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The association of lifestyle with cardiovascular and all-cause 

mortality based on machine learning: A Prospective Study from 

the NHANES 

 

Abstract 

  Objective：To develop a machine learning (ML) risk stratification model for predicting 

all-cause mortality and cardiovascular mortality while estimating the influence of lifestyle 

behavioral factors on the model’s efficacy. 

  Method：A prospective cohort study was conducted using a nationally representative sample of 

adults aged 40 years or older, drawn from the US National Health and Nutrition Examination 

Survey from 2007 to 2010. The participants underwent a comprehensive in-person interview and 

medical laboratory examinations, and subsequently, their records were linked with the National 

Death Index for further analysis. 

  Result：Within a cohort comprising 7921 participants, spanning an average follow-up duration 

of 9.75 years, a total of 1911 deaths, including 585 cardiovascular-related deaths, were recorded. 

The model predicted mortality with an area under the receiver operating characteristic curve 

(AUC) of 0.848 and 0.829. Stratifying participants into distinct risk groups based on ML scores 

proved effective. All lifestyle behaviors exhibited an inverse association with all-cause and 

cardiovascular mortality. As age increases, the discernible impacts of dietary scores and sedentary 

time become increasingly apparent, whereas an opposite trend was observed for physical activity. 

  Conclusion: We develop a ML model based on lifestyle behaviors to predict all-cause and 

cardiovascular mortality. The developed model offers valuable insights for the assessment of 

individual lifestyle-related risks. It applies to individuals, healthcare professionals, and 

policymakers to make informed decisions. 

 

Key words: Cardiovascular mortality, All-cause mortality, Lifestyle behavior, Risk stratification, 

Mortality prediction, Machine learning. 

Introduction 

Cardiovascular disease (CVD) poses a formidable challenge to global health, contributing 

significantly to non-communicable diseases (NCDs) and representing a leading cause of mortality 

worldwide
1,2

. According to data from the World Health Organization (WHO), cardiovascular 

disease contributes to deaths of nearly one million people in the United States, accounting for 30% 

of the total annual mortality
3
. The escalating prevalence of CVD over the past few decades 

underscores the urgency of identifying effective preventive measures. Extensive research has 

elucidated a link between modifiable lifestyles and cardiovascular mortality.
4-7

 The inherent 
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modifiability of lifestyle renders it of considerable practical significance as a predictive model 

factor. Through model prediction, the population can be informed of the current level of risk in 

their lifestyle and effectively promote their transition to a healthier lifestyle. However, traditional 

statistical methods exhibit limitations in establishing predictive models, struggling to effectively 

handle the intricate interaction between numerous variables. 

  Machine learning (ML), with its ability to analyze vast and complex datasets, presents a 

compelling solution to the limitations of traditional methods in unraveling the multifaceted 

associations between lifestyle choices and mortality outcomes
8
. Unlike conventional statistical 

models that rely on predefined hypotheses and assumptions, ML algorithms can identify intricate 

patterns and nonlinear relationships within data, offering a more holistic and data-driven 

perspective
9,10

. In recent times, an increasing number of studies have applied ML in the field of 

cardiovascular disease.
11,12

. This becomes particularly crucial in the realm of cardiovascular health, 

where the impact of diverse lifestyle factors may manifest in subtle and interconnected manners. 

 The NHANES dataset holds a distinct advantage due to its comprehensive inclusion of health, 

lifestyle, and biochemical information, providing a rich data source for analysis
13-15

. Implementing 

of high-quality standardized collection and testing procedures effectively mitigates the potential 

for measurement bias, ensuring the reliability of the data. This robust data quality, coupled with a 

wealth of information, facilitates in-depth exploration of the intricate relationship between 

lifestyle and both cardiovascular and all-cause mortality, offering a reliable and comprehensive 

foundation for unraveling the complexities inherent in this association. 

  This study endeavors to establish a predictive model for mortality related to lifestyle factors and 

aims to delve into the intricate role of these lifestyle factors using ML models. 

Method 

 The prospective cohort were derived from the National Health and Nutrition Examination 

Survey (NHANES), a nationwide survey conducted biennially since 1999. All NHANES protocols 

received approval from the National Center for Health Statistics ethics review board, and written 

informed consent was obtained from all participants. The modeling survey was deemed exempt 

from further review. 

