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49

50 Abstract

51 Introduction: Pancreatic cancer is thought to have an extremely dismal prognosis. Most cancer-

52 related deaths occur from metastasis rather than the primary tumor, although individuals with 

53 tumors smaller than 1 cm in diameter have more than 80% 5-year survival. Thus, the current 

54 protocol introduces PanCanAID project which intends to develop several computer-aided-

55 diagnosis (CAD) systems to enhance pancreatic cancer diagnosis and management using CT 

56 scan imaging. 

57 Methods and analysis: Patients with pathologically confirmed pancreatic ductal 

58 adenocarcinoma (PDAC) or pancreatic neuroendocrine tumor (PNET) will be included as 

59 pancreatic cancer cases. The controls will be patients without CT evidence of abdominal 

60 malignancy. A data bank of contrast-enhanced abdominopelvic CT scans, survival data, and 

61 demographics will be collected from ten medical centers in four provinces. Endosonography 

62 images and clinical data, if available, will be added to the data bank. Annotation and manual 

63 segmentation will be handled by radiologists and confirmed by a second expert radiologist in 

64 abdominal imaging. PanCanAID intelligent system is designed to (1) detect abdominopelvic CT 

65 scan phase, (2) segment pancreas organ, (3) diagnose pancreatic cancer and its subtype in arterial 

66 phase CT scan, (4) diagnose pancreatic cancer and its subtype in non-contrast CT scan, (5) carry 

67 out prognosis (TNM stage and survival) based on arterial phase CT scan, (6) and estimate tumor 

68 resectability. A domain adaptation step will be handled to use online data and provide pancreas 

69 organ segmentation to reduce the segmentation time. After data collection, a state-of-the-art deep 

70 learning algorithm will be developed for each task and benchmarked against rival models.

71 Conclusion: PanCanAID is a large-scale, multidisciplinary AI project to assist clinicians in 

72 diagnosing and managing pancreas cancer. Here, we present the PanCanAID protocol to assure 

73 the quality and replicability of our models. In our experience, the effort to prepare a detailed 

74 protocol facilitates a positive interdisciplinary culture and the preemptive identification of errors 

75 before they occur. 

76 Keyword: Machine Learning; Pancreatic Neoplasms; Tomography, X-Ray Computed; 

77 Endosonography; Artificial Intelligence
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78 Introduction

79 Among all cancer types, pancreatic cancer has an especially dismal prognosis (1). At the time of 

80 presentation, only 11% of patients are at an early enough stage to qualify for curative surgery (1-

81 3). In particular, individuals with tumors smaller than 1 cm in diameter showed a relatively 

82 favorable average long-term survival rate of 80.4% at five years (4). Therefore, effective early 

83 detection of pancreatic cancer is critical for increasing the proportion of individuals who can 

84 qualify for treatments that reduce mortality (1). Current methods of pancreatic cancer detection 

85 include abdominal computed tomography (CT), endoscopic ultrasonography (EUS), endoscopic 

86 retrograde cholangiopancreatography (ERCP), and magnetic resonance imaging (MRI) (5).

87 Fig 1. a) Pancreatic cancer can metastasize to several secondary sites, including the liver, 
88 lung, peritoneum, bone, and brain. The most common secondary site is the liver, which is 
89 affected in more than half of the cases of metastatic pancreatic cancer. The lung is the 
90 second most common site, followed by the peritoneum (6). b) Cancer progression in the 
91 pancreas. The tumor is initially confined to the pancreas in stage #1, but it spreads beyond 
92 the pancreas to involve nearby lymph nodes in stage #2. By stage #3, the tumor has invaded 
93 either the celiac axis or the mesenteric artery. In stage #4, cancer involves other organs 
94 outside the pancreas (7). ci) Pancreatic cancer often results from a sequence of genetic 
95 mutations that transform normal pancreatic mucosa into an invasive malignancy through 
96 precursor lesions. The three most widely recognized precursor lesions are Pancreatic 
97 Intraepithelial Neoplasia (PanIN), Intraductal Papillary Mucinous Neoplasm (IPMN), and 
98 Mucinous Cystic Neoplasm (MCN). PanIN is the most common precursor lesion for 
99 pancreatic ductal adenocarcinoma (PDAC), and genetic abnormalities found in these 

