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Abstract 
A precision medicine approach in type 2 diabetes (T2D) could enhance targeting specific glucose-

lowering therapies to individual patients most likely to benefit. We utilised Bayesian non-parametric 

modelling to develop and validate an individualised treatment selection algorithm for two major T2D 

drug classes, SGLT2-inhibitors (SGLT2i) and GLP1-receptor agonists (GLP1-RA). The algorithm is 

designed to predict differences in 12-month glycaemic outcome (HbA1c) between the 2 therapies, 

based on routine clinical features of 46,394 people with T2D in England (27,319 for model 

development, 19,075 for hold-out validation), with additional external validation in 2,252 people 

with T2D from Scotland. Routine clinical features, including sex (with females markedly more 

responsive to GLP1-RA), were associated with differences in glycaemic outcomes. Our algorithm 

identifies clearly delineable subgroups with reproducible ≥5mmol/mol HbA1c benefits associated 

with each drug class. Moreover, we demonstrate that targeting the therapies based on predicted 

glycaemic response is associated with improvements in short-term tolerability and long-term risk of 

new-onset microvascular complications. These results show that precision medicine approaches to 

T2D can facilitate effective individualised treatment selection, and that use of routinely collected 

clinical features could support low-cost deployment in many countries.  
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Introduction 

A precision medicine approach in type 2 diabetes (T2D) would aim to target specific glucose-

lowering therapies to individual patients most likely to benefit—for a detailed review of the state of 

the field, see Dennis, 2020 [1]. Current stratification in T2D treatment guidelines involves 

preferential prescribing of two major drug classes, SGLT2i-inhibitors (SGLT2i) and GLP1-receptor 

agonists (GLP1-RA), to subgroups of people with or at high-risk of cardiorenal disease [2]. Evidence 

informing these recommendations comes from average treatment effect estimates derived from 

placebo-controlled cardiovascular and renal outcome trials, which have predominantly recruited 

participants with advanced atherosclerotic cardiovascular risk or established cardiovascular disease 

[3, 4]. Consequently, there is limited evidence on the benefits of SGLT2i and GLP1-RA for individuals 

in the broader T2D population and, given the lack of head-to-head trials, of the relative efficacy of 

the two drug classes for individual patients.  

Recent studies have demonstrated a clear potential for a precision medicine approach based on 

glycaemic response, with the TRIMASTER crossover trial establishing a greater efficacy of SGLT2i 

compared to another major drug class, DPP4-inhibitors (DPP4i), in those with better renal function, 

and a greater efficacy of thiazolidinedione therapy compared with DPP4i in those with obesity (BMI 

>K30Kkg/m
2
) compared to those without obesity [5]. Given these findings, a validated prediction 

model to support individualised treatment selection has recently been developed for SGLT2i 

compared with DPP4i therapy using observational and clinical trial data [6]. For GLP1-RA, although 

recent studies have identified robust heterogeneity in treatment response based on 

pharmacogenetic markers and markers of insulin secretion [7, 8], the influence of these markers on 

relative differences in clinical outcomes compared with other drug classes, and therefore their utility 

for targeting treatment, has not previously been assessed.  

Given the lack of evidence to support targeted treatment of SGLT2i compared with GLP1-RA 

therapies, we aimed to develop and validate a prediction model to provide individualised estimates 

of differences in 12-month glycaemic (HbA1c) outcomes for the two drug classes. We developed a 

model using the recently proposed Bayesian Causal Forest (BCF) structure, designed to explicitly 

identify and predict conditional average treatment effects (CATE), representing differential effects of 

the two drug classes on HbA1c outcome conditional on the clinical characteristics of individual 

patients [9]. The BCF framework also minimises confounding from indication bias and allows for 

flexibility in defining model structure and outputs. Our approach is based on readily-available and 

routinely collected clinical features, supporting potential low-cost deployment in most countries. We 

also evaluated the downstream impacts of targeting therapy based on the glycaemic response on 
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secondary outcomes of weight change, tolerability, and longer-term risk of new-onset microvascular 

complications, macrovascular complications, and adverse kidney events. 
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Results 

We identified 112,274 study-eligible non-insulin treated people with T2D initiating SGLT2i (n=84,193) 

or GLP1-RA (n=28,081) for the first time between January 2013 and October 2020 in UK general 

practice, accessed from Clinical Practice Research Datalink (CPRD) (sFlowchart 1). The mean age of 

participants was 58.2 (SD=10.9) years, 66,248 (59%) were men, and 88,174 (79%) were of white 

ethnicity. Baseline clinical characteristics by initiated drug class are listed in Table 1. For the 

development of the 12-month HbA1c response treatment selection model, individuals with a 

measured HbA1c outcome were randomly split 60:40 into development (n=31,346) and validation 

(n=20,865) cohorts (sFlowchart 1; Baseline characteristics by cohort: sTable 1A-B). Mean unadjusted 

12-month HbA1c response (change from baseline in HbA1c) was -12.0 (SD 15.3) mmol/mol for 

SGLT2i and -11.7 (SD 17.6) mmol/mol for GLP1-RA. Specific cohorts were defined for secondary 

outcomes to maximise the number of included patients for each analysis (sFlowchart 2). 

Model development  

After variable selection [9] (sFig. 1), the BCF model identified multiple clinical factors predictive of 

HbA1c response with SGLT2i (the reference drug class in the model) henceforth referred to as the 

prognostic factors, and multiple factors predictive of differential HbA1c response with GLP1-RA 

compared to SGLT2i therapy (henceforth referred to as the differential factors —Table 2). The final 

BCF model was fitted to 27,319 (87.2%) individuals with complete data for all selected clinical 

factors. Overall model fit and performance statistics for predicting achieved HbA1c outcome in 

internal validation for both the development and hold-out cohorts are reported in sTable 2. Model 

predictions were similar whether or not we incorporated a propensity score into the BCF model (as 

recommended by Hahn et al. [10]) (sFig. 2). Therefore, we removed the propensity score covariate 

from the final model to support easier future implementation of the model within clinical practice. 