Study Population 

The sample population was derived from the NHANES cycles of 2007-2008 and 2009-2010. 

We selected participants aged over 40 who participated in in-person interview, physical 

examinations and laboratory tests in a mobile examination center. The screening process is shown 

in Supplementary Figure 1. 

Study outcomes 

 The follow-up data was obtained from the National Health Data Center, which links the 

NHANES survey population with the death records of the National Death Index (NDI). 
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Cardiovascular mortality was determined using the International Statistical Classification of 

Diseases, 10th Revision (ICD-10), and the NCHS classified cardiovascular diseases (054-068, 

070). We linked participants with the 2019 mortality data records and excluded individuals whose 

follow-up years and survival status could not be ascertained.  

Model features  

The model encompassed a set of features including age, gender, race, BMI, education level, 

income, hypertension, diabetes, family history of diseases, non HDL-cholesterol, C-reactive 

protein, diet score, physical activity level, Sedentary minutes, sleep quality, alcohol consumption 

and smoking status. Age, gender, race, education level, income, and history of close family 

diseases can be directly obtained from interview data. BMI was derived from physical 

examination data, while non-HDL cholesterol and C-reactive protein values were obtained from 

laboratory test data. Sedentary minutes were acquired through the physical activity questionnaire. 

NHANES contains a wealth of nutrition information gathered through health interviews, health 

examinations, and laboratory testing. Participants underwent a 24-hour dietary recall (First Day) 

interview as part of their health examination at the mobile examination center. Subsequently, they 

were instructed to complete a second 24-hour dietary recall (Second Day) interview within a 

period of 3 to 10 days following the initial recall. To rate the dietary patterns of participants, the 

following steps were taken: linking to the Food Patterns Equivalents Database (FPED) of the US 

Department of Agriculture based on the USDA code of the food, estimating the daily nutritional 

intake of participants based on the 24-hour dietary recall on the first day and the 24-hour dietary 

recall on the second day, and referencing the US Dietary Guidelines 2020-2025 and the scoring 

rules of the Healthy Eating Index (HEI) to assess and rate the dietary patterns of participants.  

Physical activity was obtained from NHANES's physical activity questionnaire. The 

questionnaire contains the information on the weekly exercise intensity and corresponding time 

reported by the participants. Participants were classified into four (4) groups based on the 2
nd

 

edition of the Physical Activity Guidelines for Americans. The "Inactive" group comprised 

individuals not involved in any moderate- or vigorous-intensity physical activity beyond basic 

daily life movements. Those deemed "Insufficiently active" engaged in some moderate- or 

vigorous-intensity physical activity but did not reach the threshold of 150 minutes of 

moderate-intensity activity per week, or 75 minutes of vigorous-intensity activity, or the 

equivalent combination. The "Active" category encompassed participants achieving the equivalent 

of 150 to 300 minutes of moderate-intensity physical activity weekly, meeting the key guideline 

target range for adults. Lastly, the "Highly active" group included individuals undertaking more 

than 300 minutes of moderate-intensity physical activity weekly, surpassing the key guideline 

target range for adults. 

Due to the J-shaped association between sleep duration and all-cause mortality, participants 

were divided into three groups based on sleep duration: optimal (6-8 hours/day), intermediate 

(5-5.9 or 8.1-10 hours/day), and poor (<5 or >10 hours/day)
6,16

. 

Smoking status was categorized into three groups: non-smokers, individuals who smoked 

previously, and those who reported current smoking based on responses to the cigarette use 

questionnaire. Data on alcohol consumption was derived from alcohol use questionnaire, wherein 

participants provided information on the frequency and quantity of drinks consumed. The average 
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daily alcohol consumption was used to measure the level of alcohol consumption among 

participants. 

Variables related to mental health exhibiting missing values exceeding 40% were excluded from 

the analysis. Subsequently, the random forest (RF) algorithm was employed to impute missing 

values in the remaining dataset. In order to mitigate the influence of dimensionality and enhance 

modeling efficiency, continuous variables were rescaled and standardized. The data distribution 

before imputation is presented in Supplementary Table 1 & 2. 