100 lesions are common in adjacent PDAC. The histological pattern of PanIN progression also 
101 reflects the accumulation of mutations in cancerous tissue. KRAS mutations and shortened 
102 telomeres characterize low-grade PanIN lesions. At the same time, high-grade PanIN and 
103 PDAC tissues display mutations in p16, p53, CDNK27, and SMAD4, along with a higher 
104 frequency of KRAS mutation  (8).  cii) Image with a green border shows normal acini and 
105 normal ducts. The base of acinar cells turns blue due to the abundance of RNA and nuclei, 
106 while the cells' apex (or lumenal aspect) appears pink due to the high presence of zymogen 
107 proteins that function as digestive enzymes. Intralobular ductule in cross section is obvious. 
108 The ductule's lumen contains a granular proteinaceous precipitate that appears pink due 
109 to pancreatic juice. The nuclei in images with orange borders are enlarged, 
110 hyperchromatic, and show moderate to severe nuclear atypia, with prominent nucleoli 
111 representing PanIN. The cytoplasm may be abundant and mucin filled. PanIN, a pre-
112 neoplastic lesion of the pancreas, is classified into low-grade and high-grade based on the 
113 degree of dysplasia. The epithelial cells display severe nuclear atypia and anaplasia, with 
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114 loss of polarity and increased mitotic activity. Image with a red border, PDAC is the most 
115 common form of pancreatic cancer. On H&E staining, PDAC lesions typically exhibit the 
116 following features: desmoplastic reaction, hyperchromatic nuclei with irregular contours 
117 and clumped chromatin tumor cells, mitotic figures, and invasion.
118
119 CT scans and EUS are the commonly used imaging examinations for pancreas cancer (9, 10). 

120 EUS offers an excellent spatial resolution of the pancreas, and CT scans give information about 

121 the tumor and its relationship to surrounding structures. However, EUS is an invasive procedure, 

122 and its performance depends on the endoscopist’s skill (11, 12). Radiologists also require a 

123 considerable amount of training to identify early-stage pancreatic tumors. In a retrospective 

124 analysis of pancreatic cancer cases, tumors were detectable in CT images three years before 

125 clinical diagnosis (13). Even with expert radiologists, exhaustion and negligence can additionally 

126 lead to missed diagnoses (14). These findings suggest an improved review of CT scan exams 

127 could increase the proportion of pancreatic cancers diagnosed early.

128 Contrast-enhanced CT scan (CECT) is the preferred technique for pancreas imaging since it 

129 characterizes the tumor and surrounding tissue. After the injection of intravenous contrast (IV), 

130 the operator takes sequential CT scans at 45 seconds (late arterial phase) and 60 seconds 

131 (portovenous phase). Some centers obtain more detailed triple-phase “pancreas protocol” 

132 imaging (arterial, venous, and portal) to improve visualization of the tumor and characterization 

133 of invasion (15). The effective interpretation of multiple collections of images in different phases 

134 requires significant experience and attention. 

135 Optimism has steadily grown over the potential of computer-assisted radiology techniques to 

136 facilitate early diagnosis and timely management (16, 17). Machine learning (ML) models can 

137 explicitly explore hidden patterns in the data and have produced groundbreaking results in 

138 almost all fields of medical imaging (18). Expert radiologists often outperform ML models. 
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139 However, the cost and limited availability of such expertise impair the early detection of 

140 pancreatic cancer (18). ML-driven computerized clinical decision support systems (CDSS) can 

141 help less experienced clinicians decrease time-to-diagnosis, increase accuracy, reduce 

142 interobserver variability, promote equitable healthcare access, and enhance cost-effectiveness 

143 (14, 18). 

