
 1 

Latent Classes of Anthropometric Growth in Early Childhood Using 
Uni- and Multivariate approaches in a South African Birth Cohort. 
Noëlle van Biljon1, Marilyn T Lake2, Liz Goddard2, Maresa Botha2, Heather J Zar2, 
Francesca Little1. 
1Department of Statistical Sciences, University of Cape Town. 
2Department of Paediatrics and Child Health, and SA-MRC unit on Child & Adolescent Health, 
University of Cape Town, SA. 
 
 
 
Abstract: 
Background: Conventional methods for modelling longitudinal growth data focus on 
the analysis of mean longitudinal trends or the identification of abnormal growth based 
on cross-sectional standardized z-scores. Latent Class Mixed Modelling (LCMM) 
considers the underlying heterogeneity in growth profiles and allows for the 
identification of groups of subjects that follow similar longitudinal trends.  
 
Methods: LCMM was used to identify underlying latent profiles of growth for univariate 
responses of standardized height, standardized weight, standardized body mass 
index and standardized weight-for-length/height measurements and multivariate 
response of joint standardized height and standardized weight measurements from 
birth to five years for a sample of 1143 children from a South African birth cohort, the 
Drakenstein Child Health Study (DCHS). Allocations across latent growth classes 
were compared to better understand the differences and similarities across the classes 
identified given different composite measures of height and weight as input. 
 
Results: Four classes of growth within standardized height (n1=516, n2=112, n3=187, 
n4=321) and standardized weight (n1=263, n2=150, n3=584, n4=142), three latent 
growth classes within Body Mass Index (BMI) (n1=481, n2=485, n3=149) and Weight 
for length/height (WFH) (n1=321, n2=710, n3=84) and five latent growth classes within 
the multivariate response of standardized height and standardized weight (n1=318, 
n2=205, n3=75, n4=296, n5=242) were identified, each with distinct trajectories over 
childhood. A strong association was found between various growth classes and 
abnormal growth features such as rapid weight gain, stunting, underweight and 
overweight. 
 
Conclusions: With the identification of these classes, a better understanding of 
distinct childhood growth trajectories and their predictors may be gained, informing 
interventions to promote optimal childhood growth. 
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Key Messages: 
• Four latent classes of growth were identified within standardized height and 

standardized weight. 
• Three latent classes of growth were identified within standardized body mass 

index and standardized weight-for-length/height. 
• Five latent classes of growth were identified within a multivariate response of 

standardized height and standardized weight. 
• Latent classes identified using various composite measures of standardized 

height and standardized weight (standardized body mass index and 
standardized weight-for-length/height and a multivariate response of 
standardized height and standardized weight) were distinct, reiterating the 
benefit of examining each outcome. 

• A strong association was found between various growth classes and abnormal 
growth features such as rapid weight gain, stunting, underweight and 
overweight. 
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Introduction: 
 
A double burden of childhood malnutrition is emerging in low- and middle-income 
countries (LMICs) – undernutrition and obesity. According to UNICEF, in 2020, up to 
23% of Southern African children under five years suffered from stunting, 
approximately 3% were wasted and 12% were overweight (1). Globally, more than two 
billion adults are obese, with over 70 percent of them residing in LMICs (2). Despite 
this high burden of malnutrition, data on early growth trajectories (defined as the first 
five years of life) are limited in LMICs. 

Low birth weight (2500 grams or less), which is prevalent in LMICs, is associated with 
an increased risk of negative physical, cognitive and emotional health consequences 
throughout childhood (3). Given a low birth weight, the impact of catch-up growth (or 
rapid weight gain) in the short and long term is under debate (4). Considering short-
term consequences, Victora et al., found catch-up growth to be associated with a 
reduced risk of hospitalisation (5). Meanwhile, children who experienced rapid weight 
gain between birth and 2 years have been found to be fatter with an increasingly 
central fat distribution at 5 years (6).  

Specific growth patterns during infancy and childhood do not only have short-term 
consequences, but have also been shown to be associated with disease in later life, 
such as obesity (7), asthma, coronary heart disease (8), or stroke (9). Obesity, during 
childhood increases the risk of cardiovascular, metabolic and central nervous system 
disorders in later life (10). Stunting, an indicator of chronic malnutrition (11,12) has 
been shown to be associated with infections in childhood and obesity in adulthood, 
possibly due to a long-term impact on metabolic factors (13,14). Thus, longitudinal 
exploration of growth patterns during childhood is key to identifying individuals at 
greater risk of morbidity. The aim of this study was to identify heterogeneity in growth 
profiles in children from birth to five years to identify abnormal growth profiles of 
obesity, stunting, wasting or rapid weight gain in a South African birth cohort, the 
Drakenstein Child Health Study (DCHS).  

To identify such distinct growth patterns, and subsequently children at greater risk of 
disorders in later life, approaches such as Growth Mixture Modelling (GMM), Latent 
Class Growth Analysis (LCGM), Latent Class Mixed Modelling (LCMM) and Time 
series clustering (TSC) (15–18) may be used. These aim to identify data-driven 
classes that share similar growth patterns. This paper refers to an LCMM approach to 
identify latent growth profiles for growth measurements from the Drakenstein Child 
Health Study.  

The use of multivariate LCMM to identify latent growth classes based on joint height 
and weight measurements is proposed as this approach will not impose a restrictive, 
predefined relationship between Height and Weight as the use of zBMI or zWFH would 
when identifying distinct growth trajectories. No publications have identified latent 
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classes using a multivariate response of Height and Weight or the comparison of latent 
growth class allocation across various growth responses. Additionally, an aim of this 
study was to assess the relationships across latent trajectories based on different 
growth responses through comparisons of subject allocation to the different groups, 
thus determining what additional information latent growth trajectories based on zBMI, 
zWFH or zHeight+zWeight may provide to those identified based on zWeight or 
zHeight alone. An expanded understanding of growth trajectories may identify 
vulnerable periods for intervention, to optimise child growth. 
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Methods: 

The Drakenstein Child Health Study (DCHS) is a prospective South African birth 
cohort in which pregnant women were enrolled between March 2012 and March 2015 
and followed through birth and childhood. The DCHS aims to investigate the early life 
determinants of child health and mechanisms underlying the development of disease, 
including environmental, nutritional, infectious, psychosocial, and maternal physical 
and mental health determinants. These measures have been longitudinally collected 
from the antenatal period through childhood (19). DCHS has detailed comprehensive 
growth measurements from birth through childhood in a LMIC setting. Measurements 
of Height, Weight, Mean-Upper Arm circumference, Triceps Skin Fold Thickness, 
Head Circumference, Body Mass Index and Weight-for Height have been recorded.  

