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ABSTRACT 

Because humans age at different rates, a person’s physical appearance may yield insights into their biological age and 

physiological health more reliably than their chronological age. In medicine, however, appearance is incorporated into 

medical judgments in a subjective and non-standardized fashion. In this study, we developed and validated FaceAge, 

a deep learning system to estimate biological age from easily obtainable and low-cost face photographs. FaceAge was 

trained on data from 58,851 healthy individuals, and clinical utility was evaluated on data from 6,196 patients with 

cancer diagnoses from two institutions in the United States and The Netherlands. To assess the prognostic relevance 

of FaceAge estimation, we performed Kaplan Meier survival analysis. To test a relevant clinical application of FaceAge, 

we assessed the performance of FaceAge in end-of-life patients with metastatic cancer who received palliative 

treatment by incorporating FaceAge into clinical prediction models. We found that, on average, cancer patients look 

older than their chronological age, and looking older is correlated with worse overall survival. FaceAge demonstrated 

significant independent prognostic performance in a range of cancer types and stages. We found that FaceAge can 

improve physicians’ survival predictions in incurable patients receiving palliative treatments, highlighting the clinical 

utility of the algorithm to support end-of-life decision-making. FaceAge was also significantly associated with 

molecular mechanisms of senescence through gene analysis, while age was not. These findings may extend to diseases 

beyond cancer, motivating using deep learning algorithms to translate a patient’s visual appearance into objective, 

quantitative, and clinically useful measures. 

 

 

INTRODUCTION 

Emerging evidence suggests that people age at different rates. Interpersonal differences in genetic and lifestyle 

factors such as diet, stress, smoking, and alcohol usage have been shown to influence the aging process, and affect 

DNA methylation status 1–3, telomere length 4–6, immune and metabolic markers of chronic inflammation, and gene 

and protein expression patterns 7–9. There is no one single clock that measures biological age directly, but 

establishing biomarkers that correlate with survival time (i.e. time until death) could have clinically relevant 

applications. Finding an appropriate surrogate of a person’s biological age may provide a better predictor of their 

physiological health and life expectancy than chronological age. This is especially important in medicine, where both 

diseases and treatments can cause cellular damage and accelerate the aging process, and an accurate estimation of 

the biological age could support treatment decisions and allow better quantification of the relative risk-benefit ratio 

of proposed treatments. For example, a fit 75-year-old whose biological age is ten years younger than their 

chronological age may tolerate and respond to treatment better and live longer than a 60-year-old whose biological 

age is ten years older than their physical age.  

In current clinical practice, a physicians’ overall impression of a patient constitutes an integral part of the physical 

exam. It plays a significant role in clinical decision-making in terms of estimating prognosis and weighing the benefits 

and risks of diagnostic procedures and treatment. However, this is a particularly subjective assessment of functional 

status or frailty and only a rough estimation of the biological age of a patient 10. Especially in oncology, where the 
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therapeutic window is often narrow, and the treatment itself can worsen mortality rates, a decision to treat requires 

accurately estimating whether the patient would be healthy enough to tolerate treatment and live long enough to 

benefit from it. Also, we might expect a higher biological age for cancer patients because of the combined impact of 

the disease and treatment toxicity. Unfortunately, oncologists have to make these complex treatment decisions 

without knowing the exact biological age of a patient, relying instead on subjective performance status estimates, 

contributing to a well-documented poor ability to predict the outcome of their patients 11–13. Therefore, there is a 

compelling need for quantitative methods to improve patient stratification and support physicians in this complex 

decision-making process for appropriate treatment selection. Such an objective measure could also allow for more 

accurate objective stratification within trials and better translation of results to patients in the real world. 

Furthermore, this approach could help decipher the biological processes between premature aging and identify 

individuals that age faster and are at increased risk of diseases.  

We hypothesize that a person’s biological age is reflected in their facial characteristics and that deep learning 

algorithms can capture this information from easily obtainable photographs automatically. Such an approach may 

provide a more precise measure of a patient’s physiological status than chronological age, providing key information 

for precision medicine as an actionable clinical biomarker and prognostication factor. Early evidence for this was 

presented recently by Xia et al. 14, in which faces of healthy individuals were measured using a specialized 3-

dimensional imaging device, and demonstrated that these data are associated with molecular markers of aging. The 

authors did not, however, investigate this method in the clinical setting nor its associations with clinical outcomes. 

Outside of medicine, many academic and commercial institutions are exploring deep learning algorithms to estimate 

a person’s age and gender from face photographs. The end goal of these efforts is frequently in the realm of 

marketing and social media to predict end-user habits or preferences 15–17, but many datasets and algorithms are 

readily available and potentially usable for clinical applications. 

In this study, we have leveraged recent advances in deep learning algorithms applied to face photographs to 

estimate a person’s biological age and evaluated its performance in independent clinical datasets from two trans-

Atlantic institutions involving a broad spectrum of cancer patient populations (see Figure 1). We have shown for the 

first time that deep learning can estimate biological age from commonly used and easily obtainable face 

photographs in a clinical context and that this information is associated with medical illness and survival 

prognostication. Our results demonstrate that face photographs can be used as a novel biomarker source for helping 

to estimate life expectancy in cancer patients across the disease types and prognoses commonly encountered in an 

oncology clinic. Furthermore, in end-user experiments, we demonstrate that deep learning-quantified biological age 

can improve clinician prognostication at the end of life. Our findings motivate the further development of easily 

translatable deep-learning applications to quantify biological age and inform treatment decision-making for cancer 

and other medical conditions.  
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RESULTS 

FaceAge training and testing across gender and race | We have leveraged recent advances in deep learning 

algorithms to develop a deep learning system, termed “FaceAge,” to estimate the biological age from a single frontal 

face photograph as input (see Fig. 1a). First, a deep learning network automatically localizes the face within the 

picture; next, a second deep learning network uses this extracted image as input to estimate the age. The deep 

learning system was trained and tested to predict age in a dataset of 56,304 presumed healthy individuals 

(particularly politicians, actors, and other well-known people). We assume that the people included in this cohort are 

of average health (i.e., having chronological age close to their biological age). This dataset was manually curated and 

an older chronological age range was selected for quality assurance, reflecting the clinical oncology population (see 

Fig. 1b). As a technical validation, we evaluated the performance of FaceAge on face photographs obtained from an 

independent dataset, UTKFace (UTK) (n = 2,547) 42. We found comparable performance in all gender and ethnic 

groups with chronological age being close to FaceAge (see appendix p. 5).  

 

Illness and Lifestyle factors influence FaceAge | To assess the clinical relevance of FaceAge estimates in patients 

with a cancer diagnosis, we performed detailed experiments in three separate clinical cohorts from two institutions 

(see Fig. 1b-c; appendix p. 10-11). All patients had a face photograph acquired before radiation treatment as part of 

the routine clinical workflow. We found that cancer patients had a significantly higher FaceAge than chronological 

age (n = 6,367, mean increase of 4.79 years, paired two-sided t-test, P < 0.001, Fig. 2a), indicating that cancer 

patients, on average, look older compared to their age. This was consistent across cancer types. This contrasted with 

the results in the presumed healthy populations. Firstly, in the UTK validation dataset, we found a significantly 

smaller difference between FaceAge and age (mean increase of 0.35 years) compared to cancer cohorts (unpaired 

two-sided t-test, P < 0.001), indicating that individuals in the general population look more similar to their age, as 

expected. Additionally we analyzed the faces of patients treated for benign conditions, as well as ductal carcinoma 

in-situ (DCIS) patients, with DCIS being a precancerous condition of the breast in which approximately 30% of 

patients go on to develop invasive breast cancer if left untreated. The non-cancerous cohorts had a smaller FaceAge-

to-age gap in comparison to cancer patients (median difference 3.41 years compared to 4.55 years for cancer 

patients, P < 0.001), with the benign patients having FaceAge closest to chronologic age (median difference 1.95 y 

compared to cancer patients, P < 0.0001), and DCIS patients having intermediate FaceAge values (median 3.86 y 

compared to cancer patients, P = 0.019) (see appendix p. 6), further supporting the claim that patients with cancer 

look older compared to individuals without cancer. 