144 A sizeable multicenter image dataset and interdisciplinary framework are required to develop a 

145 generalizable and practical CDSS. Both requirements are especially challenging for pancreatic 

146 cancer as the disease is rare, and its management is a winding journey involving many points of 

147 care (17, 19). The challenge of obtaining data could explain why few high-performance but data-

148 demanding deep learning models have been published for pancreatic cancer (20). As of 2023, 2 

149 out of 13 studies of ML-based pancreatic cancer detection on CT scan imaging had more than 

150 300 participants (21), some of which have been summarized in Table 1. Although artificial 

151 intelligence (AI)-assisted pancreatic cancer detection is rapidly growing, studies have been 

152 hampered by small sample sizes and lack of external validation. Besides, new approaches such as 

153 Segment Anything Model (SAM) may improve model performance and facilitate data labeling 

154 (20-22).

155 Table 1. Literature of review for diagnostic and prognostic machine learning algorithms 
156 for pancreas CT scan imaging (22). Footnote: PDAC: Pancreatic ductal adenocarcinoma; RF: 
157 random forest; CNN: convolutional neural network; ML: Machine learning; Acc: Accuracy; 
158 AUC: Area under the receiver operating characteristic curve; Internal validation (In); External 
159 validation (Ex).

Author, Year Aim Algorithm Data Set Evaluation
Si et al., 2021 
(23)

Pancreas cancer 
detection and 
segmentation and 
subtype detection

Deep CNN and 
federated 
learning

319 cases Ex (AUC): 0.87;
Ex (dice score): 
83%
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Liu et al., 2020 
(24)

Pancreas cancer 
detection

CNN 370 cases and 
320 controls (2 
External 
validation sets 
with 101 cases 
and 281 cases)

Ex: 98%

Kambakamba 
et al, 2019 (25)

Prediction of post-
operative fistula

ML and 
Texture 
analysis

101 cases In (AUC): 0.72

Mu et al., 2020 
(26)

Prediction of 
pancreatoenteric fistula

CNN 95 cases and 
303 controls

In (AUC): 0.85
Ex (AUC): 0.78

Watson et al., 
2021 (27)

Prediction of Response 
to Neoadjuvant 
Therapy

CNN and 
LeNet

81 cases In (AUC): 0.738

Zhang et al., 
2020 (28)

Survival Prediction Transfer 
learning; CNN

68 cases and 
422 controls and 
external 
validation (30 
cases)

Ex (Concordance 
index): 0.65

Kaissis et al, 
2020 (29)

Quasi mesenchymal 
identification of PDAC

RF; Radiomic 
Feature 
extraction 
(Pyradiomics) 

207 cases In (AUC): 0.93

Ma et al., 2020 
(30)

pancreatic cancer CNN 222 cases and 
190 controls

In (Acc): 95%

160

161 ML-guided tools’ design and desired outputs must be tailored toward implementation in 

162 healthcare systems (14). Thus, the current study describes the protocol for developing several 

163 computer-aided diagnoses (CAD) models to facilitate pancreatic cancer management using CT 

164 scan images. We sought to develop generalizable CAD systems to aid clinicians with a 

165 pancreatic cancer diagnosis (classification, segmentation, cancer subtype detection) and 

166 prognosis (cancer resectability, survival, staging) based on pancreas protocol CT scan images 

167 from 10 medical centers. 

168 Material and methods

169 Ethical consideration
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170 The Institutional Review Board of Research Institute for Gastroenterology and Liver Diseases 

171 (RIGLD), Shahid Beheshti University of Medical Sciences review board approved this 

172 ambispective study after consideration of data anonymization and security (code: 

173 IR.SBMU.RIGLD.REC.1401.043; link: 

174 https://ethics.research.ac.ir/EthicsProposalViewEn.php?id=323598). This protocol and future 

175 studies adhere to Helsinki Declaration of 1975, as revised in 2008, which provides ethical 

176 guidelines for medical research involving human subjects. We have taken necessary measures to 

177 protect the privacy and confidentiality of all participants and their personal data. Patients will be 

178 included prospectively from 1 December 2022 until March 2024 and retrospectively from 21 

179 March 2015 to 23 October 2022. Informed consent will be collected through a phone call from 

180 the patient or their legal representative, providing a detailed description of the research aim and 

181 use. However, informed consent collection has been waived for patients collected retrospectively 

182 or in cases where access to the patient is not possible.