This paper focuses on a model-based approach to identify latent growth profiles for 
standardized height and weight measurements, as well as the composite measures of 
these responses, namely standardised Body Mass Index (zBMI), standardised 
Weight-for-Height (zWFH) and a multivariate response of zHeight and zWeight 
(zHeight+zWeight). 

 

Figure 1: The DCHS Cohort of children from birth until 5 years of age.  
 

  

1143 children born alive between
[29th May 2012 & 3rd Sep 2015]

1032 children remaining in the cohort at 4 months

111 children terminated before 4 months of age  
- 33 consent withdrawn
- 31 Lost to follow up
- 27 relocated (mother or child)
- 20 deaths

981 children with 961 mothers followed-up at 5 years; 
contributing a median (range) of 5 yrs (3 days – 5 yrs)

51 children terminated between 4 months and 5 
years of follow-up

- 27 relocated
- 12 consent withdrawn
- 9 lost to follow up
- 3 child deaths  
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Participants: 

The DCHS enrolled women, from a poor peri-urban area in South Africa, during their 
second trimester (20-28 weeks) of pregnancy.  Mother-child pairs were followed for up 
to at least 10 years of child age. For this paper, growth measures from birth until 5 
years were included. Children were followed and measurements performed at birth 
and at 6 weeks, 10 weeks, 14 weeks, 6 months, 9 months, and 12 months then 6 
monthly until 5 years (Figure 1; Figure A1).  

Outcomes: 

Growth measurements included Height and Weight from which standardised Body 
Mass Index (zBMI) and standardised Weight for Height (zWFH) were calculated. 
Height (recumbent length (recorded in centimetres) measured as distance from crown 
to foot using a Seca length-measuring mat (Seca; Hamburg, Germany) from birth until 
24 months, after which this was recorded as standing height using a wall-mounted 
stadiometer (Panamed; Philippines) and weight (the mass of a subject (to the nearest 
10 g) in light or no clothing using a Tanita digital platform scale (TAN1584; IL, USA)) 
were measured by trained study staff. Each measurement was taken twice per visit 
per child to serve as technical replicates. Measures within 0.5cm and 0.1kgs of each 
other for height and weight respectively were acceptable and the first measurement 
was used. If measures were not within this acceptable range, a third measurement 
was taken and used. For comparability, standardised growth responses (with respect 
to Growth References) were analysed within this report; these are denoted using 
“zGrowthResponse” such as zHeight for standardised height and zWeight for 
standardised weight. Growth responses as well as the number of observations per 
visit are summarised in Table A1. 

Fenton growth references were used to calculate standardised growth scores for 
prematurely born children (before 37 weeks’ gestation); for full term infants WHO 
references adjusted for gestational age were used until two years (as is the 
convention), (20–22). Standardised height (zHeight; derived using WHO and Fenton 
reference ranges), standardised weight (zWeight; derived using WHO and Fenton 
reference ranges), standardised body mass index (zBMI; weight in kg divided by 
height in meters squared, standardised using WHO reference ranges) and 
standardised Weight for Length/ Height (zWFH; derived using WHO reference ranges) 
were calculated.   

To identify children that experienced rapid weight gain, a change in zWeight equal or 
greater than 0.67 within the first nine months of life was used, as per convention, 
although there is disagreement on the optimal time frame to use (23).  
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Statistical Analysis: 

The modelling of the respective growth measures involved two overarching 
approaches: 1) Univariate- and 2) Multivariate Latent Class Mixed Models. Within the 
univariate modelling section each growth measure was described and analysed 
independently. The responses considered with this approach were zHeight, zWeight, 
zBMI and zWFH. The multivariate approach allowed the growth measures to be 
analysed together, thus identifying groups of subjects that follow similar trajectories 
while considering more than one growth response. Using this approach, latent classes 
from a model based on zHeight and zWeight was considered as an alternative to latent 
classes from the individual models for the calculated composite scores, zBMI and 
zWFH.  

Prior to LCMM, univariate mixed effect models for the mean response were fit to each 
individual growth measure to determine the optimal structure for modelling the 
association with time. Both linear and non-linear relationships between time and the 
growth measurements were considered to ensure the best model fit, including linear, 
cubic splines, fractional polynomials, and piecewise linear splines. For growth 
measurement these four different model formulations with differing knot choices for 
the spline options were compared to each other. The piece-wise linear spline 
formulation was chosen for inclusion in the latent trajectory modelling based on model 
fit and ease of interpretation. Thus, for each growth measurement, a piece-wise linear 
spline was used to describe the change in the measure with increasing age. The 
different model formulations and the location and number of knots were chosen to 
minimise AIC and thus allow for the best fit possible. Details of the final form of the 
mixed effect model for each of the responses are found within the supplementary 
materials – Part 2: Extended Statistical Methods. 

Latent growth classes within zHeight, zWeight, zBMI and zWFH were identified using 
the latent class mixed model (LCMM) approach (18). LCMM makes use of three 
models: a structural model, taking the form of a linear mixed effect model which 
describes the association with time, a measurement model, which relates the latent 
process to the observations and a multinomial logistic model, which describes class 
membership. This is described in greater detail within the supplementary materials. 
Latent classes were identified without adjusting for any covariates. The choice of the 
number of latent classes was accomplished through the use of various fit statistics. 
For each growth measure, the latent class mixed effect model was fit with class 
numbers ranging from 1 to 6. The number of classes resulting in the lowest BIC (a 
measure of model fit to the data), largest Entropy (a measure of the level of 
discrimination between the classes), and lowest Integrated Classification Likelihood 
(ICL, a measure of fit conditional on class discrimination) were selected subject to their 
size being greater than 5% of the sample and their stability.  

The stability of the identified classes and profiles thereof were validated through 
internal cross-validation. This validation step involved randomly selecting 
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approximately 50% of the subjects and refitting the latent class mixed effect model 
with the chosen number of classes. This was repeated with 10 different random 
samples. The response profile of the classes identified were plotted together on one 
set of axes and the class number that appeared to have the most consistency with 
respect to the class trajectories was taken into consideration in addition to the fit 
statistics.  

LCMM can be extended to model multiple responses simultaneously by fitting 
multivariate mixed models and multivariate latent class mixed models for multivariate 
longitudinal response variables. This approach was used to identify latent growth 
classes within the combined responses of zHeight and zWeight, defining each 
longitudinal dimension as a latent process (Figure 2), to allow for more flexible 
relationships between zHeight and zWeight within the multivariate setting (18). The 
model formulation included two structural models as well as two measurement models, 
each with response specific parameter estimates, with one multinomial logistic model 
still determining the probability of allocation to the respective classes (Figure 2). The 
likelihood is a function of the individual structural and measurement models as well as 
the multinomial logistic class allocation model and hence maximisation of the 
likelihood yields class allocations that are dependent on all three components. For this 
multivariate response model, linear transformations were used as link functions within 
the measurement model, though various transformations were considered that 
produced similar results and hence the simpler linear link was chosen.  