To assess the effect of lifestyle factors, we compared the difference between FaceAge and age in current, former, 

and never smokers in the MAASTRO cohort. We found that current smokers look significantly older (mean increase = 

33.24 months; unpaired two-sided t-test, t = 4.78, 95% CI 1.63-3.91, P < 0.001) compared to former and never 

smokers (see Fig. 2b), which was consistent across cancer types (appendix p. 7). Interestingly, we did not find a 

significant difference between former smokers and never smokers (mean increase = 5 months; unpaired two-sided t-
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test, t = 0.96, 95% CI −0.44-1.28, P = 0.34), indicating there may be a reversible effect of smoking on facial aging 

characteristics. To assess the effect of weight, we compared FaceAge with body mass index (BMI) (see Fig. 2c and 

appendix p. 7). Although a statistically significant association (n = 1295; r = −0.0999; P < 0.001) was observed, the 

effect size was minimal, indicating only a weak relationship between FaceAge and body mass index. As the Eastern 

Cooperative Oncology Group (ECOG) performance status is used for clinical stratification, we compared the 

association of ECOG groups with the difference between FaceAge and age (see Fig. 2d and appendix p. 7). In both 

the MAASTRO and Harvard cohorts, we found no statistically significant differences (unpaired two-sided t-test, P > 

0.092) between the groups, indicating that FaceAge quantifies different biological information relative to the 

performance status of a patient.  

 

FaceAge is a biomarker for longevity across a wide spectrum of clinical settings | To assess the prognostic 

relevance of FaceAge estimation, we first assessed how FaceAge predictions associated with survival. The MAASTRO 

cohort contains a broad population of patients with a variety of non-metastatic cancer types and a wide range of 

prognoses (n = 4,906, median age = 67 [range = 22-94] years; median survival = 36.0 months). Kaplan-Meier survival 

analysis revealed good stratification of increasing mortality risk with increasing FaceAge risk groups (see Fig. 3a). In 

univariate analysis, all FaceAge risk groups showed significantly worse survival than the youngest-looking FaceAge 

risk group. This result remains significant after adjustment for age, gender, and tumor site for the two oldest-looking 

risk groups (see Fig. 3b). This was confirmed by assessing FaceAge as a continuous parameter, which demonstrated 

significant prognostic performance (P = 0.0013) after adjusting for age, gender, and tumor site in the whole cohort 

(see Fig. 3c and appendix p. 12). Analyzing specific cancer types, we found that FaceAge was significantly predictive 

in all cancer sites, which remained significant after correcting for age and gender for patients with breast cancer, 

genitourinary cancer, and gastrointestinal cancer (P < 0.05; see Fig. 3c).  

Next, we evaluated FaceAge in the Harvard-Thoracic cohort, a site-specific dataset with thoracic malignancies (n = 

573, median age = 69.0 [33.3-93.2] years; median survival = 16.9 months), of which the majority were non-small cell 

lung cancer (NSCLC) patients (n=450, 78.5%). Granular clinical data were available for these patients, which allowed 

for further investigation into the independent performance of FaceAge. Therefore, we investigated key clinical 

factors known to affect survival in lung cancer, including clinical stage, ECOG performance status, smoking history, 

gender, histology, and treatment intent. Although in univariate analysis, FaceAge was not significant, in multivariate 

analysis, FaceAge became statistically significant after adjusting for these clinical factors (per decade HR 1.15, 95% CI 

1.03-1.28, P = 0.0113, appendix p. 13). Adding FaceAge to the base model also added explanatory value (By doing 

incremental sensitivity analysis through the addition of individual covariates to the univariate model, the significance 

of FaceAge was unmasked by adjusting for Stage I lung cancer patients in particular (incrementally adjusted per 

decade HR 1.17, 95% CI 1.05-1.29, P < 0.003). FaceAge did not appear to be prognostic for these very early-stage 

patients, although other competing risk factors for death, such as comorbidities, could have a greater impact on this 

subgroup and account for the lack of prognostic power (e.g. many early-stage lung cancer patients receiving 

radiotherapy are not surgical candidates due to comorbidities, which is the gold standard treatment for early-stage 
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disease). Comparing these results to age, we found that chronological age was neither significant on univariate 

analysis nor after adjustment for multivariable clinical factors (per decade HR 1.08, 95% CI 0.97-1.21, P = 0.162). 

Furthermore, we observed a significant increase in model explanatory power when adding FaceAge to the 

multivariate model (log-likelihood ratio test (LLR), chi-squared statistic [1 deg freedom]: 6.501, P = 0.0108), while this 

was not observed when adding chronological age (LLR test, chi-squared statistic [1 deg freedom]: 1.965, P = 0.161). 

These results show that FaceAge consistently improves prognostication while age does not, and that FaceAge 

contains prognostic information that is not captured by other investigated clinical parameters.  

 

FaceAge can improve the performance of clinical models | As a direct and relevant clinical application of FaceAge, 

we assessed the performance of FaceAge in end-of-life patients with metastatic cancer that received palliative 

treatment. In these patients, clinical prediction models can help improve physicians’ decision-making as to whether 

or not to administer treatment, as well as the appropriate treatment intensity, both of which are largely a function 

of a physician’s impression of overall prognosis, performance status, and frailty. We assessed the independent 

prognostic performance of FaceAge in the Harvard-Palliative dataset (n = 717; median age = 65.2 years; median 

survival= 8.2 months). Covariates that are known to be related to survival in palliative cancer patients 27,43, such as 

performance status, number of hospitalizations and emergency room visits in the past three months, sites of 

metastatic disease, and the primary cancer type, were analyzed. FaceAge was found to be significant in both uni- and 

multivariate analysis (univariate per decade HR 1.10, 95% CI 1.01-1.21, P = 0.035; multivariate HR 1.12, 95% CI 1.02-

1.23, P = 0.021), whereas chronological age was not significant in either uni- or multivariate analysis (see appendix p. 

14-15). We also observed a significant increase in explanatory power by adding FaceAge to the multivariate model 

(LLR test, chi-squared statistic [1 deg freedom]: 5.439; P = 0.020), which was not observed when adding 

chronological age (LLR test, chi-squared statistic [1 deg freedom]: 2.548; P = 0.11). 