183 Reporting guidelines and checklist

184 PanCanAID studies will be conducted adhering to the Standards for Reporting Diagnostic 

185 Accuracy (2015-STARD and STARD- AI) and Checklist for Artificial Intelligence in Medical 

186 Imaging (CLAIM) (31-33). The STARD checklist, flow diagram, and CLAIM is presented in S1 

187 Table, S1 Fig, and S2 Table, respectively. 

188 Interdisciplinary Team Building

189 Starting in January 2021, a biweekly session was extended, with invitations sent to GI referral 

190 centers and healthcare providers. The study design involved a team of radiologists, 

191 gastroenterologists, surgeons, and computer science experts collaborating to develop the study. 
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192 Together, they discussed the data-gathering process, labeling techniques, and the desired 

193 machine learning tasks, which resulted in the current study design.

194 Study design

195 This multicentric observational ambispective study will be conducted in ten medical centers in 

196 Tehran, Tabriz, and Guilan provinces of Iran: Taleghani Hospital in Tehran (T-H), Emam 

197 Khomeini Hospital in Tehran (EK-H), Firozgar Hospital in Tehran (F-H), Emam Hossein 

198 Hospital in Tehran (EH-H), Razi Hospital at Guilan province (R-H), Valiasr International 

199 Hospital at Tabriz province (V-H), Shariati Hospital in Tehran (S-H),  Namazi Hospital at Shiraz 

200 Province (N-H), Shahid Faghihi Hosptial at Shiraz (SF-H), Behboud Specialized Clinic for 

201 Gastroenterology Diseases (B-C), and the Research Institute of Gastroenterology clinic (RIG-C). 

202 Patients will be included prospectively from 1 December 2022 until March 2024 and 

203 retrospectively from 21 March 2015 to 23 October 2022. An ethical review board waived 

204 gathering informed consent. 

205 Patient demographic data will be collected from the electronic hospital information system 

206 (HIS). Image data will be obtained from the Picture Archiving and Communication Systems 

207 (PACS). EUS images will be obtained from a dedicated system (EndoPACS) at each local 

208 hospital system if available. CT scan and EUS images will be gathered in the “.dicom” and 

209 “.jpg” series. The medical team conducting the study will call all enrolled patients within two 

210 weeks of the enrollment to evaluate the survival and outcome of the cancer. Fig 2 demonstrates 

211 the workflow and aims of PanCanAID.

212 Fig 2. Workflow and aims of PanCanAID, a multicentric study to facilitate diagnosis and 
213 management of pancreas cancer. Footnote: The black circle represents a contrast-enhanced CT 
214 scan, and the half-black circle represents a non-contrast CT scan

215 Patient eligibility, identification, and validation
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216 Potential pancreatic cancer cases will be defined accord to using the following criteria: (1) 

217 international classification of diseases (ICD) code C25, (2) a histological diagnosis of pancreatic 

218 ductal adenocarcinoma (PDAC) OR pancreatic neuroendocrine tumor (PNET) or (3) a radiologic 

219 diagnosis of a pancreas mass OR pancreas tumor. Prospective enrollment of potential cases will 

220 occur at the time of referral to a radiology center or gastroenterology clinic.

221 Benign and premalignant lesions of the pancreas will be excluded from the case group. Patients 

222 without any valid CT scan before the initiation of treatment (chemotherapy or surgery) will be 

223 excluded. The treatment initiation will be obtained during a follow-up call or review of patient 

224 HIS records. Cases between 20 and 80 years old, with valid CT scan imaging and histologic 

225 confirmation of PDAC and PNET from pancreas specimens collected during surgery or FNA 

226 biopsy, will be included in the study. The suited CT scan for inclusion of cases and controls is 

227 triple phase CT scan or with and without contrast enhanced CT scan.