 

 
Figure 2: Diagram illustrating the structure of the multivariate LCMM process when 
considering distinct latent structures for zHeight and zWeight responses respectively. 
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Additional detail as well as specification of terms can be found within the 
Supplementary Materials – Part 2.  
 
Results: 

Amongst 1137 mothers enrolled there were 1143 children live born, with 981 (85.8%) 
followed through 5 years of age with detailed measurements as shown in Figure 1. 
Twenty-three (2%) children died in infancy and 139 (12.2%) children were lost to follow 
up, the majority of which occurred before 6 months of age. All growth measurements 
were recorded at each visit, however some measurements were excluded due to 
instrumental or measurement error.  

Study Cohort: 

Six-hundred and ninety-five (60.8%) of the mothers did not complete secondary 
schooling education, while 988 (86.4%) were members of households where the 
average monthly income was below R5000 (approximately USD276). One hundred 
and ninety-one (16.7%) children were born prematurely, the majority late preterm 
(born between 34-37 weeks gestational age). There were 247 (21.6%) HIV-exposed 
but uninfected children, with only 2 HIV-infected. Characteristics of included children 
were similar to those excluded; Table A2 summarises the total, included and excluded 
cohort with respect to maternal, child and socio-economic characteristics.  
 
Average Trajectory of Growth Responses: 

 
Figure 3: Standardised growth measures from Birth until age 5 with a smoothed 
average trajectory.  
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Figure 3 illustrates the standardised growth responses from birth until five years. As 
these observations represent standardized growth scores, the average trajectory 
should follow the line of y=0. On average, lower zHeight and zWeight scores from what 
were anticipated according to WHO references were observed. Larger than expected 
zBMI and zWFH scores were observed, indicating that while children were below 
expected weight, their height deviated even further below expectation, resulting in 
above expected zBMI and zWFH. The trajectories of the unstandardised, observed, 
growth responses are illustrated within Figure A2 and Table A1 in the supplementary 
materials. 
 
Describing Growth Responses over Time: 
 
The zHeight and zWeight, zBMI and zWFH standardized measurements over time 
were modelled using mixed effect models with piecewise linear splines to capture the 
time component. Between 3 and 4 knots were placed between ages 0.25 and 2.5 
years for the different growth measures and the resulting mean profiles are illustrated 
in the supplementary materials (Table A3; Figure A3). The early placement of the 
knots with no knots beyond age 2.5 reflects that most of the changes in trajectory 
structure occurred before two years of age. These changes in trajectory structure may 
also be a feature of more frequent data collection during the infancy. To determine 
whether the choice of knot location impacted the subsequently identified latent profiles, 
the longitudinal profiles given additional knots placed at later time points (ages 
0.25,0.75,1,1.5,2,3,4; Figure A4) were compared to those described in Figure A3. The 
profiles did not show clear deviation, and thus the knot locations specified in Table A3 
were used. 
 
Selecting K, the number of latent classes: 
 
With the previously described broken stick specifications of the longitudinal process, 
latent class mixed models were fit to each of the respective growth measures, zHeight, 
zWeight, zBMI and zWFH, individually. Additionally, this approach was also applied to 
the multivariate response, zHeight + zWeight. An important step within this process 
was choosing the appropriate number of latent classes, k. 
 
Figure 4 illustrates the process whereby the number of latent classes (k) for the 
trajectories of zHeight was selected. Figure 4A shows the fit statistics for 1 to 5 latent 
classes. In this case the more classes, the lower the BIC. Similarly, the entropy for k=5 
was the greatest (Figure 4A). The class sizes when five latent classes were considered 
were still greater than 5%, however the Figure 4D shows a lack of stability when k=5. 
As a compromise, k=4 was chosen as the optimal class number as the fit statistics 
were very similar to that of k=5, while the stability shown in Figure 4C is consistent. 
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Figure 4: Information used to choose the appropriate value for k, the number of latent 
classes within standardised Height. A) Fit statistics for k=(1:5). Profiles of LCMM 
Classes identified within standardised Height using randomly selected 50% of 
subjects, repeated 10 times for B) k=3, C) k=4 and D) k=5. 
 
This process was repeated for all growth responses, Figures A5-A9 in the 
supplementary materials. For zWeight, four latent classes were identified as optimal 
(Figure A5). Three latent classes were identified as optimal within zBMI and zWFH 
(Figure A6, A7). When considering the multivariate zHeight+zWeight model, five latent 
classes were identified as optimal (Figure A8-A9). 
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Growth trajectories: 

Univariate trajectories: 

Each response, described using the broken stick model previously indicated, fit with 
the latent class mixed model given the optimal number of k is illustrated in Figure 5, 
thus illustrating the trajectories of each latent growth class identified within the 
respective growth responses. The model estimates from the fixed effect components 
can be found within Tables A4-A9 in the Supplementary Materials.  

zHeight 

The four latent classes for zHeight are illustrated in Figure 5(A).  The following features 
were observed: Firstly, zHeight profiles below the expected are observed (this was 
also reflected in zWeight profiles). Secondly, much of the differences in structure of 
trajectories occur before 1.5 years, after which the four trajectories settle at different 
levels. The same result was observed when an increased number of knots were 
placed at locations after 1.5 years; these results are shown within the supplementary 
materials Figure A10-A15. This change in profiles prior to and after 1.5 years is 
reflected in the early changes in slope and later levels naming of the four identified 
classes (for example, sharp increase to expected levels). Two classes that settled 
slightly closer to the expected height are seen, one class of 321 (labelled “Gradual 
Increase, Gradual Decrease to Below Expected”) children who started at expected 
height, increased to slightly higher heights than expected and then settled at a level of 
less than one standard deviation below the expected level. Another class (labelled 
“Sharp Increase, Sharp Decrease to Below Expected”) includes 187 children who 
started with lower heights than expected but by the age of 1 year have caught up to a 
level less than one standard deviation below the expected height. A further two classes 
show children who were taller than expected at birth, but who then attained a level up 
to two standard deviations below the expected height, one group of 516 children 
(labelled “Sharp Decrease to Low”) earlier than the other group of 112 children 
(labelled “Gradual Decrease to Low”).  

zWeight 

Four latent classes were identified within zWeight. Similar to zHeight, the 
heterogeneity in structure is seen in the profiles prior to 1.5 years. Two classes 
(labelled “Gradual Increase, Gradual Decrease to Expected” and “Sharp Decrease, 
Sharp Increase to Expected”) initialize close to the expected zWeight at birth and 
diverge within the first 1.5 years, one class slightly above expected zWeight and 
another dipping well below expected, after which they meet and show subjects that 
follow expected weight for age from 1.5 to 5 years old (Figure 5(B)). Two classes with 
birthweights as expected who then deviated from expected weight profiles were 
observed, resulting in a class with above expected weights (labelled “Sharp Increase 
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to High”) and a class with lower-than-expected weights (labelled “Gradual Decrease 
to Low”).   