In the development cohort, the predicted CATE was a 0.1 (95%CI -0.3;0.5) mmol/mol benefit with 

GLP1-RA over SGLT2i, suggesting similar average efficacy of both therapies. However, across 

individuals, there was marked heterogeneity in predicted CATE (Fig. 1A), with the model predicting 

an average HbA1c benefit on SGLT2i therapy for 13,110 (48%) individuals and on GLP1-RA for 14,209 

(52%) individuals. 4,787 (17.5%) of the development cohort had a predicted HbA1c benefit >3 

mmol/mol (3mmol/mol is used widely as minimally important difference in clinical trials) with 

SGLT2i over GLP1-RA, and 5,551 (20.3%) had a predicted HbA1c benefit >3 mmol/mol with GLP1-RA  

over SGLT2i. 
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Model calibration 

Calibration by decile of model-predicted CATE estimates was good in the development cohort 

(n=27,319; Fig. 1B), the hold-back CPRD validation cohort (n=19,075, Fig. 1C), and in propensity-

matched cohorts (sFig. 3). In practice, true CATE estimates are unobserved since a single individual 

receives only one therapy, meaning the counterfactual outcome they would have had on the 

alternative therapy is unobserved. Therefore, for each decile calibration was based on comparing 

mean predicted CATE estimates to the mean differences in outcome HbA1c of individuals receiving 

SGLT2i compared to GLP1-RA—for full details, see Methods. 

We also evaluated model performance in an external Scottish cohort—Tayside & Fife (n=2,252 

[1,837 initiating SGLT2i, 415 initiating GLP1-RA]; Baseline characteristics: sTable 1C). A similar 

distribution of predicted CATE to CPRD was observed (Extended Fig. 1A). Due to the smaller cohort 

size, calibration was assessed by quintile of predicted CATE, with a clear difference between upper 

(favouring GLP1-RA) and lower (favouring SGLT2i) quintiles, but modest calibration in middle 

quintiles (Extended Fig. 1B). Among 81 (3.6%) individuals with a model-predicted HbA1c benefit >5 

mmol/mol for SGLT2i over GLP1-RA, there was a 7.4 mmol/mol (95%CI 0.1;14.8) benefit for SGLT2i 

(Extended Fig. 1C). In contrast, among 150 (6.7%) individuals with a model-predicted HbA1c benefit 

>5 mmol/mol for GLP1-RA over SGLT2i, there was a 5.6 mmol/mol (95%CI -0.9;12.1) benefit on 

GLP1-RA. 

Model interpretability 

Stratifying the combined development and validation cohorts with complete predictor data 

(n=46,394) into subgroups defined by predicted CATE, there were clear differences in clinical 

characteristics, with those having a greater predicted HbA1c benefit with GLP1-RA over SGLT2i being 

predominantly female and older, with lower baseline HbA1c, eGFR and BMI (Fig. 2, sTable 1E). SGLT2i 

were predicted to have a greater HbA1c benefit over GLP1-RA for 32% of those with baseline HbA1c  

levels <64, 39% 64-75, 54% 75-86, and 67% ≥86 mmol/mol. Given their average older age, those with 

the greatest (>5 mmol/mol) predicted benefit on GLP1-RA also had a higher prevalence of 

microvascular complications (75.2% versus 40.8%), cardiovascular disease (36.5% versus 15.8%), 

chronic kidney disease (25.1% versus 0.9%), and heart failure (8.8% versus 4.2%) (sTable 1E). An 

evaluation of relative variable importance identified the number of other current glucose-lowering 

drugs (a higher number of concurrent therapies favouring SGLT2i as the optimal treatment), sex, 

current age, and to a lesser extent BMI and HbA1c as the most influential predictors (relative 

importance ≥3%). In contrast, microvascular complications and cardiovascular comorbidities had 

very modest effects on differential response (Extended Fig. 2). 
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Replication of sex differences in glycaemic response in clinical trials 

Whilst previous analyses of clinical trials and observational data for SGLT2i have shown a greater 

HbA1c response in males compared to females, which we additionally reproduced in Tayside & Fife 

(Extended Fig. 3), sex differences in GLP1-RA response have not been clearly established. Here, we 

focused on individual-level randomised clinical trial data of GLP1-RA from the HARMONY 

programme (Liraglutide [n=389] and Albiglutide [n=1,682]), [11], the PRIBA prospective cohort study 

(Liraglutide [n=397], exenatide [n=223]) [7], and Tayside & Fife (n=415). Baseline characteristics for 

the cohorts are reported in sTable 1C-D. Across all studies, there was consistent evidence of a 

greater baseline HbA1c adjusted glycaemic response in females versus males; this was most marked 

for Liraglutide in the HARMONY 7 trial [11] where a 4.4 (95%CI 2.2;6.3) mmol/mol greater response 

in females than males was observed.  

Effect of targeting therapy based on predicted HbA1c outcome on other short- 

and long-term outcomes  

To assess the potential associations of targeting treatment based on predicted HbA1c benefit with 

other short- and long-term outcomes, we divided the study population into six subgroups based on 

clinically relevant differences in predicted CATE (HbA1c differences of 0-3, 3-5 and >5 mmol/mol 

between therapies). We then compared average differences in each short and long-term outcome in 

individuals receiving SGLT2i compared to GLP1-RA within each subgroup, for adjusted (Fig. 3), 

propensity-matched (sFig. 4), and double robust adjusted models (sFig. 5). Specific subpopulations 

were defined for each short-term outcome based on the availability of observed outcome data (12-

month HbA1c change from baseline [to evaluate absolute response] n=87,835; 12-month weight 

change n=41,728; treatment discontinuation within 6 months [a proxy for tolerability] n=77,741) 

(sFlowchart 2). Longer-term outcomes were evaluated up to 5 years from drug initiation, excluding 

individuals with a history of cardiovascular disease or chronic kidney disease for major adverse 

cardiovascular event (MACE), heart failure, and adverse kidney (composite of ≥40% decline in eGFR 

or kidney failure [12]) outcomes (n=52,052) and individuals with a history of retinopathy, 

neuropathy and nephropathy for microvascular outcome (n=34,524). (sFlowchart 2).  