228 The control group will comprise three subgroups of patients aged 20 to 80 undergoing 

229 abdominopelvic CT scan and EUS examination but have no evidence of abdominopelvic 

230 malignancy or history of mass resection. The first subgroup will consist of patients without any 

231 pancreatic neoplasms. The second subgroup will consist of patients with premalignant lesions, 

232 primarily Intraductal papillary mucinous neoplasms (IPMNs), along with pancreatic 

233 intraepithelial neoplasia (PanIN) and mucinous cystic neoplasms (MCN) confirmed by pathology 

234 report (10). The third subgroup will consist of patients with acute or chronic pancreatitis 

235 confirmed by the radiologist. The selection of three subgroups aim to enrich the control group to 

236 represent the real-world challenge of diagnosing pancreatic cancer. 

237 Phone Interview for Survival and clinical data
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238 Our prognostic model aims to predict the 6-month and 1-year survival of patients with pancreatic 

239 cancer. To achieve this, the medical team will conduct follow-up calls to both cases and controls, 

240 enrolled either retrospectively (over the past year) or prospectively, to collect survival time and 

241 relevant risk factors (10). The phone interview form used during these calls is attached in S1 

242 Appendix. It includes information on the patient's demographics, blood group, symptoms, 

243 diagnostic exams, treatments, smoking/alcohol consumption, diabetes/pancreatitis history, family 

244 history of cancer/pancreatitis, first symptom-diagnosis interval, and diagnosis-death interval. In 

245 addition to the phone interview data, two previously collected datasets from F-Hospital (with a 

246 6-year follow-up) and Ekh-Hospital (with a 1-year follow-up) will be used, along with available 

247 imaging data retrieved from the PACS system.

248 Sample size

249 Sample size estimation in machine learning projects in medical imaging requires an initial set of 

250 annotated data, which in our case, was unavailable (34). Moreover, a reliable method for 

251 estimating the sample size of biomedical ML research is unclear, especially with rapidly 

252 evolving modeling techniques (34). Figueroa et al. have proposed that between 80 and 560 

253 annotated samples in each class are needed to achieve a root mean squared error lower than 0.01 

254 (35). Similar studies using CT scan images achieved satisfactory results, with about 250 cases in 

255 each class of PDAC and non-PDAC (Table 1). The primary aim of PanCanAID is to collect data 

256 from 300 PDAC cases and 300 controls. We will examine the sample size using post hoc curve-

257 fitting and the Figueroa method once the first 150 PDAC cases have been collected (75 cases and 

258 75 controls) (35). 

259 Hospitals and imaging devises 
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260 Data will be collected from ten medical centers in Tehran. The center attributes, including the 

261 CT scanner model and weekly incidence of pancreatic cancer scans, are described in Table 2. 

262 Different imaging devices and technical variations may result in batch effect, so each patient's 

263 imaging device and hospital sources will be recorded.

264 Table 2. Information of ten medical centers that will participate in patient enrollment. 
265 Footnote: PDAC: Pancreatic ductal adenocarcinoma; PNET: pancreatic neuroendocrine tumor.

Hospital GI 
referral 
center

Number 
of beds

CT scan Device Estimated 
Workload 
of Pancreas 
cancer per 
week

Previously available 
data

Ekh-H Yes 2100 16 Detector 
Siemens 
SOMATOM 
Emotion

15 Yes (100 PNET 
Cases with CT scan)

EH-H No 500 16 Detector 
Siemens Somatom

5 No

T-H Yes 500 16 Decotor 
Siemenc Somatom

10 No

F-H Yes 554 16 Detector 
Siemens Somatom

10 Yes (200 PDAC 
patients with 2-year 
follow-up)

R-H Yes 500 - 7 No
V-H No 1000 - 3 No
Sh-H Yes 1000 2-MDCT Siemens 

Somatorn Volume 
Zoom, Siemens

15 No

S-H Yes 850 16-detector 
Somatom Emotion, 
Siemens

7 Yes (42 PDAC)

B-C Yes - - 3 No
RIG-C Yes - - 5 Yes (150 PDAC 

patients)

266 Online open datasets

267 We reviewed all previously published open-source pancreatic cancer CT imaging datasets, 

268 presented in Table 3. Previously segmented images from datasets such as WORD and 
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269 AbdomenCT-1k will segment the pancreas on local images. This segmentation will be revised by 

270 the first investigator and confirmed by an experienced radiologist. 