Figure 5: The average trajectories of latent classes identified within A) zHeight, B) 
zWeight, C) zWFH and D) zBMI from birth until age of five. 

zWFH 

Three classes were identified for zWFH (Figure 5(C)). A class that almost follows the 
expected weight-for-height from birth until five years (labelled “Gradual Decrease to 
Expected”), and two classes with consistently greater weights given their height and 
sex. The group with the greatest weight for height (labelled “Sharp Increase to High”), 
showed the smallest weight-for-height at birth. 

 
zBMI 

Three classes were identified for zBMI, all of which were characterised by early 
increasing zBMI measurements (Figure 5(D)). A class that closely follows the 
expected zBMI from birth until five years, except for a brief fluctuation above the 
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expected BMI before 6 months of age (labelled “Sharp Increase, Sharp Decrease to 
Expected”). Two classes with smaller than expected zBMI at birth which both settle 
above the expected zBMI. One class settles earlier on, at 3 months of age (labelled 
“Sharp Increase to High”) while the second settles around one year of age (labelled 
“Gradual Increase to High”). 

Figure 5 interestingly also show that those with the most extreme lower than expected 
measurements at or soon after birth, settled at the highest levels, and vice versa, 
indicating an over-correction of sorts. 
 
Multivariate trajectories: 
 
Figure 6 illustrates the zHeight and zWeight profiles for the five classes determined 
for the joint zHeight+zWeight measurements. Three hundred and eighteen children 
were allocated to a class with low zHeight and zWeight from birth until five years 
(labelled “i”).  Both zHeight and zWeight was above expected at birth but slowly 
decreased to below expected at birth for 205 children (labelled “ii”). A small group of 
children (n=75) showed a delay in both zHeight and zWeight in the first few months of 
growth, however this did not appear to have long lasting impacts on zHeight or zWeight 
trajectories (labelled “iii”).  A class of 296 children illustrate weight and height 
measurements equal to what was expected prior to age 1 however in subsequent 
observations these children were shorter than expected given their age and sex, while 
maintaining an expected weight (labelled “iv”). The last identified class shows 
individuals with a low zWeight at birth which steadily increased within their first year 
and remained above what was expected (labelled “v”). This same group was also 
shorter than expected at birth, with a slight delay in height growth during the first year 
of life, after which they followed expected height for age and sex.   

 
Figure 6: The average trajectories of four classes identified within zHeight+zWeight 
from birth until age of five, illustrated using A) zHeight and B) z Weight. 
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The accordance or dissimilarity of zHeight and zWeight trajectories within the latent 
classes is of interest. Class (iv) shows different profiles in particular before 1.5 years 
where an increasing zWeight and decreasing zHeight can be seen. Additionally, class 
(v) also shows an increasing zWeight with decreasing zHeight within the first few 
months of life.  
 
To determine whether the choice of knot location impacted the subsequently identified 
latent profiles, the latent class identification process was repeated with additional knots 
placed at later time points. The extended knot locations used were 
(0.25,0.75,1,1.5,2,3,4) years for all responses considered. The results from this 
longitudinal specification are presented in the supplementary materials (Figure A16-
A17). The results did not differ, and thus the knot locations specified in Table A3 were 
used. 
 
Comparison of Latent Class Allocations: 

The correspondence between latent class allocations for individual children based on 
different growth measurements and on allocations based on univariate versus 
multivariate models are shown in Tables 1-3 and A10. Table 1 illustrates the 
correspondence between allocations based on zHeight, zWeight and zHeight and 
zWeight within a joint model in a three-way contingency table. In contrast, Tables 2-3 
summarise the agreement between composite measures of height and weight (zBMI 
and zWFH) and the class allocations based on models for joint zWeight and zHeight. 
Finally, Table A10 summarises the agreement between the latent classes identified 
given zWFH or zBMI. 
 
Comparison of Univariate and Multivariate zHeight and zWeight latent class 
allocations: 

Tables 1a and b cross-tabulate the multivariate allocations to the univariate allocations 
of subjects based on Height and Weight, respectively. These tables show the number 
of children in each cross-tabulation and percentages of the multivariate classifications 
allocated to the different univariate height or weight classes. When cell frequencies 
exceed the distribution of the total cohort across the height or weight classes, they are 
indicative of a strong association with the specific multivariate class. 
 
There is a strong agreement between identified trajectories such as within multivariate 
class (i) where the zHeight and zWeight classes with the strongest association 
describe the same trajectories as described by multivariate class (i): 
 
Multivariate Class (i), Trajectories:  

• zHeight shows a Sharp Decrease to Low, 
• zWeight shows a Gradual Decrease to Low. 
Univariate Trajectories: 
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o zHeight shows a Sharp Decrease to Low, 
o zWeight shows a Gradual Decrease to Low. 

 
Multivariate classes (iii) and (v) showed identical zWeight profiles when comparing the 
univariate and multivariate classes with the strongest associations, while the zHeight 
trajectories for these classes differed between the multivariate and univariate 
allocations.  
  
Multivariate Class (iii), Trajectories:  

• zHeight shows a Sharp Decrease, Sharp Increase to Below Expected, 
• zWeight shows a Sharp Decrease, Sharp Increase to Expected. 
Univariate Trajectories: 

o zHeight shows a Sharp Decrease to Low, 
o zWeight shows a Sharp Decrease; Sharp Increase to Expected. 

 
Multivariate Class (v), Trajectories:  

• zHeight shows a Sharp Decrease, Sharp Increase to Expected, 
• zWeight shows a Sharp Increase to High. 
Univariate Trajectories: 

o zHeight shows a Sharp Decrease; Sharp Increase to Below Expected, 
o zWeight shows a Sharp Increase to High. 

 
For multivariate class (ii), the converse of this was observed where the zHeight profiles 
descriptions based on multivariate and univariate allocations with the strongest 
association were identical, while the zWeight profiles differ with respect to the level at 
which the profiles settled.   
 