For HbA1c change from baseline, of the 6,856 individuals (7.8%) with a predicted HbA1c benefit on 

SGLT2i of ≥5 mmol/mol, those who received SGLT2i had on average a 23.3 mmol/mol (95%CI 

22.6;24.0) reduction in HbA1c and those who received GLP1-RA had on average an 18.4 mmol/mol 

(95%CI 17.6;19.3) reduction in HbA1c (Fig. 3A.1). In contrast, 7,293 individuals (8.3%) with a predicted 

HbA1c benefit on GLP1-RA of ≥5 mmol/mol, those receiving GLP1-RA had on average a 15.7 

mmol/mol (95%CI 14.8;16.6) reduction in HbA1c, and those receiving SGLT2i had on average a 9.0 

mmol/mol (95%CI 8.2;9.7) reduction in HbA1c. Similar differences between subgroups were seen 
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when stratified by major UK self-reported ethnicity groups (White and Non-White [South Asian, 

Black, Other or Mixed]) (Extended Fig. 4), and by history of cardiovascular disease (sFig. 10).  

Observed weight change was consistently greater for individuals treated with SGLT2i compared to 

GLP1-RA across all subgroups (Fig. 3A.2). Short-term discontinuation was lower in those treated with 

the drugs predicted to have the greatest glycaemic benefit by the model, mainly reflecting 

differences in SGLT2 discontinuation across predicted levels of differential glycaemic response (Fig. 

3A.3). Relative risk of new-onset microvascular complications also varied by subgroup, with a lower 

risk with SGLT2i versus GLP1-RA only in subgroups predicted to have a glycaemic benefit with SGLT2i 

(Fig. 3B.1). HRs for the risk of new-onset MACE were similar overall (HR 1.02 [95%CI 0.89;1.18]) and 

by subgroup (Fig. 3B.2). HRs for the risks of both new-onset heart failure and adverse kidney 

outcomes were lower with SGLT2i (heart failure HR 0.71 [95%CI 0.59;0.85]; CKD HR 0.41 [95%CI 

0.30;0.56]) with no clear evidence of a difference by subgroup (Fig. 3B.3, sFig. 6C).  

Comparison of model predictions with our previously published treatment 

selection model for SGLT2i and DPP4i therapies 

In n=82,933 eligible patients, predictions for HbA1c response with SGLT2i from the SGLT2i v GLP1-RA 

treatment selection model were highly concordant (R2 > 0.92) with those from our recently 

published SGLT2i versus DPP4i treatment selection model, which was developed in an independent 

UK primary care cohort [6] (sFig. 7). Estimating differential HbA1c responses using both models in our 

study population with complete data suggested SGLT2i is the predicted optimal therapy for HbA1c in 

48.2% (n=39,975) of individuals, GLP1-RA the predicted optimal therapy in 51.3% (n=42,519), and 

DPP4i the optimal therapy for only 0.5% (n=439). 

Prototype treatment selection model 

A prototype treatment selection model app (provided for research purposes only) providing 

individualised predictions of differences (with uncertainty) in HbA1c outcomes is available at: 

https://pml204.shinyapps.io/SGLT2_GLP1_calculator/      
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Discussion   

We have developed a novel treatment selection algorithm using state-of-the-art Bayesian methods 

to predict differences in one-year glycaemic outcomes for SGLT2i and GLP1-RA and validated the 

algorithm in a hold-out cohort and an independent external validation cohort. Our individualised 

precision medicine approach shows glycaemic response-based targeting of these two major drug 

classes in people with T2D can not only optimise glycaemic control, but is also associated with 

improved tolerability and reduced risk of new-onset microvascular complications. In contrast, we 

found limited evidence for heterogeneity in other clinical outcomes, with overall equipoise between 

the two therapies for new-onset MACE and a clear overall benefit with SGLT2i over GLP1-RA for 

new-onset heart failure and adverse kidney outcomes (≥40% eGFR decline or renal failure). 

Predictions are based on individual patient-level routine clinical characteristics, meaning the model 

can be deployed in most countries worldwide without the need for additional testing.  

Our approach differs from notable recent studies that have attempted to sub-classify people with 

T2D or used dimensionality reduction to represent T2D heterogeneity [13, 14, 15]. Whilst these 

alternative approaches can provide important insight into underlying heterogeneities of T2D patient 

characteristics, they, by definition, lose information about the specific characteristics of individual 

patients, meaning they are sub-optimal for accurately predicting the treatment or disease 

progression outcomes for individuals [16]. If subclassification approaches based on clinical features 

are to have potential clinical utility, they will need to be updated over time as an individual’s 

phenotype evolves [17]. In contrast, our ‘outcomes-based’ approach enables the prediction of 

optimal therapy when a treatment decision is made, uses the specific information available for a 

patient at that point in time and avoids sub-classification.  

Although BCF models are only causal under specific assumptions [18], they can provide insights into 

differences in the underlying mechanisms of action of GLP1-RA and SGLT2i, and the clinical utility of 

these differences. The strongest predictor of a differential glycaemic response was the number of 

currently prescribed glucose-lowering therapies, which is a likely proxy of the degree of diabetes 

progression (and, therefore, underlying beta cell failure) of an individual. A plausible biological 

explanation for the relevance of this proxy is that an attenuated GLP1-RA response has been 

observed in individuals with more severe diabetes; previous clinical studies have identified that 

markers of beta cell failure (including longer diabetes duration, insulin co-treatment and lower 

fasting c-peptide) are associated with a lower glycaemic response to GLP1-RA [7], with no evidence 

of differences for SGLT2i [19]. The favouring of GLP1-RA over SGLT2i in females is novel but is 

supported by our trial validation and recent pharmacokinetic data demonstrating higher circulating 

GLP1-RA drug concentrations and, consequently, greater HbA1c reduction in females compared with 
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males [20]. For SGLT2i, increased urinary glucose excretion likely explains the greater relative 

glycaemic efficacy with higher baseline HbA1c and eGFR, which in concordance with our analysis, has 

been previously demonstrated in trial data [6]. Of note, the comorbidities included in the final model 

had modest effects on HbA1c and are likely to be proxy measures of factors underlying differential 

response to these therapies.  

Our study represents the second application of our novel validation framework for precision 

medicine models, which, in the absence of true observed outcomes (for an individual patient on one 

therapy, the counterfactual outcome they would have had on an alternative therapy cannot be 

observed [21]), evaluates accuracy in subgroups defined by predicted CATE. The previous study 

developed a treatment selection model for SGLTi2 versus DPP4i therapy in a separate dataset, with 

models developed in primary care data validating well in head-to-head clinical trial datasets. 