271 Table 3. Online open dataset for pancreas cancer CT scan imaging. Footnote: *Data used in 
272 this publication were generated by the National Cancer Institute Clinical Proteomic Tumor 
273 Analysis Consortium (CPTAC). Abbreviations: NCI: national cancer institute (of the United 
274 States of America)

Name Source Data License
AbdomenCT-
1k (36)

GitHub 
(JunMa11/ 
AbdomenCT-
1k)

abdominal CT organ segmentation 
dataset with 1000+ CT scans by 
augmenting the existing single organ 
datasets

Apache-2.0 license

WORD (37) GitHub 
(HiLab-
git/WORD)

abdominal CT organ segmentation 
dataset

GNU General Public 
License v3.0

Vindr (38) Vindr.ai Dataset of 1188 scans for phase 
recognition in abdominal contrast-
enhanced CT

One can use the 
dataset without charge 
for non-commercial 
research
purposes only

CPTAC-PDA 
(39)

The Cancer 
Imaging 
Archive 
(TCIA)* (40)

The NCI Clinical Proteomic Tumor 
Analysis Consortium collected CT scan 
images after pathological confirmation 
of 107 pancreas cancer cases

TCIA data usage 
policy

Pancreas-CT 
(41, 42)

The Cancer 
Imaging 
Archive 
(TCIA)* (40)

The National Institutes of Health 
Clinical Center performed 82 abdominal 
contrast-enhanced 3D CT scans in the 
portovenous phase

TCIA data usage 
policy

Pancreatic-
CT-CBCT-
SEG (43, 44)

The Cancer 
Imaging 
Archive 
(TCIA)* (40)

Breath-hold CT and cone-beam CT 
images with expert manual organ-at-risk 
segmentations from radiation treatments 
of 40 locally advanced pancreatic 
cancer patients

TCIA data usage 
policy

Our future 
dataset 
(PanCanAID)

The Cancer 
Imaging 
Archive or 
other imaging 
repositories

We plan to provide biphasic CT scans 
of 500 pancreas cancer cases with 
segmentation on arterial phase and 
patient outcome in 200 cases

GNU Affero General 
Public License v3.0

275 Manual segmentation

276 We used a panel discussion and Chu et al.'s experience to decide on the segmentation strategy 

277 (17). Six radiologists will annotate and classify each axial plane of the abdominopelvic CT scan 
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278 images in arterial phases of CECT using an  approaches, an offline 3D slicer 5.0.3 program or an 

279 online XNAT server (45). The 3D slicer software will be used on a Windows-based local 

280 computer, and annotations will be made using lase pen (XP pen Deco 01 v2). “Brush” and “pen” 

281 tools will be used after setting the editable intensity Hounsfield range using the “threshold” tool. 

282 Using “threshold” will prevent selecting surrounding elements with different Hounsfield units. In 

283 the second approach, and for ease of access, an XNAT application on a Linux server with 200 

284 Gb of storage and a two core 8Gb ram (46). 

285 A second radiologist with expertise on abdominal imaging will review and confirm the 

286 annotations (not blinded to previous segmentations). In case of conflict, the data will be tagged 

287 as controversial, and conflicts will be resolved in a dedicated conflict resolution panel with two 

288 radiologists. Instruction for radiologists in the Persian language will be available before 

289 annotation, and five dedicated cases for educational purposes have been designed to ensure 

290 labeling and annotation uniformity. 

291 Active learning for segmentation

292 Providing ground truth annotations for medical images, especially in the case of pancreas 

293 images, is very time-consuming and requires limited expert resources. This is especially so for 

294 segmentation, where pixel-wise annotation is needed. Hence, we utilize active learning to 

295 interact with the annotator. Active learning is a technique in which a machine learning algorithm 

296 can improve its accuracy using less labeled training data by selecting the most informative data 

297 to learn from. Instead of being given a fixed set of labeled data, an active learner can ask an 

298 oracle to label additional instances that are most useful for improving its performance (47). 