Multivariate Class (ii), Trajectories:  

• zHeight shows a Gradual Decrease to Low, 
• zWeight shows a Gradual Decrease to Below Expected. 
Univariate Trajectories: 

o zHeight shows a Gradual Decrease to Low, 
o zWeight shows a Gradual Decrease to Low. 

 
Finally, multivariate class (iv) showed identical zWeight profiles across univariate and 
multivariate allocations with the strongest association, while the zHeight profiles differ 
both with respect to level and rate of change prior to 1.5 years: 
 
Multivariate Class (iv), Trajectories:  

• zHeight shows a Sharp Decrease, Sharp Increase, Gradual Decrease to Below 
Expected, 

• zWeight shows a Gradual Increase, Gradual Decrease to Expected. 
Univariate Trajectories: 
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o zHeight largely described by two classes, one shows a Gradual 
Increase; Gradual Decrease to Below Expected, the second shows a 
Sharp Decrease to Low, 

o zWeight shows a Gradual Increase; Gradual Decrease to Expected. 
 
In summary, it appears that based on the association across the univariate and 
multivariate class allocations, zWeight profiles appear to be in agreement more 
frequently than zHeight allocations. Additionally, the multivariate approach allowed for 
flexible profiles of one measurement (say zHeight) while holding the profiles for the 
other measurement (say zWeight) constant. For example, multivariate classes (i) and 
(ii) both reflect gradual decreases for zWeight but class(i) capture a sharp decrease in 
zHeight while class(ii) allowed for a more gradual decrease in zHeight. Class (ii) 
additionally also included a significant number of children whose weights first 
increased before showing a gradual decrease to their expected weight. None of these 
associations were perfect, making it difficult to get a clear assessment of the additional 
information conveyed by the multivariate approach. 
 
Table 1: Tabulation of multivariate group allocation versus 

(a)  univariate height group allocation 

 
 

(b)  univariate weight group allocation 

 

Multivariate                                                                           zHeight:
Gradual 

Decrease to 
Low

Gradual 
Increase; 
Gradual 

Decrease to 
Below Expected

Sharp Decrease 
to Low 

Sharp Decrease;          
Sharp Increase 

to Below 
Expected

All Height

i: zHeight sharp decrease to low                                                                                 
zWeight gradual decrease to low

10(3.14%) 48(15.09%) 218(68.55%) 42(13.21%) 318(100%)

ii: zHeight gradual decrease  to low                                                                  
zWeight gradual decrease to below expected

84(41.0%) 46(22.4%) 75(36.6%) 0(0%) 205(100%)

iii: zHeight sharp decrease, sharp increase to below expected 
zWeight sharp decrease, sharp increase to expected

3(4.0%) 12(16.0%) 42(56.0%) 18(24.0%) 75(100%)

iv: zHeight sharp decrease, sharp increase, gradual decrease to below 
expected,                                                                                                                                
zWeight gradual increase, gradual decrease to expected

12(4.1%) 138(46.6%) 128(43.2%) 18(6.1%) 296(100%)

v: zHeight sharp decrease, sharp increase to expected,                            
zWeight sharp increase to high 3(1.3%) 77(31.8) 53(21.9%) 109(45%) 242(100%)

TOTAL 112(9.9%) 321(28.3%) 516(45.4%) 187(16.5%) 1136(100%)

i: zHeight sharp decrease to low                                                                        
zWeight gradual decrease to low

138(43.4%) 118(37.1%) 61(19.2%) 1(0.3%) 318(100%)

ii: zHeight gradual decrease  to low                                                                  
zWeight gradual decrease to below expected

105(51.2%) 100(48.8%) 0 0 205(100%)

iii: zHeight sharp decrease, sharp increase to below expected,                                                                                   
zWeight sharp decrease, sharp increase to expected

2(2.7%) 16(21.3%) 51(68%) 6(8%) 75(100%)

iv: zHeight sharp decrease, sharp increase, gradual decrease to below 
expected,                                                                                                                                
zWeight gradual increase, gradual decrease to expected 18(6.1%) 265(89.5%) 5(1.7%) 8(2.7%) 296(100%)

v: zHeight sharp decrease, sharp increase to expected,                                                       
zWeight sharp increase to high

0 82(33.9%) 33(13.6%) 127(52.5%) 242(100%)

TOTAL 263(23.2%) 581(51.1%) 150(13.2%) 142(12.5%) 1136(100%)

All WeightMultivariate                                                                        zWeight:
Gradual 

Decrease to 
Low

Gradual 
Increase; 
Gradual 

Decrease to 
Expected

Sharp Decrease; 
Sharp Increase 

to Expected

Sharp Increase 
to High
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When considering the link functions of this multivariate model that connects the 
observed process to the latent process, the slope of the zWeight link covers a greater 
range of the longitudinal process, thus the influence of weight may thus also be greater 
in predicting class allocations (Figure A19). A cubic function with three equally spaced 
knots was also considered as a more appropriate link function, while the fit 
characteristics produced were slightly better, the final profiles identified were almost 
identical (Figure A19) and thus the less complex linear link was used. 
 
Comparison of class allocations based on composite measures (zWFH and zBMI) to 
that based on joint zHeight and zWeight measurements: 

Sixty Four percent of children were allocated to the “Gradual Increase to Slightly 
Above Expected” zWFH class, while based on the joint zHeight + zWeight response a 
large proportion of these children were allocated to all five classes (Table 2); this 
indicates that the zHeight + zWeight approach is able to separate children into growth 
classes that would have otherwise been lost if only zWFH was used as input. 
Interestingly, 49.5 percent of individuals allocated to zHeight+zWeight class (i) were 
allocated to the zWFH “Gradual Decrease to Expected” class, which is substantially 
higher than the overall percentage, 29%, of individuals allocated to this class, thus 
showing a strong agreement between these profiles. However, looking at the 
descriptions of these trajectories, the multivariate profiles are described as a “Sharp 
Decrease to Low” within zHeight and “Gradual Decrease to Low” within zWeight while 
the zWFH trajectory does not suggest low zWFH. Thus, while an individual may be 
identified with abnormal growth through zWeight or zHeight, the use of zWFH may 
miss such a diagnosis. 
 
Table 2: Comparison of subject allocations to zWFH and multivariate zHeight + zWeight 
classes. Comparing these allocations when considering trajectories from birth until 5 years 
of age.  