Although this demonstrated marked heterogeneity in the relative glycaemic outcome, most (84%) 

individuals had a greater glycaemic reduction with SGLT2i. In contrast, this GLP1-RA/SGLT2i model 

shows even greater heterogeneity in treatment effects but with equipoise on average treatment 

effects between the two therapies (52% favouring GLP1-RA). Furthermore, we demonstrate that 

optimising therapy based on predicted glycaemic response may lower microvascular complication 

risk, a finding concordant with evidence from the UKPDS study on the importance of good glycaemic 

control to lower the risk of microvascular disease [22, 23].  

Further developments to this model could include the incorporation of non-routine and 

pharmacogenetic markers (recently identified for GLP1-RA) [8], and additional glucose-lowering drug 

classes, in particular, off-patent sulfonylureas and pioglitazone to support the deployment of the 

algorithm in lower-income countries where the availability of newer medications may be limited. 

Assessment of semaglutide, a GLP-1RA with potent glycaemic effect excluded here due to low 

numbers prescribed during the period of data availability, and tirzepatide, a dual GIP and GLP-1 

receptor agonist not currently available in the UK, is an important area for future research as our 

model may benefit from recalibration for these newer therapies. Although our ethnicity-specific 

validation suggests good performance in people of non-white ethnicity, setting and ethnicity-specific 

validation and optimisation would also improve future clinical utility. Given the possibility of 

selection bias due to non-random treatment assignment, validation in a dataset where individuals 

were randomised to therapy would further strengthen the evidence for model deployment. 

However, few active comparator trials of these two therapies have been conducted [24], and to our 

knowledge, none are available for data-sharing. Ultimately, research, likely in even larger datasets, is 

needed on whether individualised models for other short-and-long term outcomes beyond 

glycaemia, particularly cardiorenal disease, can further improve current prescribing approaches [25]. 
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Finally, a limitation of our study is that despite being state-of-the-art and with a key advantage of 

allowing estimation of predictions with uncertainty, and so facilitating more transparent evaluation, 

the Bayesian causal forest methods we applied are subject to ongoing development in several key 

areas such as variable selection [9, 26], scalability, and handling of missing data [27]. 

In conclusion, our study demonstrates a clear potential for targeted prescribing of GLP1-RA and 

SGLT2i to individual people with T2D based on their clinical characteristics to improve glycaemic 

outcomes, tolerability, and risk of microvascular complications. This provides an important advance 

on current T2D guidelines, which only recommend preferentially prescribing these therapies to 

individuals with, or at high risk of, cardiorenal disease, with no clear evidence to choose between the 

two drug classes. Precision T2D prescribing based on routinely-available characteristics has the 

potential to lead to more informed and evidence-based decisions on treatment for people with T2D 

worldwide in the near future.  
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Methods  

Study population  

Patients with type 2 diabetes initiating SGLT2i and GLP1-RA therapies between 1st January 2013 and 

31st October 2020 were identified in the UK Clinical Practice Research Datalink (CPRD) Aurum 

dataset [28], following our previously published cohort profile [29] (see GitHub: Exeter-

Diabetes/CPRD-Codelists for the codelists used). We excluded patients that were prescribed either 

therapy as first-line treatment (not recommended in UK guidelines) [30], those co-treated with 

insulin, and those with a diagnosis of end-stage renal disease (ERSD) (sFlowchart 1). Due to the low 

numbers of eligible patients we also excluded individuals initiating the GLP1-RA semaglutide (n=784 

study eligible with outcome HbA1c recorded)) [31]. This final CPRD cohort was randomly split 60:40 

into development and hold-back validation sets, maintaining the proportion of individuals receiving 

SGLT2i and GLP1-RA in each set. 

Additional cohorts 

The same eligibility criteria were applied to define an independent population in Scotland for model 

validation (SCI-Diabetes [Tayside & Fife] [32], containing longitudinal observational data on 

biochemical investigations and prescriptions). To assess reproducibility of differences in HbA1c 

response by sex with GLP1-RA therapy, we accessed individual-level data on participants initiating 

the GLP1-RAs Albiglutide and Liraglutide in the HARMONY clinical trial programme, an international 

randomised placebo-controlled trial designed to evaluate the cardiovascular benefit of Albiglutide 

with type 2 diabetes [11], and the PRIBA prospective cohort study (United Kingdom 2011-2013) [7], 

designed to test whether individuals with low insulin secretion have lesser glycaemic response to 

incretin-based treatments.  

Outcomes 

The primary outcome was achieved HbA1c at twelve months post-drug initiation for individuals who 

remained on unchanged glucose-lowering therapy. Given the variability in the timing of follow-up 

testing in UK primary care, this outcome was defined as the closest eligible HbA1c value to 12 months 

(within 3–15 months) after initiation to maximise sample size. To allow for potential differential 

effects of follow-up duration on HbA1c, we included an additional covariate to capture the month 

post-initiation that the HbA1c value was recorded. 

Secondary outcomes comprised short-term outcomes: change in weight 12 months after initiation 

(closest recorded weight to 12 months, within 3–15 months), and, as a proxy for drug tolerability, 

treatment discontinuation within 6 months of drug initiation (as such short-term discontinuation is 

unlikely to be related to a lack of glycaemic response); and longer-term outcomes up to 5-years after 
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initiation: new-onset major adverse cardiovascular events (MACE: composite of myocardial 

infarction, stroke and cardiovascular death); new-onset heart failure; and new-onset adverse kidney 

outcome (a drop of ≥40% in eGFR from baseline or reaching CKD stage 5 [12]); and new-onset 

microvascular complications (see sFlowchart 2). 