Model development and Risk stratification  

  A binary classification model was constructed based on follow-up data and participant features 

to predict mortality. Model development included trials of various ML classifiers, including 

logistic regression, ridge regression, support vector machines, random forest and Extreme 

Gradient Boosting (XGBoost). The initial step involved cross validation on the selected models to 

determine the approximate range of optimal values for each parameter followed by deployment of 

the grid search method to select the best model through 10-fold cross validation approach. To 

assess the performance of each model receiver operating curve (ROC) and the corresponding area 

under the curve (AUC) values were computed. The model output was calibrated using Platt's 

scaling and the impact of this calibration was visualized by comparing the Brier score between the 

uncalibrated and the calibrated outputs. 

  Participants were stratified into three groups based on the tertiles of the ten-year survival 

probability predicted by the model. The discriminative ability of the model was further validated 

by employing the log-rank test to compare the survival curves among these groups.  

Feature importance based on machine learning models  

To estimate feature importance ranking, as well as main effect of features and interaction effect 

between features, SHAP (Shapley Additive explanations) was employed. The SHAP is a useful 

and classical method to calculate the marginal contribution of features to the model’s output. This 

method provides insight from both global and local perspectives, particularly beneficial for 

interpreting "black box model".  

Result 

Baseline characteristics 

Table 1 Baseline characteristics of participants 

 All  

(n=7921) 

Live  

(n=6010) 

Dead 

(n=1911) 

Dead cause of cardiovascular  

(n=585) 

Age(years) 60.79±12.18 57.55±10.95 70.97±10.05‡ 72.75±9.52‡ 

Male 3866(48.81%) 2800(46.59%) 1066(55.78%) 322(55.04%) 
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BMI(Kg/m2) 28.57±7.13 29.01±6.83 27.2±7.86‡ 27.28±8.26‡ 

Education level   †  

  Less Than 9th Grade 1287(16.25%) 929(15.46%) 358(18.73%) 106(18.12%) 

  9-11th Grade 1318(16.64%) 931(15.49%) 387(20.25%) 127(21.71%) 

  High School Grad/GED or Equivalent 1853(23.39%) 1381(22.98%) 472(24.70%) 153(26.15%) 

  Some College or AA degree 1937(24.45%) 1513(25.17%) 424(22.19%) 122(20.85%) 

  College Graduate or above 1526(19.27%) 1256(20.90%) 270(14.13%) 77(13.16%) 

Ethnicity   ‡ ‡ 

  Mexican American 1256(15.86%) 1095(18.22%) 161(8.42%) 34(5.81%) 

  Other Hispanic 825(10.42%) 689(11.46%) 136(7.12%) 46(7.86%) 

  Non-Hispanic White 3961(50.01%) 2786(46.36%) 1175(61.49%) 372(63.59%) 

  Non-Hispanic Black 1537(19.40%) 1165(19.38%) 372(19.47%) 110(18.80%) 

  Other Race - Including Multi-Racial 342(4.32%) 275(4.58%) 67(3.51%) 23(3.93%) 

The ratio of household income to 

poverty line 

2.33±1.72 2.45±1.78 1.94±1.47‡ 1.93±1.43‡ 

Hypertension 4453(56.22%) 3048(50.72%) 1405(73.52%)‡ 456(77.95%)‡ 

Diabetes   ‡ ‡ 

  no diabetes 5856(73.93%) 4678(77.84%) 1178(61.64%) 346(59.15%) 

  diabetes 1557(19.66%) 977(16.26%) 580(30.35%) 190(32.48%) 

  Prediabetes 508(6.41%) 355(5.91%) 153(8.01%) 49(8.38%) 