Next, we evaluated the additive performance of FaceAge to a clinically validated risk-scoring model for palliative 

patients. This TEACHH model 27 was originally developed to estimate the survival time of palliative cancer patients by 

using a clinical risk-scoring system based on six covariates: type of cancer, ECOG performance status, presence of 

liver metastasis, number of prior palliative chemotherapy courses, age at treatment, and number of previous 

hospitalizations. In the Harvard-Palliative cohort, this model demonstrated significant performance to stratify 

patients in different risk groups. If we substituted chronological age with FaceAge, we found this significantly 

increased the model’s discriminatory power, as quantified by a significantly increased log-likelihood ratio when 

comparing the three risk categories of the TEACHH model against the baseline hazard for FaceAge (LLR test, chi-

squared statistic [2 deg freedom]: 75.1; P < 10-16), compared to age (LLR test, chi-squared statistic [2 deg freedom]: 

63.3; P < 10-13). This was also reflected in better separation of risk groups by survival, as substituting FaceAge 

lowered the median survival (MS) and increased the hazard ratio (HR) of the highest risk group (FaceAge high-risk 

group: MS 2.5 months, HR 2.74, P < 0.001;  chronologic age high-risk group: MS 2.9 months, HR 2.43, P < 0.001), and 

raised median survival and decreased HR of the lowest risk group (FaceAge low-risk group: MS 2.2 years, HR 0.22, P < 

0.001; chronologic age low-risk group: MS 1.9 years, HR 0.28,  P < 0.001).  
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FaceAge supports physicians’ clinical decision-making ability at the end-of-life | To compare FaceAge with the 

ability of humans to predict the overall survival of metastatic cancer patients, we performed a survey using 100 

cases randomly drawn from the Harvard Palliative cohort. First we assess the performance of humans for estimating 

six-month survival from only face photographs, without the benefit of additional clinical information, by asking ten 

medical and research staff members at Harvard-affiliated hospitals (5 attending staff physicians who were all 

oncologists or palliative care physicians, 3 oncology residents, and 2 lay [non-clinical] researchers), to predict 

whether the patient would be alive at 6 months (an important endpoint to guide decision-making at the end-of-life). 

Here, we found that attending physicians performed the best overall, while there was a notable performance 

difference between individuals within each group (Fig. 4a). This was also shown by Kaplan-Meier analysis, 

demonstrating that the highest-performing attending physician predicting six-month survival was able to stratify 

patients into high and low-risk groups that demonstrated significant survival differences (median survival:  high-risk 

group 4.8 months, low-risk group 13.2 months,  log-rank test, P < 0.005), whereas the lowest-performing physician 

did not (median survival: high-risk group 7.7 months, low-risk group 13.2 months, P = 0.49) (Fig. 4b).  

Next, to evaluate the complementary value of FaceAge with other clinical data (primary cancer diagnosis, age at 

treatment, performance status, location of metastases, number of emergency visits, number of hospital admissions, 

prior palliative chemotherapy courses, prior palliative radiotherapy courses, time to first metastasis, and time to 

oncology consult), we trained a FaceAge Risk Model, which combined the clinical factors with FaceAge to predict 

survival probability. In successive survey rounds, we asked the clinical survey-takers to predict six-month survival 

based on a face photo alone, the face photo provided together with the patient clinical chart information, and then 

with the addition of the FaceAge Risk Model (Fig. 4c). Here, we found that human performance significantly 

increased (P < 0.01) if we provided face photographs combined with clinical chart information (AUC = 0.74 [0.70-

0.78]), compared to a face photograph only (AUC = 0.61 [0.57-0.64]). However, human performance was improved 

even further (P < 0.01) when the FaceAge Risk Model was made available to clinicians in addition to chart 

information (AUC = 0.80 [0.76-0.83]), with the latter performance not being statistically different (P = 0.55) from the 

FaceAge Risk Model alone (AUC = 0.81 [0.71-0.91]). Similar results were found for overall survival as quantified by 

the concordance index.  

In general, consensus between doctors and risk models was high, and performance accuracy was good for the 

straightforward cases, whereas consensus and accuracy suffered in the more challenging cases with low observer 

agreement. The best individual performance was seen with the inclusion of the FaceAge risk model, which helped 

convert some of the clinicians’ inaccurate predictions into accurate ones. 

 

FaceAge demonstrates association with senescence genes | To evaluate whether FaceAge has the potential of 

being a biomarker for molecular aging, we performed a gene-based analysis to measure its association with 

senescence genes in comparison with chronological age. The analysis was conducted on 146 individuals from the 
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Harvard Thoracic Cohort who were diagnosed with non-small cell lung cancer and profiled using whole-exome 

sequencing. We evaluated 22 genes known to be associated with senescence (appendix p. 9), and we found that 

FaceAge was significantly associated with CDK6 after adjusting for multiple comparisons (false discovery rate of 0.25) 

(Fig. 4d). CDK6 has an important role in regulating the G1/S checkpoint of the cell cycle through phosphorylation and 

activation of the Rb (retinoblastoma) tumor suppressor protein by complexing with CDK4 and Cyclin D. By contrast, 

no genes showed a significant association with chronological age after adjustment for multiple comparisons. While 

limited in scope to only a small set of preselected genes to conserve statistical power, this analysis illustrates the 

potential of using FaceAge to discover associations with genes related to biological aging, which are different from 

and may not be detected by chronological age. 

 

DISCUSSION 

The results of our work demonstrate that facial features captured in a photograph contain prognostic information 

related to the apparent age of a person, informing survival predictions in cancer patients. Our methodology, which 

relies on easily obtainable face photographs, improves upon the current standard of subjective visual assessment by 

clinicians. Moreover, we show for the first time that a deep learning model trained for age estimation on a healthy 

population can be used clinically to stratify sick patients according to survival risk based on their facial appearance, 

and that this novel biomarker is more predictive than patient chronological age. We found that cancer patients, on 

average, look approximately five years older than their stated age, and also have statistically higher FaceAge 

compared to clinical cohorts of non-cancer patients treated for conditions that are benign or precancerous. FaceAge 

was prognostic of survival time and provided additional explanatory power compared to chronologic age, even when 

FaceAge was adjusted for chronologic age in the same survival model. However, adjustment for chronologic age 

expectedly reduces the effect size (i.e., hazard ratio) of FaceAge, given the co-dependence, so the most appropriate 

way to deploy FaceAge in risk models is to substitute it for chronologic age. FaceAge outperformed age in univariate 

and multivariate analyses across several cancer sites and clinical subgroups, even after adjusting for known clinical 

risk factors. Notably, FaceAge performed well both in patients treated for curative intent, with life expectancies of 

several years, as well as in patients at end-of-life with an expected survival of weeks to months. We also 

demonstrated that FaceAge significantly improved the performance of a validated clinical risk-scoring model 27 for 

estimating survival in end-of-life patients who received palliative radiation treatment, a patient population for which 

there is a critical need to improve treatment decision-making utilizing such models. We showed clinician survival 

prediction performance improved when FaceAge risk model predictions were made available to them, especially 

among physicians with lower baseline performance. Lastly, we provided evidence from SNP gene analysis that 

FaceAge is correlated with molecular processes of cell-cycle regulation and cellular senescence, supporting the 

hypothesis that FaceAge is a biomarker that relates to biological aging, consistent with its interpretation as a 

modifier of survival time in a diseased population. We also found an inverse association of FaceAge with skeletal 

muscle, a known prognostic factor for mortality in cancer patients 44,45, indicating a link between FaceAge and 

patient frailty.  
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We selected oncology as the clinical focus of this paper because these patients are closely followed in terms of their 

survival outcomes, and their disease processes and treatments can significantly impact biological aging, with 

traditional clinical decision-making relying on clinicians’ largely subjective estimates of whether the patient would be 

fit enough to tolerate treatment. We further demonstrated the clinical applicability of our methodology by 

evaluating FaceAge over a wide spectrum of cancer types and stages commonly encountered in an oncology clinic, 

but with a focus on oncology patients who received radiotherapy, because, unlike other patients, these patients 

routinely have their face photograph taken as part of the treatment registration process.  