299 Active learning has been shown to be effective in radiology AI studies (48). We propose an 

300 automated system to carefully select the most representative data samples for annotation. We 
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301 also consider the model’s uncertainty and approximate error probability on the new data sample 

302 for the selection. The selected samples are then given to the model for initial annotation. The 

303 annotated image is given to the radiologist to correct the annotation of the model and then added 

304 to the set of labeled datasets. After several steps, the newly labeled dataset is given to the model 

305 for retraining. We continue until the performance improvement stops or a pre-defined proportion 

306 of the dataset is labeled. The process is summarized in Fig 3.

307 Fig 3. Workflow for manual segmentation using active learning approach. 

308

309 Mass characteristics

310 Radiologists will evaluate tumor characteristics, and this data will be used in the future phases of 

311 PanCanAID. These characteristics can be used to utilize automated reporting of pancreas mass in 

312 the future. Table 4 shows pancreas cancer characteristics. 

313 Table 4. The routine report of mass characteristics and source of labeling in PanCanAID. 
314 Footnote: CBD: common bile duct; PD: pancreatic duct

Cancer Feature Classes Source of labeling
Location Periampullary-head-body-tail Radiologist
Morphology Solid-cystic-mixed Radiologist
Mass size Manual segmentation
CBD and PD 
diameter

Largest diameter in mm in any plane Radiologist

CBD dilation Yes-no Radiologist
Stent in situ Yes-no Radiologist
TNM stage Size (T), regional lymph node metastasis 

(N), non-regional metastasis (M) 
Radiologist- manual 
segmentation (size)

DPCG criteria 
for classification

Resectable-borderline- irresectable Radiologist- manual 
segmentation (size)

315

316 Resectability definition and staging
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317 The National Comprehensive Cancer Network (NCCN) and Dutch Pancreatic Cancer Group 

318 (DPCG) guidelines can help physicians in assessing the resectability of tumors (49, 50). This 

319 clinical decision is usually challenging for even expert radiologists. Both over- and under-

320 treating can significantly impact a patient’s quality of life. We choose the DPCG criteria (Table 

321 5) because of its simplicity and lower classification workload. An expert radiologist will classify 

322 CT scan images in the arterial phase, and this labeled data will be used to predict the resectability 

323 of mass.  For TNM staging, a segmented pancreas mass will inform the tumor size (T-stage). A 

324 tumor with its longest diameter of less than 2 centimeters in an axial CT scan is defined as T1. 

325 Tumors with a diameter of 2-4 centimeters and those wider than 4 centimeters correspond to the 

326 T2 and T3 stages, respectively. The T4 stage consists of tumors involving vessels such as the 

327 celiac trunk, hepatic artery, and superior mesenteric artery. Radiologists will classify lymph node 

328 metastasis (N-stage) as a distant or regional invasion. 

329 Table 5. The Dutch Pancreatic Cancer Group (DPCG) criteria to assess the resectability of 

330 pancreatic cancer. Footnote: CA: celiac artery; SMA: superior mesenteric artery; CHA: 

331 common hepatic artery; SM: superior mesenteric vein; PV: portal vein.

Resectable Borderline Irresectable
Arteries (CA, SMA, 
CHA)

No contact < 90 degrees >90 degrees

Veins (SMV, PV) <90 degrees (contact) 90-270 degrees (no 
occlusion)

>270 degrees (or 
occlusion)

Metastasis no no yes
N-Stage Locoregional Locoregional Extra regional

332

333 Data bank storage and computer processors

334 Data including “.dicom” files of CT scan images, “.jpg” image of EUS, “.csv” files with 

335 metadata (including patient characteristics, labels, hospital source, and notes as attached in 
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336 Supplementary File 1), “.nrrd” files of 3D slicer with manual segmentations will be stored in 