Close relative heart attack 1322(16.69%) 946(15.74%) 376(19.68%)‡ 125(21.37%)‡ 

Close relative diabetes 3455(43.62%) 2688(44.73%) 767(40.14%)‡ 227(38.80%)‡ 

non_HDL (mmol/L) 3.57±1.31 3.69±1.27 3.2±1.36‡ 3.17±1.35‡ 

CRP 0.42±0.86 0.38±0.73 0.53±1.17 0.53±1.09 

diet score 47.55±16.59 48.37±16.07 44.99±17.88‡ 44.08±18.51‡ 

physical level   ‡ ‡ 

  inactive 2825(35.66%) 1820(30.28%) 1005(52.59%) 316(54.02%) 

  insufficient active 1129(14.25%) 863(14.36%) 266(13.92%) 80(13.68%) 

  active 949(11.98%) 765(12.73%) 184(9.63%) 66(11.28%) 

  highly active 3018(38.10%) 2562(42.63%) 456(23.86%) 123(21.03%) 

Sedentary minutes 331.98±411.55 317.34±403.55 378.01±432.64‡ 374.89±194.81‡ 

sleep level   ‡ ‡ 

  Poor 1586(20.02%) 1123(18.69%) 463(24.23%) 134(22.91%) 

  intermediate 396(5.00%) 265(4.41%) 131(6.86%) 48(8.21%) 

  optimal 5939(74.98%) 4622(76.91%) 1317(68.92%) 403(68.89%) 

Smoking   ‡ ‡ 

  No smoking 3946(49.82%) 3175(52.83%) 771(40.35%) 269(45.98%) 

  Smoking before 2495(31.50%) 1718(28.59%) 777(40.66%) 230(39.32%) 

  Smoking 1480(18.68%) 1117(18.59%) 363(19.00%) 86(14.70%) 

Alcohol consumption per day 3.99±14.33 4.31±12.83 2.96±18.24‡ 3.36±23.74‡ 

Continuous variables as mean ± SD, categorical variables as n (%).  

†:p<0.01; ‡:p<0.001 vs. participants alive in follow-up,  

unpaired Student’s t-test or Mann-Whitney U test for continuous variables, Chi-squared or Fisher’s exact test for categorical variables 
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The cohort consisted of 7921 participants, with average age of 60.79±12.18, and 3866(48.81%) 

males. During an average follow-up period of 9.75 years, there were 1,911 deaths (24.13%), with 

585 cases attributed to cardiovascular diseases. The detailed information was shown in the Table 1. 

In terms of lifestyle, there are differences between the all-cause mortality group and the 

cardiovascular disease mortality group and the alive group. 

Performance of models 

Table 2 AUC score of all models 

 The AUC of the optimal parameter combination 

 in the training cohort 

The AUC of the optimal parameter combination  

in the testing cohort 

 All-cause mortality Cardiovascular mortality All-cause mortality Cardiovascular mortality 

Logistic Regression 0.851 0.829 0.841 0.822 

Ridge Regression 0.85 0.826 0.841 0.829 

SVM 0.854 0.8 0.845 0.792 

Random Forest 0.854 0.853 0.842 0.827 

XGBoost 0.875 0.848 0.856 0.829 

 

 

Figure 1 uncalibrated and calibrated ROC of XGBoost model 

Table 2 presents the AUC scores for all models in predicting all-cause mortality and 

cardiovascular disease mortality. XGBoost demonstrated notable performance, achieving an AUC 

score of 0.848 for predicting all-cause mortality and 0.829 for predicting cardiovascular disease 

mortality, establishing it as the top-performing model. The grid search parameters dictionary and 

the optimal parameter values were displayed in the Supplementary Table 2. Following 

calibration, there was an improvement in Brier scores, and detailed information was described in 

the Supplementary Table 3. Figure 1 shows the calibrated and uncalibrated AUC scores of the 

XGBoost model. The calibrated score was 0.884, indicating that the model fits the data well.  

Machine learning-based risk stratification 
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Figure 2 KM-curves of all groups based on tertiles 

 Depends on the calibrated output, participants were divided into three groups. Each group 

survival curve was shown in Figure 2. It can be seen from Supplementary Table 4 that there are 

significant differences in the survival curves for each group. This demonstrates that the model 

effectively distinguishes individuals with different risks of mortality. 

Features importance and Features’ Role in the Model 

 

Figure 3 The importance and role of features in the model 

Figure 3 illustrates the importance of features in the model, wherein each scatter represents a sample. 

The importance increases from bottom to top, with color representing the numerical value of the feature. The x-axis represents the role of 

different values of each feature in the model, with positive values indicating that the feature increases the probability of the model making death 

predictions. 