As clinicians currently have to base their decisions on scant information about the true biological age of a patient, 

relying instead on subjective measures such as performance status (e.g., Eastern Cooperative Oncology Group or 

Karnofsky performance score, usually ranked by a health care provider after obtaining verbal history about the 

patient’s level of functioning or coping, a task fraught with inter-rater reliability issues, reporting and recall bias) 

there is a compelling need for better biomarkers to estimate biological age. In turn, improved estimation of 

biological age can inform survival prediction, a very challenging task even among experienced oncologists 43. Indeed, 

clinicians are often not comfortable predicting and disclosing life expectancy 46, and are systematically over-

optimistic in their prognoses 11,46–48. We showed that FaceAge predictions improve oncologists’ ability to accurately 

estimate survival, which can help support patient-centered care by improving the accuracy of information provided 

during patient counseling, but even more crucially, it can help guide treatment decisions. This is not to say that the 

predictions of the FaceAge model should be used in isolation to make important life-and-death medical decisions, 

which would be ill advised. Rather, the purpose is to improve predictive power and accuracy of existing clinical risk 

models, whose power lies in combining aggregate clinical covariates so that the resulting outcome predictions are 

considerably more robust. To that end, we have studied and demonstrated the highly clinically impactful application 

of FaceAge in predicting survival at end-of-life in metastatic cancer patients by combining the model predictions with 

the covariates of the already-validated TEACHH model. Unnecessarily aggressive end-of-life medical interventions 

can negatively impact quality of life and increase health care expenditures, and prognostication with FaceAge may 

help clinicians provide their patients with more accurate prognostication to make better-informed decisions about 

care for a variety of end-stage diseases.  

Practical benefits of our methodology include easy implementation in the clinic. Our model can draw upon data from 

pre-existing electronic medical records available to the clinician, and a biological age estimate and related outcomes 

prediction can be computed in near real-time using a standard desktop computer or smartphone. Face photos are 

readily obtainable under most circumstances, and multiple images can be acquired before, during, and after 

treatment, and can be stored without using significant digital resources. Protocols can be implemented to 

standardize how digital face images are obtained so that the process can be rendered robustly reproducible. Even 

phone cameras may be utilized for image capture making accessibility straightforward. Some major electronic health 

record systems already have the capacity to directly and securely upload and store photographs taken on digital 

cameras, including phone cameras. 
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Early evidence supporting our main hypothesis that biological aging is reflected in facial characteristics was 

presented in the recent study by Xia et al. 14 In this study, the authors used a specialized 3-dimensional imaging 

device to obtain morphological face images of healthy individuals, and demonstrated that deep learning networks 

could infer molecular markers of aging based on lifestyle and dietary factors. They did not, however, investigate any 

direct association with clinical outcomes, and the requirement for specialized equipment used in their study might 

limit the widespread application of such a methodology. Our approach, which uses standard face photographs, 

provides an important improvement with respect to applicability of such methods in the clinical setting and beyond. 

Although many academic and commercial applications for estimating age and gender from face photographs have 

been explored, the end goal of these efforts frequently are tied to marketing and social media in order predict end 

user habits or preferences, whereas our objectives are clinically focused. We are the first to demonstrate the utility 

of face photographs as a novel biomarker source in medical applications by its association with medical illness and 

survival prognostication.  

A major strength of our study is that the FaceAge model was entirely trained on publicly-available, non-clinical 

databases. Such databases have the advantage of their large size and accessibility over smaller, more limited 

institutional datasets, thereby making the model more usable in a real-world setting. Institutional datasets tend to 

be highly restricted in terms of access, despite the benefit of face photographs being associated with clinical health 

parameters.  The standard approach to training deep-learning systems is to train a model on datasets that are very 

similar to the operational datasets. Although this may improve performance on the operational dataset, it comes at 

the expense of limited generalizability. Such models tend to be brittle in that they fail when applied on new datasets 

with differing characteristics from the training set. However, the performance of the FaceAge model explicitly relies 

on a presumed difference between healthy and diseased populations, with the hypothesis that the predicted age 

differential reflects a component unrelated to model error but is instead attributable to the intrinsic difference 

between age and biological age. The fact that stratification of this age difference has prognostic value in terms of 

identifying higher- and lower-mortality risk groups of cancer patients in our study, drawn from three separate, 

heterogeneous datasets originating from two trans-Atlantic institutions, supports not only our hypothesis, but also 

the generalizability of our method, which is remarkably agnostic to disease site, treatment type, and disease severity 

with respect to cancer patients. 

The training data we used do contain expected limitations and possible intrinsic biases. Firstly, as mentioned above, 

the online image databases used for training lack associated health information. We made the implicit assumption 

that the subjects in the training data were of average health for their age (that is, they have a biological age similar 

to their age), though this is clearly not true in all cases. Moreover, the images contain a significant proportion of 

public individuals and well-known figures such as film actors and politicians, which in and of itself might introduce a 

systematic biological age selection bias, because such individuals might have a different biological age compared to 

an age-matched cohort of “non-famous” peers, due to different lifestyle and socioeconomic factors. Actors in 

particular might have other cosmetic or facial alterations that could affect biological age estimation from such 

photographs, in addition to more frequent digital image touch-ups. While we do not have statistics on how many of 
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the photos included cosmetic alterations of the physical or digital variety, it is unlikely that it would represent a 

significant proportion of the whole, as the IMDb-Wiki database contains many photos of people other than actors, 

including writers, philanthropists, educators, scientists and people from all domains of society. As well, the large size 

of the heterogeneous dataset tends to average out potential biasing factors. Because the deep learning network is 

trained to predict the chronological age of a large cross-section of individuals with no expected consistent age-

dependent pattern of facial alterations, the network would be anticipated to ignore such variations when forming 

pattern associations with age. Furthermore, photos in the wild (i.e. the public domain) are non-standardized and 

heterogeneous, meaning differences in image sizes, resolution, numbers of people in the image, backgrounds, 

clothing worn, and other photographic artifacts or distortions will be present in many of the training images. Due to 

the large size of the training dataset, combined with our manual image quality assurance, the network training was 

able to successfully account for these artifacts. Indeed, we demonstrated the robustness of the model to image 

perturbations using sensitivity analysis. Moreover, the noisiness of the training data even likely improved the 

generalizability of our model, as demonstrated by the FaceAge model’s significant performance in the real-world 

clinical datasets.  

The use of facial photographs in our analyses presents multiple ethical considerations. Perhaps the most obvious is 

that facial photographs are uniquely identifying, and in the case of their use in medical charts, tied to sensitive 

personal health information. Although a model trained both on patient face photographs and patient chart data 

might demonstrate better predictive performance than one trained on publicly available face images, sharing both 

the training data and the derived models could lead to the ability to re-create identifying face images through 

backwards-inferring the original training datasets. For such a model, clinical deployment for healthcare-related 

outcomes prediction would necessitate a secure institutional setting using appropriate privacy protocols that are 

similar to those already in place for other sensitive electronic medical records. Another concern is that patients may 

not realize their face photograph is part of the medical record, and therefore may not have an expectation that 

these images would be used to inform survival prediction, raising potential concerns with regard to informed 

consent and secondary use of data. In addition to infringement of patients’ autonomy and right to privacy, 

inappropriate implementation of such a model could have unforeseen consequences including impacting the 

physician-patient relationship and affecting care decisions beyond the use cases studied here. Therefore, it is 

imperative to clearly communicate to patients the specific clinical goals and reasons for using such face image data, 

and obtain explicit informed consent before these data are used in the clinical setting. Finally, the intended usage of 

the model should be published alongside the model itself, and the model’s application in clinical or research settings 

should not extend beyond the defined scope. 

