times, while maintaining its structure in 
terms of number and size of subgroups. We then estimated 
p-values for the R² values found in each meta-analysis by 
calculating their correspondent percentile in the generated 
R² probability density distributions (S2 Fig.). The files 
for all meta-analyses in CMA and the R codes for p-value 
calculations are available as supplementary material.
Detecting deviant author clusters

To detect research groups with results differing from the 
rest of the literature (Figs. 4-7), we used the R package 
metafor [36] to compare the estimates of each author 
cluster with the meta-analytical estimate of the remaining 

studies. For each comparison, we assumed that the cluster 
and the remaining studies each represented an independent 
random-effects model and calculated the estimate and 
standard error for both, using the DerSimonian-Laird 
estimator for τ². We then combined these two estimates 
in a fixed-effects model, using these two estimates as a 
moderator and testing for its significance using a Wald-
type test of the difference between the two estimates. We 
recorded the outputs and adjusted all p-values shown on 
the figures for the number of comparisons within each 
meta-analysis using a Bonferroni correction. The R codes 
for these comparisons are also available as supplementary 
material.
Correction of estimates by multilevel analysis

After clustering results from the meta-analyses, the 
effect size estimates obtained across studies are nested 
within two higher-level grouping variables (i.e. article and 
research group), whose impact on heterogeneity can get 
tangled up when they are analyzed separately. Moreover, 
unbalanced representations between different articles or 
research groups can bias meta-analytic estimates towards 
the effects found by a highly-represented research group, 
making them less representative of the literature as a 
whole. To control for this, we used the R metafor package 
to employ the multilevel meta-analytic model described by 
Konstantopoulos [14]. We calculated the overall estimate 
and variance components for this multilevel model, 
adding random effects both at the level of articles and 
author clusters. We then compared these results with those 
obtained with a standard random-effects model that did 
not take article or group of origin into account (Table 3). 
The code for these analyses is provided as supplementary 
material.
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S1 Figure. Funnel plots of included meta-analyses. After data extraction from the original meta-analyses, funnel plots were built 
using the metafor R package. Vertical lines represent the uncorrected meta-analytical estimates, black dots represent existing studies 
and white dots represent missing studies according to trim-and-fill assessment.

S2 Figure. R² probability density distributions. For each meta-analysis, we randomly shuffled results among subgroups, while 
maintaining the subgroup structure for each meta-analysis in terms of subgroup number and size. Histograms show the random R² 
probability distributions when grouping by article or authorship cluster, which were used to estimate the p-value for the R2 found in 
each meta-analysis. For Chen et al. R2 distribution, calculation for article grouping was not necessary, as each article contributed only 
a single result.
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S3 Figure. Comparison between distinct methods for identifying collaborations. We built networks using four different ap-
proaches to detect co-authorships between authors within all three meta-analyses included in the Kredlow et al., 2016 study: (A) 
Within-meta-analysis connections, where authors are connected only by articles included in the meta-analysis itself. Notice that 
this network is different from that shown in Figure 2, which refers to a specific meta-analysis within the study. Network contains 87 
nodes, 248 edges and 14 clusters; (B) Lifetime DOI search, where we used DOI numbers to retrieve researchers’ abbreviated names 
from PubMed, which were then used to search lifetime publications for each author. Based on these lists, we identified connections 
between authors by automated name crosschecking. Network contains 87 nodes, 293 edges and 9 clusters. (C) Lifetime full name 
search, where we manually retrieved authors’ full names (i.e.: non-abbreviated first names) from studies included in the meta-analy-
ses and used these as search seeds to retrieve lifetime publications in PubMed and identify collaborations, in an attempt to minimize 
spurious hits caused by homonyms. Network contains 87 nodes, 284 edges, 11 clusters. (D) Lifetime verified connections, where we 
searched each pair of researchers using abbreviated names in PubMed, and then manually verified each article in the output to exclude 
spurious connections. Network contains 87 nodes, 272 edges, 11 clusters. For all graphs, cluster colors and positions are randomly 
generated – thus, clusters of the same color in different graphs do not necessarily correspond to one another.
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S4 Figure. Author network generation using different softwares (A) Author network in from Munkholm et al., 2016 meta-analysis 
built using MATLAB code: Network has 202 nodes, 1010 edges, 21 clusters; (B) Same network built using VOSviewer: Network 
has 194 nodes, 964 edges, 21 clusters. Although the first method identified more nodes (and consequently more edges), the overall 
network structure was similar, with the same number of author clusters. Equivalent clusters are similarly colored, although cluster 
positions are randomly assigned.

Supplementary Table 1. Analysis of differences between networks built using different methods. For each method, we plot the 
number of (a) lost edges, (b) spurious edges, (c) edges with reduced weight due to lost papers, and (d) edges with increased weights 
due to spurious collaborations when each of the 3 automated methods shown on Fig. S3 is compared to a manually verified ‘gold 
standard’ network of lifetime collaborations. Lifetime DOI-based search for articles in PubMed using last names and initials added 
a significant number of new connections, leading to the spurious aggregation of clusters that were separated in the verified network. 
Full-name search on PubMed was able to reduce this effect, but still led to the formation of many spurious edges. As expected, with-
in-meta-analysis searches did not detect many of the edges formed by lifetime collaboration graphs; on the other hand, it did not lead 
to the formation of any spurious connections.
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