Plot A : SHAP value of features in predicting all-cause mortality. Plot B: SHAP value of features in predicting in cardiovascular mortality. 

 

In the prediction of both all-cause mortality and cardiovascular disease mortality, age, gender, 
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and diabetes status have made significant contributions to the predictive outcomes (Figure 3). In 

terms of lifestyle, smoking, alcohol consumption, and physical activity emerge as significant 

features exerting a substantial impact on the prediction of all-cause mortality. On the other hand, 

the model indicates that, reduced sedentary time, higher dietary scores, and increased physical 

activity in the model will lower individual risk scores. 

Features interaction effect 

 

Figure 4 dependence plot interaction effect with age 

The figure illustrates the interaction between features and age. Each scatter point along a line perpendicular to the x-axis represents the SHAP 

values of features sharing the same x-value but varying age values. In the visualization, color represents the value of age, transitioning from blue to 

red as age increases. The y-axis corresponds to the SHAP values of features at different age values. 

A,B and C represent SHAP value of diet score, sedentary time and physical activity level in predicting all-cause mortality. D,E and F represent shap 

value of diet score, sedentary time and physical activity level in predicting cardiovascular mortality.  

 

Given the prominent role of age in the model predictions, it is essential to further explore the 

interaction between age and various lifestyle factors. As shown in Figure 4, the impact of diet 

score and sedentary time on outcome prediction becomes more pronounced with advancing age, 

while the impact of physical activity level exhibits an opposite trend. 

 

Discussion 

In this prospective cohort spanning an average of 9.75 years, a model was developed and 

validated to predict both the all-cause mortality and cardiovascular mortality based on the 

comprehensive dataset encompassing lifestyle data and basic characteristic variables. In addition, 

the effect of lifestyles on all-cause mortality and cardiovascular mortality and their interaction 
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effect with age were estimated using SHAP. These estimates indicate that lifestyle affects outcome 

predictions to varying degrees and exhibits diverse patterns in interaction with age.  

Simultaneously interpreting multiple risk factors for individual outcomes poses a challenge for 

the general public, as well as for healthcare professionals and policymakers. By employing ML 

algorithms, we established a predictive model related to lifestyle and further explored the 

contributions of diverse factors to survival outcomes. The results indicate that our model performs 

effectively and can unveil the roles of less influential predictive factors within the model. 

Additionally, the potential impact of complex and subtle interactions among predictive factors is 

often overlooked. The inherent advantages of tree models, coupled with their integration with 

SHAP, allowed for exploring interactions among various predictive factors.  

According to the report from the Physical Activity Guidelines for Americans 2nd edition, there 

is a positive correlation between sedentary time and all-cause mortality
17

. A prospective survey 

study from NHANES reveals that, with the prolongation of sedentary time, the risk of all-cause 

mortality also increases
18

. Similarly, a longitudinal survey study conducted in China also 

identified an association between sedentary behavior and all-cause mortality
19

. In our model, 

sedentary behavior contributes to the model's inclination to predict adverse events, consistent with 

previous research. Furthermore, we found that sedentary behavior has a stronger impact on 

cardiovascular mortality, ranking higher in feature importance analysis. The relationships between 

lifestyle factors such as physical activity
20

, diet
21

, sleep
22

, and both all-cause mortality and 

cardiovascular mortality have been described in detail in previous literature and is consistent with 

our findings. Overall, machine learning models and traditional models have drawn similar 

conclusions regarding the relationship between lifestyle factors and mortality. 

Beyond lifestyle factors, age and gender, two fundamental demographic characteristics, play a 

significant role in the model. While a minority of studies may suggest that the role of age in their 

models is not statistically significant, the prevailing body of research, including our findings, 

consistently indicates that age plays a non-negligible role in outcome prediction
23,24

. Studies in 

various countries and regions consistently indicate that females tend to have lower mortality rates 

or death risks compared to males
25-27

. This finding is also reflected in our model, where the male 

gender feature inclines the model toward predicting a higher likelihood of death. This may be 

attributed to a higher proportion of females adopting healthier lifestyles compared to males
28

. 