 
 

zHeight+ zWeight                                                                                            zWFH
Gradual 
Decrease to 
Expected

Gradual 
Increase to 
Slightly Above 
Expected

Sharp Increase 
to High All zWFH

(i) zHeight: Sharp Decrease to Low

zWeight: Gradual Decrease to Low

(ii) zHeight: Gradual Decrease to Low

zWeight: Gradual Decrease to Below Expected

(iii) zHeight: Sharp Decrease, Sharp Increase to Below Expected

zWeight: Sharp Decrease, Sharp Increase to Expected
(iv) zHeight: Sharp Decrease, Sharp Increase, Gradual Decrease to 
Below Expected
zWeight: Gradual Increase, Gradual Decrease to Expected

(v) zHeight: Sharp Decrease, Sharp Increase to Expected

zWeight: Sharp Increase to High

TOTAL 321 (28.8%) 710 (63.7%) 84 (7.5%) 1115 (100%)

157 (49.53%) 149 (47%) 11 (3.47%) 317(100%)

53 (25.98%) 139 (68.14%) 12 (5.88%) 204(100%)

9 (12.68%) 51 (71.83%) 11 (15.49%) 71(100%)

61 (21.48%) 218 (76.76%) 5 (1.76%) 284(100%)

41 (17.15%) 153 (64.02%) 45 (18.83%) 239(100%)
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In Table 3, the “Slight Increase, Slight Decrease to Expected” zBMI class shows a 
strong association with the multivariate class (i) where low zHeight and zWeight was 
observed. Additionally, the “Gradual Increase to High” class shows a strong 
association with multivariate classes (iii) and (v) which illustrate very different zHeight 
and zWeight profiles. Multivariate class (iii) describes children with below expected 
zHeight and expected zWeight scores, while multivariate class (v) illustrates children 
with expected zHeight and above expected zWeight scores. Thus, while subjects may 
have a similar relationship between zHeight and zWeight leading to allocation of the 
same zBMI class, the multivariate zHeight+zWeight approach is able distinguish 
between these individuals. 
 
Table 3: Comparison of subject allocations to zBMI and multivariate zHeight + zWeight 
classes. Comparing these allocations when considering trajectories from birth until 5 years 
of age.  

 
 
Finally, the comparison of agreement between latent trajectories identified when using 
zWFH and zBMI is presented (Table A10). The strongest associations exist between 
the zWFH “Sharp Increase to Above Expected” with the zBMI “Gradual Increase to 
High” classes, the zWFH “Gradual Decrease to Expected” and zBMI “Slight Increase, 
Slight Decrease to Expected” classes and the zWFH “Gradual Increase to Slightly 
High” and zBMI “Sharp Increase to High” classes. These associated classes show 
similar levels at which they settle, however the rate of change up until this point is 
varied between classes identified using zWFH and zBMI. While the allocation of 
classes was not entirely in agreement given these two responses, this does suggest 
that given either zWFH or zBMI as input, the latent trajectories identified across 
responses may represent similar growth profiles. 
 
  

zHeight+ zWeight                                                                                            zBMI
Gradual 
Increase to 
High

Sharp Increase 
to High

Slight Increase, 
Slight Decrease 
to Expected

All zBMI

(i) zHeight: Sharp Decrease to Low

zWeight: Gradual Decrease to Low

(ii) zHeight: Gradual Decrease to Low

zWeight: Gradual Decrease to Below Expected

(iii) zHeight: Sharp Decrease, Sharp Increase to Below Expected

zWeight: Sharp Decrease, Sharp Increase to Expected
(iv) zHeight: Sharp Decrease, Sharp Increase, Gradual Decrease to 
Below Expected
zWeight: Gradual Increase, Gradual Decrease to Expected

(v) zHeight: Sharp Decrease, Sharp Increase to Expected

zWeight: Sharp Increase to High

TOTAL 149 (13%) 485 (44%) 481 (43%) 1115 (100%)

29 (9.15%) 89 (28.08%) 199 (62.78%) 317 (100%)

17 (8.33%) 88 (43.14%) 99 (48.53%) 204 (100%)

23 (32.39%) 20 (28.17%) 28 (39.44%) 71 (100%)

17 (5.99%) 155 (54.58%) 112 (39.44%) 284 (100%)

63 (26.36%) 133 (55.65%) 43 (17.99%) 239 (100%)
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Association with Abnormal Growth: 
 
To classify Rapid Weight Gainers (RWG), children were identified who experienced 
an increase in weight between birth and 9 months that was greater than 0.67 
standardized units. The proportion of RWG children within each identified growth 
trajectory for weight is shown in Table 4. 
 
Table 4: Proportion of children that experienced rapid weight gain within the first 9 
months of life within the four zWeight growth classes. 
 Gradual 

Decrease to 
Low 

Sharp Decrease, 
Sharp Increase 
to Expected 

Gradual 
Increase; 
Gradual 
Decrease to 
Expected 

Sharp Increase 
to High 

Normal 
WG 235 (98.7%) 108 (86.4%) 206 (43.7%) 9 (6.8%) 
RWG 3 (1.3%) 17 (13.6%) 265 (56.3%) 124 (93.2%) 

 
Most children identified as RWG were allocated to the “Gradual Increase; Gradual 
Decrease to Expected” and “Sharp Increase to High” zWeight classes, while very few 
were allocated to the “Gradual Decrease to Low” and “Sharp Decrease, Sharp 
Increase to Expected” classes (Table 4). 93% of children allocated to the “Sharp 
Increase to High” class experienced RWG, showing an association with RWG and the 
high zWeight trajectory. Within the “Gradual Increase; Gradual Decrease to Expected” 
class, 56% experienced RWG. Thus, this class is almost equally represented by 
children who experienced RWG, and those who did not, who have settled at a normal 
weight.  
 
The proportion of those that experienced RWG within other growth trajectories is 
illustrated within the supplementary materials (Tables A11-A13).  Within zBMI, both 
“Increase to High” trajectories comprised over 50% RWG individuals, this is also seen 
within the zWFH “Sharp Increase to High” trajectory. Otherwise, the zBMI and zWFH 
classes do not show a clear association with RWG, which is to be expected as zBMI 
and zWFH measures consider both zHeight and zWeight profiles. Within the 
multivariate zHeight+zWeight classes a large percentage of RWG within those 
allocated to the multivariate classes (iv) and (v) (61% and 81% respectively) occurred, 
in line with results seen in zWeight.  
 
The number of children that ever experienced some form of abnormal growth, namely 
stunting (zHeight Score < -2), overweight (zWeight Score > 2) or underweight (zWeight 
Score < -2), at one or more time points between birth and 5 years were identified.  Both 
“Decrease to Low” (Sharp and Gradual) classes, based on zHeight, show over 50% 
of individuals classified as stunted at one or more time points (Table 5). Within the 
“Gradual Increase, Gradual Decrease to Below Expected” class 34% of subjects were 
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classified as stunted at one or more time points, and within the “Sharp Decrease, 
Sharp Increase to Below Expected” class the largest percentage of 73% of individuals 
classified as stunted at one or more time points. The largest percentage of children 
identified as underweight at one or more time points, 50%, were allocated to the “Sharp 
Decrease, Sharp Increase to Expected” class when considering zWeight (Table 6). 
Meanwhile, the largest percentage of children identified as overweight at one or more 
time points, 41%, were allocated to the “Sharp Increase to High” class when 
considering zWeight (Table 6).  
 