Outside of healthcare, it is possible to envision several potential misuses of such a model. These include health, 

disability, and life insurance payors incorporating estimated survival metrics from face images to determine the 

insurability of prospective policy holders, or a technology or media company promoting health or lifestyle products 

with targeted advertising based on client biological age estimation. Strong regulatory oversight would be a first 

measure toward mitigating this problem. Another important ethical concern is racial or ethnic bias, which has been 
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problematic for automated face recognition software, especially in legal and law enforcement applications 49. The 

potential for racial bias is addressed in our model in several ways: Firstly, we demonstrated that the model age 

predictions are fairly balanced across different ethnic groups drawn from the UTK validation dataset, which is one of 

the most ethnically diverse age-labeled face image databases available publicly and therefore appropriate for 

assessing model performance in this regard, with non-Caucasian individuals comprising approximately 55% of the 

database 50; secondly, ethnicity was treated as a covariate that we adjusted for in multivariable analysis of the 

clinical datasets, which revealed that the FaceAge measure was minimally impacted by ethnicity. Our model is 

configured for the task of age estimation, which in our opinion has less embedded societal bias than the task of face 

recognition 51. However, it will be important to continue to assess for bias in performance across different 

populations, as differential treatment decision-making as a result of its predictions could amplify existing health 

disparities. Institutional and governmental oversight of how such models are regulated and deployed, with careful 

prescription of their intended use, and educational support for clinical end-users (including appropriate use case and 

model failure modes) will be crucial to ensure that patients can benefit from their incorporation into clinical care 

while minimizing the risk of abuse, unintended or otherwise. 

Future work involving FaceAge will focus on improving the predictive power and accuracy of the methodology, 

broadening it to other applications within and beyond oncology. As face photographs can easily be obtained, serial 

data collection prior, during, and after treatment should be incorporated into the model to assess how FaceAge 

varies over time, and what factors might be driving these changes. Incorporating other photographic or videographic 

image data beyond the face to enable characterization of body morphology, posture, skin texture, presence of 

edema, etc. might lead to more accurate biological age estimation and improve model predictive power. 

Furthermore, these measures could be combined with other known and emerging biological correlates of aging, 

including molecular markers (obtained from the peripheral blood, for example 52,53), gene expression 8, body 

composition 54, microbiome 55, and other imaging modalities such as x-rays 56, CT 57 or MRI 58. We have already 

demonstrated that FaceAge is correlated with genes implicated in cellular senescence, as well as with skeletal 

muscle index, a body composition measure already known to be prognostic of survival in cancer patients 44,45. By 

combining independent predictive markers together with FaceAge, it may be possible to provide a more holistic and 

accurate view of a person's aging process, because different tissues, organ systems and individuals age at different 

rates in a manner that is complex and nonlinear, dependent on multiple interacting factors that are both internal 

and external.  

Extending the method to other patient populations outside of oncology (for example, assessing whether a diabetes 

patient would benefit from a new anti-hyperglycemic agent, or whether an elderly orthopedic patient would tolerate 

hip replacement surgery) should be explored, because biological age would be expected to play a role in modulating 

the impact of a wide range of disease processes. Estimation of biological age could provide a time-dependent 

window on health status, which can fluctuate and even reverse course, while chronological age is a monotonically 

increasing function of time regardless of health status. Therefore, it may be possible to use FaceAge or similar 
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biological age markers to track the effect of lifestyle interventions. By stopping smoking, starting to exercise, or 

changing diet, for example, it may be possible to quantify the slowing or reversal of biological aging. 

In conclusion, we have demonstrated that a deep learning model can enhance survival prediction in cancer patients 

through analysis of face photographs via estimating patients’ biological age from their facial features. We have 

demonstrated that deep learning-based FaceAge estimates are prognostic in a wide range of cancer types and 

clinical settings, and can be integrated with existing clinical chart information and clinical risk-scoring models to 

improve clinicians’ prediction performance. Further research and development must be carried out, however, before 

this technology can be effectively deployed in a real-world clinical setting. 

 

 

MATERIALS AND METHODS 

Datasets | A detailed description of the datasets used in this study can be found in appendix p. 2-3.  

FaceAge Deep Learning Pipeline | The FaceAge deep learning pipeline comprises two stages, a face location stage 

and a feature encoding stage. The first stage pre-processes the input data by locating the face within the photograph 

and defines a bounding box around it, then crops the image around the face, resizing and normalizing it. The second 

stage takes the extracted face image and feeds it into a convolutional neural network (CNN) that encodes image 

features, which through regression yield a continuous FaceAge prediction as the output. The face localization stage 

utilizes a fully-trained multi-task cascaded convolutional neural network developed by Zhang et al 18. The network is 

composed of three sub-networks, namely a proposal network (P-net) that creates an initial set of bounding box 

candidates, of which similar boxes are merged then further refined (R-net) using bounding box regression and face 

landmark localization, then the third stage (O-net) makes more stringent use of face landmarks to optimize the final 

bounding box, achieving a test accuracy of 95%. Once the face has been extracted from the photograph, the image is 

resized to a standard set of dimensions and pixel values normalized across all RGB channels. The feature encoding 

stage makes use of the Inception-ResNet v1 architecture 19, pre-trained on the problem of face recognition 20,21. The 

convolutional neural network creates a 128-dimensional embedding vector as a low-dimensional representation of 

face features. To develop a model for age regression, a fully-connected output layer was included that uses a linear 

activation function. Transfer learning was then applied to tune the weights of the last 281 of the 426 Inception-

ResNet layers (Inception Block B1 onward) in addition to the fully-connected output layers, using the augmented and 

randomly rebalanced training dataset of age-labeled face images derived from the IMDb-Wiki database. Training was 

carried out on paired GPUs using Keras with Tensorflow backend, applying stochastic gradient descent with 

momentum for backpropagation, minimizing mean absolute error (MAE), with batch size of 256, batch 

normalization, dropout for regularization, and initial learning rate of 0.001 with incremental reduction on plateauing 

of error rate. The model development set was subdivided using random partitioning into 90% training, 10% testing. 

Model performance was good for the clinically relevant age range (60 years or older) that underwent manual 

curation and quality assurance (MAE = 4.09 years).  
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Statistical and Survival Analysis | Independent model validation was carried out by examining age estimation 

performance on the publicly-available UTKFace dataset (see appendix p. 5), and on clinical datasets from MAASTRO 

and Harvard by comparing FaceAge predictions for non-cancerous clinical cohorts to predictions from the oncology 

clinical datasets (see appendix p. 6). Statistical and survival analyses were performed in Python 3.6.5 using the 