Additionally, relatively higher estrogen levels in females may contribute to maintaining healthy 

vascular function
29

. Moreover, females might be more inclined to proactively address health issues 

and seek early treatment
30

. 

Leveraging the advantages of tree-based models in exploring interactions in machine learning
31

, 

we conducted additional analysis to scrutinize the interactions between various lifestyle factors 

and age. We discovered some phenomena worth discussing by exploring interactions in the model 

through SHAP (Shapley Additive explanations).. For example, as age increases, the impact of diet 

and sedentary behavior on adverse outcome events gradually strengthens, while the effect of 

physical activity diminishes. Specifically, the gap between recommended and not recommended 

diet and sedentary behaviors widens across different age groups, while the gap between 

recommended and not recommended physical activities gradually narrows. Given the limited 

literature on the interaction between lifestyle and age, more research is needed to confirm this 

finding. The occurrence of this finding may be attributed to the insufficient granularity in the 

categorization of physical activity. We classified physical activity as a categorical variable with 
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four levels. However, as participants age, although their physical activity levels decrease, they still 

fall within the same category as relatively younger individuals, resulting in attenuation of its 

impact. This can be observed in Supplementary Table 7; as age increases, the average exercise 

time in the same physical activity group gradually decreases. However, this does not imply that 

the role of physical activity can be disregarded in the elderly population. One reason is that low 

physical activity levels can exacerbate the adverse effects of sedentary behavior
32,33

.  

There are countless factors associated with mortality outcomes, and it's not practical to include 

all relevant variables in a predictive model. While lifestyle may not be the most significant factor 

in outcome prediction among many related variables, it possesses an excellent 

feature—modifiability. Policymakers or healthcare professionals can raise public awareness and 

guide individuals toward healthier lifestyles through various means such as education and 

outreach. Our model enables users to predict mortality based on their current conditions, serving 

as a warning and reminder. This functionality assists users in moving towards healthier lifestyle 

changes. That's why we chose to establish a predictive model for lifestyle-related mortality rates. 

Strength and limitations 

This research has several advantages and limitations that need to be acknowledged. We utilized 

sufficient data and implemented measures such as 10-fold cross-validation to ensure and validate 

the stability of the model. However, it's important to note that our data is derived from a single 

cohort, and the effectiveness of the model lacks external validation. This study is a prospective 

cohort study, and the reliability of causal inference is relatively strong. However, during the 

follow-up process, a small fraction of participants were lost to follow-up (LTFU) or withdrew 

from the study for various reasons, leading to the possibility of not capturing the occurrence of 

outcome events. To the best of our knowledge, this study represents the first attempt to apply ML 

algorithms to explore the relationship between lifestyle and mortality. Additionally, we leveraged 

the advantages of tree models to investigate interactions in this context. However, inferences about 

the role of features based on ML only describe the features' impact on outcome prediction within 

the model and may not necessarily reflect their real-world effects. The actual effects require 

further assessment in conjunction with domain expertise. 

Conclusion 

By employing modifiable lifestyle factors and readily available indicators, we effectively 

predicted overall mortality and cardiovascular disease mortality using the XGBoost model. This 

model can serve as a valuable predictive tool to encourage individuals to modify unhealthy 

lifestyles and prevent adverse events. 
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Table 1 Baseline characteristics of participants 

 All  

(n=7921) 

Live  

(n=6010) 

Dead 

(n=1911) 

Dead cause of cardiovascular  

(n=585) 

Age(years) 60.79±12.18 57.55±10.95 70.97±10.05‡ 72.75±9.52‡ 

Male 3866(48.81%) 2800(46.59%) 1066(55.78%) 322(55.04%) 

BMI(Kg/m2) 28.57±7.13 29.01±6.83 27.2±7.86‡ 27.28±8.26‡ 

Education level   †  

  Less Than 9th Grade 1287(16.25%) 929(15.46%) 358(18.73%) 106(18.12%) 

  9-11th Grade 1318(16.64%) 931(15.49%) 387(20.25%) 127(21.71%) 

  High School Grad/GED or Equivalent 1853(23.39%) 1381(22.98%) 472(24.70%) 153(26.15%) 

  Some College or AA degree 1937(24.45%) 1513(25.17%) 424(22.19%) 122(20.85%) 