Predictors 

Candidate predictors comprised — current age, duration of diabetes, year of therapy start, sex, 

ethnicity (major UK groups: White, South Asian, Black, mixed, other ethnicities), social deprivation 

(index of multiple deprivation quintile), smoking status, the number of current, and ever, prescribed 

glucose lowering drug classes, baseline HbA1c (closest to treatment start date; range in previous 6 

months to +7 days), and other measured clinical features: BMI, eGFR (using the Chronic Kidney 

Disease Epidemiology Collaboration formula [33]), HDL cholesterol, alanine aminotransferase, 

albumin, bilirubin, total cholesterol and the mean arterial blood pressure (defined as closest values 

to treatment start in the previous two years), microvascular complications: nephropathy, 

neuropathy, retinopathy , and major comorbidities: angina, atherosclerotic cardiovascular disease, 

atrial fibrillation, cardiac revascularisation, heart failure, hypertension, ischaemic heart disease, 

myocardial infarction, peripheral arterial disease, stroke, transient ischaemic attack, chronic kidney 

disease and chronic liver disease.  

Treatment selection model development  

Model overview 

We aimed to build a flexible Bayesian treatment selection model [10] to predict differential 

glycaemic response that can be readily deployed in clinical practice. The model development process 

consisted of a first step of propensity score estimation and a second step of developing a treatment 

selection model using a Bayesian additive regression tree (BART) framework [9, 26]. We aimed to 

balance predictive accuracy with model parsimony and build the model around a limited number of 

routinely collected variables, thus facilitating its use in clinical practice. Individuals were excluded 

from the development and validation sets if they initiated multiple glucose-lowering treatments on 

the same day; their therapies were initiated less than 61 days since the start of a previous therapy; 

their baseline HbA1c was <53 mmol/mol; they had a missing baseline HbA1c; or they had a missing 

outcome HbA1c (sFlowchart 1).  

The treatment selection model was developed using Bayesian Causal Forests (BCF) [10], a framework 

specifically designed to estimate heterogeneous treatment effects. The BCF approach places flexible 

BART priors on the mean functions relating to a prognostic component of the model (representing 

outcomes in the reference group, in this case, SGLT2i) but also a moderator component that 
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operates over-and-above the prognostic component (in this case, the differential treatment effect of 

GLP1-RA relative to SGLT2i) [10, 34]. With this method, the shrinkage applied to the differential 

treatment effects can be adjusted independently of the prognostic effects. We used the bcf [10] and 

sparseBCF [26] packages in R to fit the model(s) using Markov chain Monte Carlo (MCMC). By 

default, bcf places stronger regularisation on the moderator side of the model, shrinking the 

treatment effects towards homogeneity where there is a lack of strong evidence to the contrary. For 

this model, we are comparing two therapies against each other (rather than a therapy to a control 

group), so we used the same prior structure for the prognostic and moderator parts of the model. A 

full description of the model parameters and priors is included in the Supplementary Materials. 

Currently, the standard BCF software cannot account for missing data [35], so we used a complete 

case analysis, informed by our previous study showing a limited impact of missing data on predicting 

CATE in a similar primary care dataset [27].  

Propensity score estimation 

The BCF developers [10] recommend including a propensity score variable in the prognostic 

component of BCF models to help alleviate regularisation-induced confounding due to prescribing by 

indication [10]. We used a standard BART model [35] for the propensity score, fitted using MCMC 

and the bartMachine package in R [35]. All variables extracted initially in the development cohort 

were used for initial model fitting. However, a subset of the most predictive variables was selected 

by applying a threshold defined by the proportion of times each predictor was chosen as a spitting 

rule divided by the total number of splitting rules appearing in the model [35, 36] (sFig. 8). The 

propensity score model was then refitted with the selected variables. To assess convergence, we 

monitored the available parameters according to the guidance provided by Kapelner et al. [35] and 

Gelman-Rubin �� values. A description of the model priors is included in the Supplementary Material. 

The BART propensity score model converged quickly, so we ran 25,000 iterations with the first 

15,000 discarded for burn-in; trace plots are available on request and �� < 1.02. To assess the 

performance of the final model, received operating characteristic (ROC) and precision-recall curves 

were fitted to both the development and validation cohorts (sFig. 9). 

Variable selection  

Variable selection was deployed to develop a parsimonious final model whilst maintaining predictive 

accuracy. To do this, we used a two-stage approach, wherein the first stage, we built a sparse BCF 

model [9] incorporating all candidate predictors. Sparse BCF extends standard BCF by replacing the 

uniform prior distribution placed over the splitting probabilities of each variable (which means that 

by default, each variable has the same prior probability of being selected for splitting) with a uniform 

Dirichlet prior over the splitting probabilities. As the model converges, the posterior distribution for 
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these splitting probabilities induces sparsity by assigning higher weight and, thus, higher variable 

importance to more predictive covariates. This prior was used in the model’s prognostic and 

moderator parts [9]. To define the final predictor set, we selected only variables with a posterior 

mean splitting probability greater than 1/number of variables. This was a subjective choice, but one 

we found was sufficient to minimise the number of final predictors without meaningfully affecting 

predictive accuracy. We ran the sparse BCF model for 250,000 iterations, discarding the first 200,000 

iterations as burn-in and monitoring convergence using trace plots (available on request) and 

Gelman-Rubin �� values (where all �� < 1.01). A description of the model parameters and priors is 

included in the Supplementary Material. 

Final model fit 

Following variable selection, we fitted a final model using standard BCF without sparsity-inducing 

priors (since individual-level predictions are not currently possible from the sparse BCF software). 

The model used 300,000 iterations, discarding the first 200,000 iterations and thinning the 

remaining iterations by 4, resulting in 25,000 final posterior samples. The propensity score was not 

included in the final predictor set as it did not meet our threshold for variable selection. As a 

sensitivity analysis, we refitted the model including the propensity score in the predictor set and 

compared predictions across the two models (sFig. 11).  

Variable importance (based on the best linear projection) 

Given the known challenge of extracting variable importance from tree-based models, we 

implemented a pseudo-variable importance measure defined as the proportion of R2 associated with 

each variable for predicting the CATE [37]. This was estimated from a linear regression model using 

all selected variables for the differential part of the model as predictors (with continuous predictors 

fitted as 3-knot restricted cubic splines) and the predicted CATE as the outcome [38]. To assess how 

CATE estimates varied across major routine clinical features, we also summarised the marginal 

distributions of sex, baseline HbA1c, eGFR, current age, and BMI across subgroups defined by the 

degree of predicted glycaemic differences (SGLT2i benefit of 0–3, 3–5 or ≥5 mmol/mol; GLP1-RA 

benefit of 0–3, 3–5 or ≥5mmol/mol). 