Table 5: Proportion of ever stunted children between birth and 5 years as defined by 
zHeight scores.  

Sharp 
Decrease to 
Low  

Gradual 
Decrease to 
Low  

Sharp 
Decrease, 
Sharp 
Increase to 
Below 
Expected 

Gradual 
Increase, 
Gradual 
Decrease to 
Below 
Expected 

Entire 
Cohort 

Stunted 263 (51%) 61 (55%) 136 (73%) 110 (34%) 570 (50%) 
Total 516 112  187 321 1136 

 
Table 6: Proportion of children ever underweight or overweight between birth and 5 
years as defined by zWeight scores.  

Gradual 
Decrease to 
Low 

Sharp 
Decrease, 
Sharp 
Increase to 
Expected 

Gradual 
Increase; 
Gradual 
Decrease to 
Expected 

Sharp 
Increase to 
High 

Entire 
Cohort  

Underweight 91 (35%) 75 (50%) 76 (13%) 44 (31%) 286 (25%) 
Overweight 31 (12%) 18 (12%) 77 (13%) 58 (41%) 184 (16%) 
Total 263 150 584 142 1139 

 
These identified latent profiles thus indicate children with abnormal growth features 
across the 5-year period rather than at isolated ages. 
 
Discussion: 
 
This paper characterizes the structure and heterogeneity of growth profiles for children 
from birth to 5 years of age in a LMIC African birth cohort.   The use of LCMM allowed 
identification of distinct classes of growth from birth through 5 years. Three latent 
classes were identified within zBMI and zWFH; four latent classes were identified 
within zHeight and zWeight and five latent classes were identified within the 
multivariate response of zHeight+zWeight. Through these latent classes children were 
identified who deviated from expected growth patterns and their progression through 
early childhood was tracked. We identified a clear association between univariate 
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zWeight and zHeight classes and zHeight+zWeight classes and abnormal growth 
patterns of stunting, underweight, overweight and rapid weight gain.  
 
This is the first study to identify latent growth classes using a joint growth response 
made up of zHeight and zWeight during childhood. Additionally, the trajectories 
identified using this joint response were contrasted against those identified using 
zBMI, zWeight, zHeight and zWFH. The results were internally validated using two 
specifications of the longitudinal process, through the use of standardised and 
unstandardised growth responses as well as through repeating the LCMM using 
internal cross-validation using randomly sampled subsets. Consequently, there is 
confidence in the latent profiles identified within this report.  
 
Growth responses may be analysed within their observed or standardised formats. 
The observed, unstandardised approach does not control for prematurity, age or 
gender. Thus, a key advantage of using standardised growth responses is the 
generalisability of trajectories, as the impact of gender or gestational age on growth 
has been removed from the process of latent class identification. 
 
 A Cluster Analysis approach could have been used to identify latent groups with 
respect to growth instead of the LCMM approach. This would have required the 
definition and analysis of features of a given growth profiles as opposed to the 
longitudinal growth measurements. Gough et al., used K-means clustering 
approaches to identify latent trajectories within standardised height (zHeight) scores 
and identified four classes within this growth response (24). Similarly, Mebrahtu et al., 
identified three classes within standardised weight (zWeight) scores using the GMM 
approach (25).  Here, within zHeight and zWeight four classes were identified, while 
zHeight+zWeight lead to the identification of five latent profiles. The classes identified 
using the multivariate approach were not identical to those found using the univariate 
approach, and additionally allocation to these classes was not identical. This shows 
the benefit of considering both the uni- and multivariate approaches when identifying 
latent growth trajectories. The multivariate approach considers both the change of 
zHeight and zWeight responses over time that are adjusted for age and sex, with an 
unrestricted relationship unlike zBMI and zWFH. This also reiterates that the 
multivariate approach allows the identification of latent trajectories that consider the 
change of both Height and Weight independently over time. The univariate and 
multivariate approaches consistently identified a low zHeight class, which may serve 
as a stunted, or at high risk of stunting class, a low zWeight class (those at greater risk 
of underweight) and a high zWeight class (those at greater risk of overweight). 
 
Three growth classes were identified within zBMI and zWFH scores between birth and 
five years. In contrast, Rickman et al. identified four latent classes within zWFH, 
however they considered zWFH from birth until two years within a Western Kenyan 
cohort. While they identified an additional class, there is strong agreement between 
the trajectories identified by Rickman et al. and those within this study; the difference 
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being with an additional low zWFH class identified by Rickman et al. (26). It is possible 
that cohort differences may explain the difference in profile numbers identified here as 
Rickman et al., observed an increased risk of suboptimal growth - considering 8 
distinct growth measures - within HIV-exposed uninfected children. 
 
Previous studies that make use of latent class analysis to identify groups of children 
with similar growth trajectories primarily focus on BMI as an indicator of early onset 
obesity (27,28). Robinson et al., reviewed all publications post 2000 that investigated 
latent class identification within BMI responses (28). Of the eight studies found, six 
identified four clear trajectories within BMI during childhood (28). Accordingly, 
identification of latent classes within BMI or zBMI is seen more frequently in the 
literature than zWFH. Most commonly, three or four latent classes are identified within 
zBMI or BMI, however these studies often focus on growth from the age of four 
onwards (28–31). Wang et al., found dynamic BMI growth patterns (such as BMI 
catch-up and stable overweight) were more predictive, and thus more informative, than 
static BMI measurements of cardiovascular structure and function in early childhood 
(32). Rapid weight gain in early childhood (or catch-up growth) has been associated 
with an increased risk of overweight, obesity and other chronic diseases during later 
childhood and adulthood (33–36). Additionally, catch-up growth has been associated 
with various factors such as altered insulin metabolism (37,38) and hence an 
increased risk of Type II diabetes (39), increased systolic blood pressure (40), 
increased risk of coronary heart disease (7) and an increased risk of childhood asthma 
(41) Various factors may modify the risk of rapid weight gain or obesity, including bottle 
feeding,  shorter gestation age and being firstborn (42,43).  