Lifelines library, as well as NumPy and SciPy libraries, and in the open-source statistical software platform, R. The 

clinical endpoint was overall survival (OS). Actuarial survival curves for stratification of risk groups by overall survival 

were plotted using the Kaplan Meier (KM) approach 22, right-censoring patients who did not have the event or were 

lost to follow-up. All hypothesis testing performed in the study was two-sided, and paired tests were implemented 

when evaluating model predictions against the performance of a comparator for the same data samples. Differences 

in KM survival curves between risk groups were assessed using the logrank test 23. Univariable and multivariable 

analysis via the Cox proportional hazards (PH) model 24 was carried out to estimate and adjust for the effect of 

clinical covariates such as gender, disease site, cancer stage, smoking status, performance status, treatment intent, 

time to treatment as well as the number of courses of radiotherapy and chemotherapy in non-curatively treated 

patients. Effect size is related to the magnitude of the hazard ratio (HR), and confidence intervals for the hazard 

ratios in Cox univariate and multivariate regressions were computed to estimate the uncertainty in the effect size of 

the covariates. Compared to the Harvard Thoracic and Palliative datasets, the MAASTRO dataset has far fewer 

covariates with which to adjust the model, limited to age, gender, and cancer site (primary diagnosis). However, due 

to the large sample size of the MAASTRO dataset compared to the smaller Harvard datasets, there was sufficient 

statistical power to investigate FaceAge and age variables together in the same model for multivariate analysis in 

order to determine if FaceAge had additional prognostic information that was complementary to age. The 

correlation coefficient between FaceAge and age was below 0.75, so we did not include an interaction term in the 

Cox PH analysis (see appendix p. 12). To assess the change in the explanatory power of a model by the addition of a 

study variable (e.g., FaceAge, age, etc.), as well as overall model fit, the log-likelihood ratio test was utilized 24. The 

robustness of survival predictions was assessed by the concordance index 24,25 and by the area under the curve (AUC) 

of the receiver-operating characteristic (ROC) 25,26. For the Harvard Thoracic cohort, BMI was excluded from the 

multivariate analysis due to the small number (n = 106) reporting on that covariate. For the Harvard Palliative, a 

forward selection threshold of 0.2 for the P-value was used, to avoid overfitting the model due to the large number 

of possible covariates in relation to the number of events.  

In addition to univariate and multivariate analysis, for the Harvard Palliative treatment cohort, the performance of 

FaceAge was compared directly to age by substituting one variable for the other in a clinically validated risk-scoring 

prognostic tool for estimating life-expectancy of palliative cancer patients treated with radiotherapy, called the 

TEACHH model 27. The risk-scoring tool was developed by Krishnan et al. to identify which patients might benefit 

from palliative radiotherapy (i.e. those predicted to survive longer than 3 months). All TEACHH model variables 

except age were kept the same (type of cancer, Eastern Cooperative Oncology Group (ECOG) performance status, 

prior palliative chemotherapy, prior hospitalizations, and presence of hepatic metastases) in order to enable fair 

comparison of the effect of substituting FaceAge in place of the age. Scoring rules were kept identical to the original 
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TEACHH model. By adding up the score, the individual is stratified into one of three risk categories (A: low risk (1-2 

points), B: medium risk (2-4 points), C: high risk (5-6 points)), with highest and lowest risk groups predicting for 

survival of 3 months or less, versus 1 year or greater, respectively, which are clinically relevant survival endpoints for 

palliative patients. We performed Kaplan-Meier analysis on the respective risk models incorporating FaceAge versus 

age, overlaid to show the relative change in actuarial survival curves, and quantified the differential contribution of 

FaceAge to the explanatory power of the TEACHH model compared to age, using the log-likelihood ratio, and by 

computing the relative change in magnitude of the hazard ratios for the TEACHH model’s three risk categories (see 

appendix p. 8).  

Establishing evidence for FaceAge as a biomarker for molecular aging |  We evaluated the association of single-

nucleotide polymorphisms (SNPs) with FaceAge or chronological age by running a gene-based analysis. Lymphocyte 

DNA from blood samples were collected and whole exome sequencing was conducted using the Illumina Infinium 

CoreExome Bead Chip. For quality control of the genotype data, we removed variants that violated Hardy-Weinberg 

Equilibrium and had a missing rate of more than 5%, and focused on variants with a minor allele frequency greater 

than 0.05. From literature review, we found the following known senescence genes: TERT, ATM, CDKN1A, CDKN2B, 

TP53, IGFBP7, and MAPK10 28–37. In order to identify a more inclusive network of senescence genes using a data-

driven approach, we inputted the known senescence genes into GeneMania 38, a platform that finds other genes 

related to those provided, to build a candidate network of senescence genes. GeneMania found a network of 27 

genes (appendix p. 9), and 22 of them had evaluable SNPs in our genotype dataset. We ran the Burden test using the 

GENESIS package 39 in R for the gene-based analysis. A gene-based analysis considers the aggregate effect of multiple 

variants in a test, and we used the burden test to perform this analysis 40. The burden test collapses information of 

variants into a single genetic score 41, and the association of this score and the outcome of interest, FaceAge or 

chronological age, is tested. We provided the effect size with 95% confidence intervals and score test p-values for 

the genes.  
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FIGURES 
 

 
 

 

 
 
Fig. 1. Overview of the study methodology.  a) Illustration of the FaceAge algorithm that uses a single photograph of the face as 
input. First, a convolutional neural network localizes the face within the photograph, and next, a second convolutional neural 
network quantifies face features and uses these to predict the FaceAge of the person.  b) Overview of the datasets used in this 
study. The FaceAge algorithm was developed using a training dataset with presumed healthy individuals with the assumption 
that their age closely approximates biological FaceAge. This dataset was manually curated for individuals of 60 years and older 
to enhance the dataset quality for the age range of the clinical oncology population. The performance of the algorithm was 
validated across genders and ethnicities in the UTK dataset. Three independent cohorts of cancer patients covering a large 
spectrum of cancer patients were used to assess the clinical relevance of the algorithm.  c) Overview of the clinical experiments 
performed in this study to assess the clinical utility of FaceAge. The website https://thispersondoesnotexist.com was used to 
generate the example face photo. 
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Fig. 2. Application of FaceAge in cancer patients.  a) Difference between FaceAge and age across cancer types and datasets to 
investigate if individuals look older or younger compared to their age. Analyzing all cancer patients included in our analysis, we 
found that, on average, cancer patients look older than their age. This difference was significant when comparing these results 
to the reference UTK dataset of healthy individuals 60 years and older.  b) Difference between FaceAge and age for current, 
former, and never smokers included in the MAASTRO cohort.  c) Scatterplot assessing the association of FaceAge with body 
mass index (BMI) in the MAASTRO cohort.  d) Association of FaceAge with performance status (Eastern Cooperative Oncology 
Group (ECOG)) was quantified for a subset of patients in the MAASTRO cohort. In the boxplots the box covers the interquartile 
range (IQR), with the line at the center of the box indicating the mean; the top (bottom) whisker extends from the box to the 
largest (smallest) value within 1.5 IQR (***: p<0.001; unpaired, two-sided t-test was used in all cases). 
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Fig. 3. Prognostic performance of FaceAge in Several cancer cohorts.  a) Kaplan-Meier survival analysis shows significantly 
worse survival for increasing FaceAge estimation from only a face photograph as input.  b) Forest plots of FaceAge risk groups 
demonstrate significant differences for all groups univariately, and this remains significant after adjustment for age, gender, and 
tumor site for the two oldest-looking groups compared to the youngest group as reference.  c) Forest plots of FaceAge estimates 
as a continuous parameter for all patients as well as the four largest tumor sites. Note that FaceAge is significant in all tumor 
sites in univariate analysis and remains significant in breast, gastrointestinal, and genitourinary cancer after correction for age 
and gender. HR: Hazard Ratio; CI: confidence interval; (**: P < 0.01; ***: P < 0.001; all analyses are performed in the MAASTRO 
Cohort, n = 4,906)). 
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Fig. 4. Comparison of human and FaceAge performance predicting survival.  a) Area under curve (AUC) of the receiver 
operating characteristic for 6-month survival predicted for 10 survey takers, grouped by experience level (*: AUC significantly 
different from random). Confidence intervals are shown for average AUCs.  b) Kaplan-Meier analysis of overall survival of 
patients predicted to be either alive at 6 months or not, comparing lowest (top) and highest (bottom) performers of the 
attending physicians.  c) Six-month survival prediction (left) and overall survival time (right) for physicians (both attending and 
residents) aided with only a picture, a picture + clinical chart information, and a risk model including clinical data and FaceAge. 
(two-sided Wilcoxon signed rank test; *: p<0.05; **: p<0.01; n.s.: non-significant). The survey included 100 palliative patients 
randomly selected from the Harvard-Palliative cohort. d) Results of the Burden test for the association of the senescence genes 
with FaceAge or chronological age. After adjusting for multiple comparisons using a false discovery rate (q) of 0.25, only CDK6 
was statistically significant for FaceAge, while none of the other genes were statistically significant for either FaceAge or 
chronological age. 
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Supplementary Information 1 | Datasets 