  College Graduate or above 1526(19.27%) 1256(20.90%) 270(14.13%) 77(13.16%) 

Ethnicity   ‡ ‡ 

  Mexican American 1256(15.86%) 1095(18.22%) 161(8.42%) 34(5.81%) 

  Other Hispanic 825(10.42%) 689(11.46%) 136(7.12%) 46(7.86%) 

  Non-Hispanic White 3961(50.01%) 2786(46.36%) 1175(61.49%) 372(63.59%) 

  Non-Hispanic Black 1537(19.40%) 1165(19.38%) 372(19.47%) 110(18.80%) 

  Other Race - Including Multi-Racial 342(4.32%) 275(4.58%) 67(3.51%) 23(3.93%) 

The ratio of household income to 

poverty line 

2.33±1.72 2.45±1.78 1.94±1.47‡ 1.93±1.43‡ 

Hypertension 4453(56.22%) 3048(50.72%) 1405(73.52%)‡ 456(77.95%)‡ 

Diabetes   ‡ ‡ 

  no diabetes 5856(73.93%) 4678(77.84%) 1178(61.64%) 346(59.15%) 

  diabetes 1557(19.66%) 977(16.26%) 580(30.35%) 190(32.48%) 

  Prediabetes 508(6.41%) 355(5.91%) 153(8.01%) 49(8.38%) 

Close relative heart attack 1322(16.69%) 946(15.74%) 376(19.68%)‡ 125(21.37%)‡ 

Close relative diabetes 3455(43.62%) 2688(44.73%) 767(40.14%)‡ 227(38.80%)‡ 

non_HDL (mmol/L) 3.57±1.31 3.69±1.27 3.2±1.36‡ 3.17±1.35‡ 

CRP 0.42±0.86 0.38±0.73 0.53±1.17 0.53±1.09 

diet score 47.55±16.59 48.37±16.07 44.99±17.88‡ 44.08±18.51‡ 

physical level   ‡ ‡ 

  inactive 2825(35.66%) 1820(30.28%) 1005(52.59%) 316(54.02%) 

  insufficient active 1129(14.25%) 863(14.36%) 266(13.92%) 80(13.68%) 

  active 949(11.98%) 765(12.73%) 184(9.63%) 66(11.28%) 

  highly active 3018(38.10%) 2562(42.63%) 456(23.86%) 123(21.03%) 

Sedentary minutes 331.98±411.55 317.34±403.55 378.01±432.64‡ 374.89±194.81‡ 

sleep level   ‡ ‡ 

  Poor 1586(20.02%) 1123(18.69%) 463(24.23%) 134(22.91%) 

  intermediate 396(5.00%) 265(4.41%) 131(6.86%) 48(8.21%) 

  optimal 5939(74.98%) 4622(76.91%) 1317(68.92%) 403(68.89%) 

Smoking   ‡ ‡ 

  No smoking 3946(49.82%) 3175(52.83%) 771(40.35%) 269(45.98%) 

  Smoking before 2495(31.50%) 1718(28.59%) 777(40.66%) 230(39.32%) 

  Smoking 1480(18.68%) 1117(18.59%) 363(19.00%) 86(14.70%) 
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Alcohol consumption per day 3.99±14.33 4.31±12.83 2.96±18.24‡ 3.36±23.74‡ 

Continuous variables as mean ± SD, categorical variables as n (%).  

†:p<0.01; ‡:p<0.001 vs. participants alive in follow-up,  

unpaired Student’s t-test or Mann-Whitney U test for continuous variables, Chi-squared or Fisher’s exact test for categorical variables 
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Table 2 AUC score of all models 

 The AUC of the optimal parameter combination 

 in the training cohort 

The AUC of the optimal parameter combination  

in the testing cohort 

 All-cause mortality Cardiovascular mortality All-cause mortality Cardiovascular mortality 

Logistic Regression 0.851 0.829 0.841 0.822 

Ridge Regression 0.85 0.826 0.841 0.829 

SVM 0.854 0.8 0.845 0.792 

Random Forest 0.854 0.853 0.842 0.827 

XGBoost 0.875 0.848 0.856 0.829 
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