Model validation 

Evaluating the accuracy of predicted CATE is a significant challenge since each individual only has 

outcome data for the treatment they initiated but not for the competing treatment (which they did 

not take) [21], meaning the treatment effect is not observed at the individual level (it is a so-called 

counterfactual effect). As such, to validate predicted CATE estimates, we first split validation sets 

into sub-groups based on their predicted CATE estimates from the BCF model and then compared 

the average CATE estimate within each sub-group to estimates derived from a set of alternative 
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models fitted to each of the sub-groups in turn. These latter models target the average treatment 

effect (ATE) within a population of individuals (rather than the conditional average treatment effect 

[CATE]), with desirable properties justified in the literature [6]. An earlier version of this validation 

framework is described previously [6]. If the average CATE estimates in each sub-group (from the 

BCF model) align with the ATE estimates from the alternative models, then this provides evidence 

that the average treatment effect estimates are consistent across different inference methods 

within each sub-group. Restricting the ATE estimates for each sub-group allows for simpler 

comparison ATE models to be used, since the distribution of covariates in each sub-group is 

expected to be more consistent within each subgroup than for the complete data. For validation, 

subgroups were defined by decile of predicted CATE in CPRD and, due to lower patient numbers, by 

quintile in the Tayside & Fife cohort. We then employed three different approaches to estimate the 

ATE within each subgroup: 

Regression adjustment (primary approach): We included all patients and used Bayesian linear 

regression to estimate the ATE within each subgroup, adjusting for the full covariate set used in the 

HbA1c treatment selection model (Table 2), with all continuous predictors included as 3-knot 

restricted cubic splines [39].  

Propensity score matching: Individuals receiving each drug class within each subgroup were 

matched by propensity score (the same propensity score used during HbA1c model development), 

using a caliper distance of 0.05, no replacement and in decreasing order of propensity score values. 

After defining this restricted patient subset, unadjusted linear regression models were used to 

estimate the ATE within each subgroup [40].  

Propensity score matching with adjustment: The linear regression models of approach 2 were 

refitted using a double robust approach by adjusting for the full covariate set used in the HbA1c 

treatment selection model (Table 2). 

In sensitivity analysis, we further assessed the accuracy of predicted HbA1c treatment effects in those 

of non-white ethnicity and in those with and without cardiovascular disease. We also evaluated the 

reproducibility of observed differences in HbA1c response by sex in participants receiving GLP1-RA in 

the HARMONY clinical trial, the PRIBA prospective study, and Tayside & Fife.  

Secondary outcomes 

Specific cohorts were defined to evaluate each secondary outcome to mitigate selection bias and 

maximise the number of individuals available for analysis (sFlowchart 2). All cohorts required 

complete predictor data for the HbA1c-based treatment selection model. To evaluate treatment 

effect heterogeneities, subgroups were defined by the degree of predicted glycaemic differences 
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(SGLT2i benefit of 0–3, 3–5 or ≥5 mmol/mol; GLP1-RA benefit of 0–3, 3–5 or ≥5mmol/mol). As for 

validation of differences in HbA1c outcomes, three approaches were employed to estimate CATE: 

regression adjustment (primary approach), propensity score matching, and propensity score 

matching with predictor variable set adjustment (propensity score model was refitted, following the 

procedure mentioned before, with the additional inclusion of baseline cardiovascular risk as a 

predictor (QRISK2 predicted probability of new-onset myocardial infarction or stroke [41]).  

For 12-month weight change, we included all patients with a recorded baseline weight (closest value 

to 2 years prior to treatment initiation) and a valid outcome weight. Treatment effects were 

estimated using a Bayesian linear regression model with an interaction between the received 

treatment and the predicted HbA1c treatment benefit subgroup, with adjustment for baseline 

weight. We included all patients initiating therapy for treatment discontinuation and estimated CATE 

using Bayesian logistic regression with a treatment-by-HbA1c benefit subgroup interaction. For 

longer-term outcomes, we included only individuals without the outcome of interest at therapy 

initiation, thus evaluating only incident events. Patients were followed for up to 5 years using an 

intention-to-treat approach from the date of therapy initiation until the earliest of: the outcome of 

interest, the date of GP practice deregistration or death, or the end of the study period. For each 

outcome, Bayesian Cox proportional hazards models with treatment-by-HbA1c benefit subgroup 

interactions were fitted with additional adjustment for QRISK2 predicted probability of new-onset 

myocardial infarction or stroke. A description of priors for each model is included in the 

Supplementary Material. The models used 10,000 MCMC iterations, discarding the first 5,000 

iterations as burn-in for four chains. Convergence was monitored using trace plots and Gelman-

Rubin �� values. Here all �� < 1.04 and trace plots are available on request.  

All analyses were conducted using R (version 4.1.2). We followed TRIPOD prediction model reporting 

guidance (see Supplementary Materials—TRIPOD checklist) [42].  
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Tables  
 

Table 1. Baseline clinical characteristics of patients initiating GLP-1 receptor agonists and SGLT2-

inhibitors from the UK Clinical Practice Research Datalink.  

Data are mean [SD] and number (%). SMD: Standardised mean difference (≥0.1 is a common metric for a 

meaningful imbalance between treatment groups).  