 
Discovery Datasets | For training we used the IMDb-Wiki database (42), a publicly available 

age-labeled online database of 523,051 face images altogether. An independently curated 

database of age-labeled face images (that also contained gender and ethnicity labels), the 

UTKFace (UTK) database (18), was used to evaluate the technical performance of the model. 

The UTK database contains 24,109 images in total, subdivided into three datasets. Together, 

these training and testing databases contain photos of known individuals (in particular 

politicians, actors, professional athletes and other well-known people) in addition to photos of 

other people in the public domain whose birth dates can be verified. All photographs are labeled 

with the photo date and birthdate of the individual so that the age at the moment of the 

photograph can be determined. For the training dataset, 56,304 images from the reference 

IMDB-Wiki database were selected after applying exclusion criteria, using randomization and 

augmentation with rebalancing, and performing manual quality assurance on images with age 

labels of 60 years or older. No clinical patient datasets were used in model training. We 

randomly rebalanced the training dataset with augmentation using coordinate deformation, 

horizontal flips, and up to 20 degrees rotation either way, to create a uniformly distributed 

training set over the age range of 18 to 105, targeting a per-age-year sample size of between 600-

700 images. As the dataset was too large to perform manual quality assurance on all images, 

manual curation and image quality assurance was performed on the training images with age 

labels of 60 or older because that age group is the most relevant clinically with respect to the 

oncology datasets we tested (comprising of ~15,000 of the training images), and to ensure the 

model would perform at its best over in this age range. In terms of criteria for manual quality 

assurance, we removed images that were of poor resolution, had artifacts or distortions, or in 

which the face was covered either completely or partially, or in which there was no face present. 

For technical validation we assessed the performance of FaceAge across genders and ethnicities 

in the presumed healthy individuals included in the UTK dataset. After manual quality assurance 

and curation, data of 2,547 individuals were included in subsequent analyses. Only age-labeled 

photos of real people were used in model training and validation; the website 

https://thispersondoesnotexist.com served to generate example face photos for illustrative 

purposes and figure creation, so as to not publish face photos of real people, but was not used in 

any technical capacity.  

Clinical Datasets | Three large retrospective oncology datasets from separate institutions were 

used for testing of the FaceAge algorithm totaling 6,196 cancer patients in the final analysis. 

Two smaller datasets of non-cancerous patients totaling 535 patients were used as a control for 

validation purposes. Cancer patients were allowed to have had multiple courses of radiotherapy, 

as well as surgery and/or systemic therapy, although curatively treated patients had only a single 

course of radiation treatment.  All face photographs used for the analyses of patients treated 

curatively were acquired prior to the patient’s first treatment. Patients were excluded if no 

treatment registration photographs were available or of poor-quality, or if their registration date, 

treatment date, or photo date did not correspond within three months of each other.  

MAASTRO Cohort: The first clinical dataset consists of 6,835 patients with a cancer diagnosis of 

which data was prospectively collected and included in the MAASTRO Biobank (Maastricht, 

The Netherlands). These patients were treated with both curative and palliative intent between 

2006 and 2019. The predominant primary malignancies amongst these patients were breast, 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.12.23295132doi: medRxiv preprint 

https://www.zotero.org/google-docs/?6q0pIY
https://www.zotero.org/google-docs/?sMayCJ
https://thispersondoesnotexist.com/
https://doi.org/10.1101/2023.09.12.23295132
http://creativecommons.org/licenses/by-nc/4.0/


 
 

3 

 

colorectal, prostate, lung and head and neck cancer. After eliminating records of patients with 

missing face images, duplicate records, records of patients without follow-up information, and 

manual image quality assessment, a total of 5,498 entries remained. After removing records of 

metastatic and/or patients treated with palliative intent or for ductal carcinoma in-situ of the 

breast (DCIS), the final cohort contained data of 4,906 patients. 

Harvard Thoracic Cohort: The second clinical dataset consists of 2035 records of thoracic 

cancer patients who had their most recent treatment with radiotherapy at Dana Farber - Brigham 

and Women’s Cancer Center between 2008 and 2018. The predominant histology was 

adenocarcinoma (a form of non-small cell lung cancer) and most patients had Stage III cancer 

(based on AJCC 7th edition). After eliminating duplicate records and applying exclusion criteria, 

802 records remained. Manual image quality assurance and curation reduced the number to a 

final analysis cohort of 573 patients. 

Harvard Palliative Cohort: The third clinical dataset consists of 1775 records of palliative 

patients with metastatic disease seen for consideration of palliative-intent treatment at Dana 

Farber - Brigham and Women’s Cancer Center between 2008 and 2020. The predominant 

primary malignancies amongst these palliative patients were lung, breast, prostate and colorectal 

cancer. After removing duplicate records, records of patients who ended up not receiving 

treatment, and records with inconsistent dates and/or missing or poor-quality face images, 717 

patients remained for subsequent analyses. 

Harvard Non-cancerous Cohorts:  Two smaller cohorts of patients who had their face 

photographs taken in a clinical setting as part of routine workflow were used as a non-cancerous 

control to evaluate FaceAge model age predictions, which could then be compared with the 

predictions from the oncology cohorts. The first cohort consisted of patients treated with benign 

conditions including, keloids, heterotopic ossification, benign intracranial tumors such as 

meningiomas and vestibular schwannomas, and cardiovascular conditions, and the second cohort 

consisted of patients with ductal carcinoma in situ of the breast, a precancerous condition that if 

left untreated leads to development of invasive breast cancer in approximately 30% of 

patients.  The datasets were generated using queries of the electronic medical record systems of 

Dana Farber - Brigham and Women’s Cancer Center based on clinical indications for radiation 

therapy, and face photographs were collected between 2009-2023 as part of routine clinical care. 