Conventionally Weight-for-Height/Length (zWFH) is used to assess over/under-weight 
status in children below the age of 2 years, while Body Mass Index (BMI) is used from 
2 years onwards (44). Weight-for-Height and standardised BMI (zBMI) scores are 
calculated using WHO charts; both represent the relationship between Height and 
Weight. However, zBMI scores are standardised by age while zWFH scores are not 
(20). Instead, these are created using charts that represent the expected relationship 
between height and weight between birth and two years or two years and five years 
of age (45). Aris et al., found that the use of zBMI or zWFH before 2 years did not 
impact the ability to predict future adiposity or cardiometabolic outcomes in children, 
suggesting these scores may be equally beneficial.  

A clear limitation for the use of zWFH is the lack of age-dependent standardisation, 
which is resolved when one makes use of zBMI (20,45). However, a shortcoming of 
the use of BMI to study future risk of obesity, is the fact that BMI does not consistently 
reflect body composition (46). It has even been suggested that BMI and BMI increase 
during early childhood is more predictive of lean mass than adiposity during adulthood 
(47). Body composition, fat mass and fat-free mass may be measured, and 
subsequent latent classes have been identified within the observations of fat mass 
and fat-free mass independently (48). However, further research is needed to identify 
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whether this may be a better predictor of obesity in children. Additionally, this requires 
dedicated machinery that may not be available at many care facilities in Low to Middle 
Income (LMIC) countries. Here, the trajectories identified within zBMI and zWFH as 
well as allocation to these classes across these two responses were in some 
agreement, indicating that there may not be a clear benefit to using zWFH over zBMI. 
Similarly, Aris et al., considered the association of overweight based on zBMI or zWFH 
and cardiometabolic risk during the first two years of life and found no clear difference 
using zBMI or zWFH (45).  

Both groups of latent trajectories identified using zBMI and zWFH did not show a 
strong agreement in allocations when contrasted with multivariate zHeight+zWeight. 
This illustrates additional information the multivariate zHeight+zWeight approach may 
add to such analyses. The multivariate zHeight+zWeight approach was able to identify 
abnormal growth with respect to zHeight, zWeight or both while the zWFH and zBMI 
approaches focus on zWeight with zHeight as a reference regardless of whether 
zHeight is classified as normal or abnormal. Thus, the use of multivariate 
zHeight+zWeight has provided a different perspective to our understanding of growth 
during childhood.  
 
Remarkably, 31% of overweight children under five live in LMICs, while 72% and 59% 
of wasted and stunted children under five, respectively, live in LMICs. While the 
prevalence of stunting and wasting in children is decreasing in Southern Africa, the 
prevalence of obesity is increasing (1). Fifty percent of subjects within this cohort were 
identified as stunted at one or more timepoints, in particular the “Sharp Decrease, 
Sharp Increase to Below Expected” zHeight class. Forty one percent of those allocated 
to the “Sharp Increase to High” zWeight class were classified as overweight at one or 
more timepoints.  Half of those allocated to the "Sharp Decrease, Sharp Increase to 
Expected” zWeight class were identified as underweight at one or more timepoints. 
This illustrates the ability of using identified latent classes as a proxy for those at high 
risk of stunting, overweight or wasting in a longitudinal setting. 
 
The “Sharp Increase to High” zWeight class identified 93% of RWG children, who are 
at risk of obesity, and development of non-communicable diseases. Those that 
experienced RWG make up the majority of children identified within the BMI and WFH 
“Sharp Increase to High” classes, indicating a higher risk of RWG related adverse 
effects within these classes. Interestingly the RWG children were allocated to similar 
classes when considering either zHeight+zWeight or zWeight. Within 
zHeight+zWeight class (v) 81% of experienced RWG, and hence subjects allocated to 
this class are at greater risk of RWG associated adverse effects.  
 
Limitations of the analysis described, include the use of a single cohort. However, this 
cohort comprised of almost 1000 children with numerous repeated growth 
measurements and high rates of follow-up.  Furthermore, this cohort is representative 
of LMIC child populations with high rates of poverty and infectious diseases, which is 
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a consistently underrepresented population group within latent growth analysis. A 
potential limitation is the use of WHO and Fenton reference ranges, however these 
are widely used globally. zHeight and zWeight within this cohort behaved differently 
from expected, thus, average growth of this population may not be adequately 
described through the WHO and Fenton growth reference ranges. This would lead to 
potentially incorrect interpretations of trajectories that may be situated below or above 
what is expected. The development of a South African specific growth reference would 
resolve this concern. However, using globally accepted reference ranges allows 
comparisons with other cohorts and populations globally. As is convention, lying-down 
length was measured up to two years after which standing height was recorded. It is 
also well documented that recordings of length often contain more measurement error 
as it is difficult to keep infants still and equally stretched out during each follow up visit. 
To minimise this staff were trained repeatedly in growth measurements, a 
standardised operating procedure was used, and all measurements were done in 
triplicate. Additionally, due to the study design, observations were acquired more 
frequently during the first year with observations every six-month interval from one 
year. However, the first year of life has the most accelerated growth and is the most 
critical period for development (49), with growth patterns setting a developmental 
trajectory for life (32,50). This may have impacted the shapes of growth curves 
identified as there was more information to describe these curves during the first year. 
The use of a greater degree of smoothing at early ages may have accounted for this 
impact, this will be considered in future analysis when age ranges are extended. 
 
Longitudinal growth response over time must first be described to ascertain latent 
growth classes; subsequently latent groupings within such a response may be 
identified. To describe the longitudinal process a broken-stick model was used. While 
more flexible growth models such as a cubic-spline, polynomial or more conventional 
growth models such as the SITAR could have been used none of these approaches 
would produce as interpretable results as identified here. The broken-stick model 
allows direct comparison of changes in growth between respective intervals across 
latent classes. Multiple approaches were considered and compared and did not 
produce different results. The SITAR approach was unsuccessful given this dataset; 
this is often the case when using responses with limited visit events. 
 
Future work will focus on comparing latent trajectories with various clustering 
approaches for multivariate growth measurements. Furthermore, the inclusion of 
additional growth responses within a multivariate model may allow for the identification 
of growth profiles that describe the overall growth of individuals throughout childhood. 
In future we hope to extend this work up until the age of puberty and hope that at this 
time the increased number of visits will allow the use of the SITAR model for 
comparison purposes. Additional work will focus on describing determinants of latent 
growth profiles to identify risk factors for obesity, wasting or stunting. This will also 
include investigating the association between growth trajectories and childhood or 
future illness, hence identifying possible areas of intervention to promote optimal 
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growth in children. Here the understanding of how Weight and Height may change 
throughout childhood has been broadened. With the identification of these distinct 
growth trajectories, one may be able to explore whether these specific profiles may 
serve as an indicator of early onset illness.  
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