 GLP-1 receptor agonists (n=28,081) SGLT2 inhibitors (n=84,193) SMD 

  Missing (%)  Missing (%)  

Current age, years 57.7 [11.2] - 58.4 [10.8] - 0.064 

Duration of diabetes, years 9.4 [6.4] - 9.4 [6.6] - 0.012 

Year of drug start 2016.6 [2.2] - 2017.4 [1.8] - 0.390 

Sex 

   Male 

   Female 

14,960 (53.3%) 

13,121 (46.7%) 

- 

 

51,288 (60.9%) 

32.905 (39.1%) 

- 

 

0.155 

Ethnicity 

   White 

   South Asian 

   Black 

   Other 

   Mixed 

24,063 (85.7%) 

2,144 (7.6%) 

987 (3.5%) 

262 (0.9%) 

246 (0.9%) 

379  

(1.3%) 

64,111 (76.1%) 

12,234 (14.5%) 

3,861 (4.6%) 

1,316 (1.6%) 

885 (1.1%) 

1,786 

(2.1%) 
0.255 

SGLT2 inhibitor type 

   Canagliflozin 

   Dapagliflozin 

   Empagliflozin 

   Ertugliflozin 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

14,965 (17.8%) 

36,250 (43.1%) 

32,860 (39.0%) 

137 (0.2%) 

 

- 

- 

- 

- 

- GLP-1 receptor agonist type 

   Dulaglutide 

   Exenatide (short-acting) 

   Exenatide (long-acting) 

   Liraglutide 

   Lixisenatide 

10,337 (36.8%) 

1,367 (4.9%) 

2,377 (8.5%) 

11,260 (40.1%) 

2,751 (9.8%) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Index of multiple deprivation 

   1 (Least deprived) 

   2 

   3 

   4 

   5 (Most deprived) 

4,568 (16.3%) 

4,925 (17.5%) 

5,393 (19.2%) 

6,099 (21.7%) 

7,078 (25.2%) 

18 

(0.1%) 

14,143 (16.8%) 

14,836 (17.6%) 

16,194 (19.2%) 

18,841 (22.4%) 

20,132 (23.9%) 

47 

(0.1%) 
0.033 

Smoking status 

   Active 

   Ex-smoker 

   Non-smoker 

4,689 (16.7%) 

15,543 (55.4%) 

6,605 (23.5%) 

1,244  

(4.4%) 

14,265 (16,9%) 

45,283 (53.8%) 

21,311 (25.3%) 

3,334 

(4.0%) 
0.048 

Number of glucose-lowering drug  

classes ever prescribed 

   2 

   3 

   4 

   5+ 

2,886 (10.3%) 

6,772 (24.1%) 

10,536 (37.5%) 

7,887 (28.1%) 

- 
18,724 (22.2%) 

25,570 (30.4%) 

25,217 (30.0%) 

14,682 (17.4%) 

- 0.420 

Number of other current glucose- 

-lowering drugs 

   0 

   1 

   2 

   3 

   4+ 

1,161 (5.8%) 

9,948 (35.4%) 

12,422 (44.2%) 

3,862 (13.8%) 

233 (0.8%) 

- 

5,155 (6.1%) 

34,032 (40.4%) 

35,540 (42.2%) 

9,187 (10.9%) 

279 (0.3%) 

- 0.137 

Background therapy 

   Metformin 

   Sulfonylurea 

   DPP-4 inhibitor 

24,075 (85.7%) 

13,312 (47.4%) 

4,595 (16.4%) 

4,019 (14.3%) 

- 

- 

- 

- 

73,392 (87.2%) 

30,165 (35.8%) 

23,256 (27.6%) 

- 

- 

- 

- 

- 

0.042 

0.237 

0.274 
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   SGLT2 inhibitor 

   Thiazolidinedione 

   GLP-1 receptor agonist 

1,312 (4.7%) 

- 

- 

- 

2,374 (2.8%) 

4,603 (5.5%) 

- 

- 

0.098 

- 

Biomarkers 

   HbA1c, mmol/mol 

   BMI, kg/m
2
 

   eGFR, mL/min per 1.3 m
2 

   HDL, cholesterol, mmol/L 

   Alanine transaminase, IU/L 

   Albumin, g/L 

   Bilirubin, µmol/L 

   Total cholesterol, mmol/L 

   Mean arterial blood pressure, 

   mm Hg 

78.6 [17.1] 

37.3 [7.2] 

92.0 [19.7] 

1.1 [0.3] 

35.1 [20.6] 

41.6 [3.9] 

9.1 [4.7] 

4.4 [1.1] 

96.1 [9.0] 

 

5,795 (20.6%) 

771 (2.7%) 

68 (0.2%) 

1,333 (4.7%) 

1,801 (6.4%) 

1,347 (4.8%) 

1,187 (4.2%) 

167 (0.6%) 

82 (0.3%) 

 

76.9 [16.9] 

33.7 [6.9] 

94.7 [15.5] 

1.1 [0.3] 

34.5 [20.2] 

42.0 [3.9] 

9.5 [5.0] 

4.3 [1.1] 

96.2 [9.0] 

 

10,252 (12.2%) 

3,234 (3.8%) 

217 (0.3%) 

3,019 (3.6%) 

4,841 (5.7%) 

3,667 (4.4%) 

3,385 (4.0%) 

398 (0.5%) 

270 (0.3%) 

 

0.101 

0.522 

0.152 

0.083 

0.027 

0.109 

0.084 

0.039 

0.016 

 

Microvascular complications 

   Nephropathy 

   Neuropathy 

   Retinopathy 

 

730 (2.6%) 

7,942 (28.3%) 

10,540 (37.5%) 

 

- 

- 

- 

 

1,623 (1.9%) 

20,161 (23.9%) 

31,664 (37.6%) 

 

- 

- 

- 

 

0.045 

0.099 

0.002 

Cardiovascular conditions 

   Angina 

   Atherosclerotic cardiovascular 

   disease* 

   Atrial fibrillation 

   Cardiac revascularisation 

   Heart failure 

   Hypertension 

   Ischaemic heart disease 

   Myocardial infarction 

   Peripheral arterial disease 

   Stroke 

   Transient ischaemic attack 

3,224 (11.5%) 

6,285 (22.4%) 

 

1,737 (6.2%) 

1,863 (6.6%) 

1,662 (5.9%) 

16,833 (59.9%) 

4,181 (14.9%) 

1,943 (6.9%) 

1,703 (6.1%) 

1,270 (4.5%) 

766 (2.7%) 

- 

- 

 

- 

- 

- 

- 

- 

- 

- 

- 

- 

8,251 (9.8%) 

16,530 (19.6%) 

 

4,129 (4.9%) 

5,632 (6.7%) 

3,654 (4.3%) 

46,550 (55.3%) 

11,309 (13.4%) 

5,655 (6.7%) 

3,836 (4.6%) 

3,422 (4.1%) 

2,126 (2.5%) 

- 

- 

 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.055 

0.068 

 

0.056 

0.002 

0.072 

0.094 

0.042 

0.008 

0.067 

0.023 

0.013 

Other conditions 

   Chronic kidney disease 

   Chronic liver disease 

2,684 (9.6%) 

3,754 (13.4%) 

- 

- 

2,962 (3.5%) 

10,241 (12.2%) 

- 

- 

0.246 

0.036 

QRISK2 10-year score 23.5 [13.5] 1,573 (5.6%) 23.5 [13.2] 6,215 (7.4%) 0.006 

HbA1c outcome 

   HbA1c, mmol/mol 

   Month of HbA1c measure 

66.3 [18.3] 

8.9 [3.5] 

15,397 

(54.8%) 

64.2 [15.0] 

9.2 [3.5] 

40,025 

(47.5%) 

0.126 

0.071 

*Atherosclerotic cardiovascular disease – composite of myocardial infarction, stroke, ischemic heart 

disease, peripheral arterial disease and revascularisation.  