The same quality assurance procedure was applied to such datasets before processing (e.g., 

removal of images with face partially covered with a face mask, error during face extraction 

phase (MTCNN), etc.), leading to exclusion of 62 and 46 patients for the benign and DCIS 

cohorts, respectively, resulting in the final inclusion of 112 patients in the benign cohort and 423 

patients in the DCIS cohort. 
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Supplementary Information 2 | Physician Survey 

 
 
Physician Survey and Comparison of Human to Machine Performance | A survey was 

conducted to assess the performance of oncologists and palliative care physicians in estimating 

the apparent age and 6-month survival of n = 100 randomly-selected palliative cancer patients 

from the Harvard Palliative database, and to compare their performance against FaceAge 

directly, and to a Cox proportional hazards survival model based on FaceAge. The survey was 

sent to attending physicians, residents and lay researchers at Harvard-affiliated hospitals. A total 

of 10 survey participants were enlisted: 5 attending staff, 3 residents and 2 lay researchers. The 

survey consisted of two parts, administered two weeks apart to reduce memory bias. The first 

part of the survey presented survey takers with the face photograph of each of the 100 patients, 

and no accompanying chart information, and the survey-taker then asked to estimate the age of 

the patient (by decade) and whether the patient would be alive in 6 months’ time (53–55). The 

second part of the survey presented survey-takers with the face photograph accompanied by 

chart information (without identifiers) that contained the same clinical information available to a 

Cox PH survival risk model incorporating FaceAge. This risk model was used in the survey to 

compute a predicted probability of death with respect to time, incorporating the clinical 

covariates of the TEACHH database, using FaceAge in place of chronologic age, with the same 

covariates made available to clinicians for survival prediction. The FaceAge risk model was 

fitted to the remainder of the Harvard Palliative cohort excluding the 100 randomly-selected 

survey cases, using forward and backward selection of covariates with p-value cutoff of 0.2 (see 

appendix p. 16-17). During the second part of the survey, survey-takers were asked to estimate 

the probability (in increments of 10%) that the given patient would be alive in 6 months, with all 

chart information provided. Once their response was given, the FaceAge risk model 

individualized survival probability curve was then presented to them, and the survey-taker asked 

to give their estimate of survival probability again, with the survey-taker having the choice of 

ignoring the new information provided by the FaceAge risk model or modifying their answer 

accordingly. The area under the receiver operating characteristic curve (AUC) and concordance 

index (C-index) were used to evaluate and compare the estimates of survey-takers and the 

FaceAge risk model against ground truth, and groups were compared using the non-parametric 

two-sided paired Wilcoxon signed rank test. A mock survey case with parts 1 and 2 is presented 

in the appendix for reference (p. 26). A post-survey questionnaire gathering demographics about 

the survey-taker, including whether they were an attending or resident, and years of experience, 

was also included. 
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Supplementary Information 3 | Results 

 

  

Supplementary Figure 1. 
Performance of the FaceAge algorithm in the independent UTK test dataset, for all (a), women (b), men (c), as well 
as for white (d), black (e), indian (f), and asian (g) ethinic subgroups. The model performance is similar and 
significant across all the groups. MAE: Mean Absolute Error, r: Pearson R.   
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Supplementary Figure 2. 
Difference between FaceAge and age in healthy and clinical non-cancer cohorts, to investigate if individuals look 
older or younger compared to their age. Analyzing all cancer patients included in our analysis, we found that, on 
average, cancer patients look older than their age (mean 4.79 years, P < 0.001). This larger FaceAge-to-chronologic 
age gap was significant when comparing cancer patients to the reference UTK dataset of healthy individuals 60 
years and older (P < 0.001) and to the two clinical non-cancer datasets (benign patients: P < 0.0001 and DCIS 
patients: P < 0.019) acquired in the same clinical settings and with the same equipment as that of cancer patients, 
demonstrating that cancer patients look older than those who do not have cancer. 
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Supplementary Figure 3. 
Association of the FaceAge algorithm with lifestyle factors. a) Difference between FaceAge and age with the 
smoking history for different types of cancer patients in the MAASTRO cohort. b) Association of the difference 
between FaceAge and age with body mass index (BMI), for all, women, and men in the MAASTRO cohort. c) 
Association of the difference between FaceAge and age with performance status (Eastern Cooperative Oncology 
Group (ECOG)) in the HARVARD cohort. We found no significant differences between the groups (unpaired two-
sided t-test, P > 0.165). (r: pearson R.)  
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Supplementary Figure 4. 
Cox regression analysis of age and FaceAge TEACHH models in the HARVARD palliative cohort. Using FaceAge 
instead of chronologic age as a covariate in the TEACHH model increases its discriminatory power, as quantified by 
decreased median survival and increased hazard ratio (HR)  of the highest of the risk group, and increased median 
survival and decreased HR of the lowest risk group.  c) TEACHH model Kaplan-Meier survival curves (all-cause 
mortality) obtained by using chronologic age (solid line) and FaceAge (dashed line) as covariates with 60 years 
threshold for both. Substituting age with FaceAge, significantly increased the discriminatory power of the model, 
increasing hazard ratio (HR) of the highest of the risk groups and decreasing the HR of the lowest risk group. 
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Supplementary Figure 5. 
Association of FaceAge and Chronological Age with senescence genes. GeneMania network of senescence genes. 
Red edges indicate physical interaction, green genetic interactions, and blue pathway. The size of the node 
represents the score assigned by label propagation algorithms reflecting the strength of association between the node 
and the input list of genes, i.e., TERT, ATM, CDKN1A, CDKN2B, TP53, IGFBP7, and MAPK10. 
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Supplementary Table 1. 
Clinical characteristics of the a) MAASTRO Cohort (n=4,906), and  b) HARVARD thoracic cohort (N=573). SBRT: 
Stereotactic Body Radioherapy. 
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Supplementary Table 2. 
Clinical characteristics of the HARVARD palliative cohort (N=717). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.12.23295132doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295132
http://creativecommons.org/licenses/by-nc/4.0/


 
 

12 

 

 

 

 

 

 

 

 

 
 
Supplementary Table 3. 
Univariate and multivariate survival analyses of FaceAge on the MAASTRO dataset. FaceAge univariate and 
multivariate Cox regression analysis for the MAASTRO cohort (N=4,906). Since FaceAge, age, sex, and cancer site 
have a p-value of less than 0.001 in the univariate analysis, we include all the available covariates in the multivariate 
model.  FaceAge remains statistically significant after adjusting for all the aforementioned covariates. CI: 
Confidence Interval; HR: Hazard Ratio. 
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Supplementary Table 4. 
Univariate and multivariate survival analyses of FaceAge on the HARVARD Thoracic dataset. FaceAge univariate 
and multivariate Cox regression analysis for the HARVARD Thoracic cohort (N=573). In the multivariate model, 
FaceAge remains statistically significant after adjusting for sex, smoking history, ethnicity, treatment intent, tumour 
grade, ECOG, overall stage, and histology. The same covariates were used to fit a model with age, where age did not 
have a significant effect. Note, that the multivariate HR for FaceAge in the HARVARD Thoracic dataset is close to 
the one computed in the multivariate analysis on the MAASTRO cohort (Extended Data Figure 3). BMI was 
excluded from multivariate analysis as this information was available for only 18.5% of patients. BMI: Body Mass 
Index; ECOG: Eastern Cooperative Oncology Group scale; CI: Confidence Interval; HR: Hazard Ratio. 
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Supplementary Table 5. 
Univariate and multivariate survival analyses for FaceAge and Age on the HARVARD Palliative dataset. FaceAge 
univariate and multivariate Cox regression analysis for the HARVARD Palliative cohort (N=717). The covariates 
for the multivariate model are selected using a forward selection procedure with a p-value cutoff of P < 0.2. In the 
final multivariate model, FaceAge remains statistically significant after adjusting for sex, smoking history, ethnicity, 
treatment intent, tumour grade, ECOG, overall stage, and histology, while age was not. Furthermore, the 
multivariate HR for FaceAge in the HARVARD Palliative dataset is similar to the multivariate analysis on both the 
MAASTRO and HARVARD Thoracic cohorts (Extended Data Figures 5 and 6). BMI: Body Mass Index; ECOG: 
Eastern Cooperative Oncology Group scale; CI: Confidence Interval; HR: Hazard Ratio. 
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