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2023. ; https://doi.org/10.1101/2023.08.04.23293636doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.04.23293636
http://creativecommons.org/licenses/by/4.0/


 

25 

 

Table 2. Baseline clinical features included in the treatment selection algorithm after variable 

selection.  

Features predictive of HbA1c outcome with 

SGLT2i 

Features predictive of differential HbA1c 

outcome with GLP1-RA compared to SGLT2i 

Current age, years Current age, years 

Duration of diabetes, years Sex 

Number of glucose-lowering drug classes ever 

prescribed 

Number of other current glucose-lowering 

drugs 

Number of other current glucose-lowering 

drugs 

HbA1c, mmol/mol 

HbA1c, mmol/mol BMI, kg/m2 

eGFR, mL/min per 1.3 m2 eGFR, mL/min per 1.3 m2 

Alanine transaminase, IU/L Heart Failure 

Peripheral arterial disease Ischaemic heart disease 

 Neuropathy 

 Peripheral arterial disease 

 Retinopathy 
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Figures  
Fig. 1: Predicted conditional average treatment effects and model calibration  
(A) Distribution of conditional average treatment effect (CATE) estimates for SGLT2-inhibitors vs. GLP-1 receptor agonists in the CPRD development cohort; negative values 

reflect a predicted HbA1c treatment benefit on SGLT2-inhibitors and positive values reflect a predicted treatment benefit on GLP-1 receptor agonists. (B) Calibration 

between average treatment effects (ATE) and predicted CATE estimates, by decile of predicted CATE in the development cohort. (C) Calibration of CATE estimates in the 

validation cohort. ATE estimates are adjusted for all the variables used in the treatment selection model (see Methods).  
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Fig. 2: Distributions of major clinical characteristics predicting differential HbA1c outcome with SGLT2i and 
GLP1-RA 
Distributions of key differential clinical characteristics in the combined development and validation cohorts (n=46,394 with complete predictor data) for subgroups defined 

by predicted HbA1c outcome differences: SGLT2i benefit ≥5 mmol/mol, 3–5 mmol/mol and 0–3 mmol/mol, GLP1-RA benefit ≥5 mmol/mol, 3–5 mmol/mol and 0–3 

mmol/mol. 
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Fig. 3: Differences in short-term and long-term clinical outcomes with SGLT2i and GLP1-RA for subgroups 
defined by predicted HbA1c response differences 
(A.1) 12-month HbA1c change from baseline. (A.2) 12-month weight change. (A.3) 6-month risk of discontinuation. (B.1) Hazard ratios for 5-year risk of new-onset 

microvascular complications (retinopathy, nephropathy or neuropathy). (B.2) Hazard ratios for 5-year relative risk of major adverse cardiovascular events (MACE). (B.3) 

Hazard ratios for 5-year risk of heart failure. Hazard ratios represent the relative risk for those treated with GLP1-RA in comparison to SGLT2i therapy, with a value under 1 

favouring SGLT2i therapy. Data underlying the Figure are reported in sTable 3. 
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Extended Figures  
Extended Fig. 1: External validation in Tayside & Fife, Scotland 
(A) Distribution of conditional average treatment effect (CATE) estimates for SGLT2i vs. GLP1-RA; negative values reflect a predicted glucose-lowering treatment benefit on 

SGLT2-inhibitors and positive values reflect a predicted treatment benefit on GLP-1 receptor agonists. (B) Calibration between average treatment effects (ATE) and 

predicted CATE estimates, by quintile of predicted CATE. (C) ATE estimates within subgroups defined by clinically meaningful CATE thresholds (SGLT2i benefit >5, 3-5 and 0-

3 mmol/mol, GLP1-RA benefit >5, 3-5 and 0-3 mmol/mol). 
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Extended Fig. 2: Model interpretability plots 
(A) Relative variable importance for clinical features predicting differential treatment effects (best linear projection of BCF model; see Methods). (B) Distribution of 

conditional average treatment effect (CATE) estimates for SGLT2i vs. GLP1-RA, by sex.  (C) Predicted treatment effects for all differential clinical features, with individuals 

stratified into quintiles for continuous variables, and black lines corresponding to the median of the stratified group. All estimates are for the overall study population, n= 

46,394. 
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Extended Fig. 3: Differences in HbA1c outcome by sex, in randomized clinical trial and observational datasets.  
All estimates are adjusted for baseline HbA1c. Estimates lower than zero represent a greater HbA1c reduction in males compared to females. Bars represent 95% 

confidence intervals. 

A) SGLT2-inhibitors. Point estimates for the trials meta-analysis and CPRD are reproduced from Dennis et al. [43]. 

 

B) GLP1-receptor agonists. 
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Extended Fig. 4: Differential HbA1c treatment effects in individuals of white and non-white ethnicity 
Adjusted ATE estimates within subgroups defined by clinically meaningful CATE thresholds (SGLT2i benefit >5, 3-5 and 0-3 mmol/mol, GLP1-RA benefit >5, 3-5 and 0-3 

mmol/mol). Negative values reflect a predicted glucose-lowering treatment benefit with SGLT2i, and positive values reflect a predicted treatment benefit with GLP1-RA. 

The non-white subgroup is a composite of major UK non-white self-reported ethnicity groups: Black, South Asian, Mixed and Other. Individuals without a recorded ethnicity 

were excluded (n=932) 
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