337 three external hard drives with two terabyte storage. Processing will be handled using a pair of 

338 GTX 1080Ti GPUs. Performance and inference time will be evaluated on both GPU and CPU.

339 CAD systems and tasks

340 As Fig 2 depicts, different CAD models will be developed using a databank with specified aims, 

341 including:

342 1- Phase detection in abdominopelvic CT scan: classification (non-contrast phase, arterial phase, 

343 venous phase, portal phase, delay phase)

344 2- Pancreas organ segmentation (pancreas organ segmentation in CECT and non-contrast 

345 enhanced abdominopelvic CT scan)

346 3- Diagnosis of pancreas cancer in CECT scan: Classification (cancerous vs. non-cancerous), 

347 segmentation (pixel perfect pancreas organ and mass), and cancer subtype (PDAC and PNET) in 

348 CECT scan images (arterial phase)

349 4- Diagnosis of pancreas cancer in non-contrast CT scan: Classification (cancerous vs. non-

350 cancerous), segmentation (pixel perfect pancreas organ and mass), and cancer subtype 

351 classification (PDAC and PNET) in non-contrast abdominopelvic CT scan images

352 5- Prognosis and survival of pancreas cancer in CECT: TNM stage classification including (T: 

353 size, N: lymph node metastasis, M: distant metastases), and survival (months) in contrast-enhanced 

354 CT scan images
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355 6- DPCG resectability classification (resectable, borderline, and irresectable) in CECT scan images 

356 (arterial phase)

357 Future Direction: Multimodal approach for pancreas cancer ML tasks: Classification (cancerous 

358 vs. non-cancerous), cancer subtype (PDAC and PNET), resectability (resectable vs. irresectable), 

359 and survival (month) using demographics, EUS, and CT scan images

360 Experiments and model development

361 Each input image is contrast-enhanced and denoised for all tasks. Normalization steps are 

362 conducted to mitigate the variability in data samples due to experimental conditions and 

363 measurement device configuration. For CT images, unnecessary slices are removed from the 

364 beginning and end of CT image sequences. We design and train a separate classification model 

365 that detects slices that have the pancreas visible, using the labels already gathered for our data. 

366 We consider slices with a minimum amount of detected pancreas area as positive and otherwise 

367 as negative. This filtering allows our models to be guided by useful cues and removes the 

368 computational cost of processing extra slices.

369 Fig 4. shows a brief overview of the model development workflow. The tasks are solved 

370 according to the following procedure:

371 Fig 4. A brief overview of PanCanAID model development workflow.

372 1- A multi-instance learning approach is deployed to find substantial slices of data and make an 

373 initial detection of cancer. The features extracted in this step are also used for detecting and 

374 segmenting cancerous tissue in the following steps.
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375 2- To extend our dataset, we conduct data augmentation. We use the variations between data 

376 samples to generate novel data. We train a spatial and an intensity registration network. 

377 Registration is a method to match images with the same structure but is distorted and hence not 

378 pixel-by-pixel matched (51). It finds a transformation that can map corresponding pixels to each 

379 other. We sample from the detected intensity and spatial maps learned from these models 

380 throughout the dataset and combine them to create new maps to generate new data.

381 3- A segmentation of the pancreas alongside any suspicious tissue mass is carried out in the 

382 CECT image. Due to the lack of labeled data and the cost of manual segmentation, we follow a 

383 domain adaptation approach. Domain adaptation has been extensively used in medical data and 

384 signals (52), especially in CT images (53)It is used when a model is supposed to be adapted to an 

385 unlabeled external domain with the help of the labeled internal dataset. We train a model on 

386 public datasets with segmentation labels and adapt the trained model to our dataset. We deploy 

387 different reconstruction methods to utilize the unlabeled data in our dataset. Reconstruction is 

388 mainly used to force latent features to contain as much information as possible to recreate the 

389 input data patterns (54). We gradually add labeled data and update the model according to an 

390 active learning framework to carry out the segmentation more accurately.

391 4- The cancer classification task uses segmentation from the original and reconstructed images. 

392 The delta image, the original image, and the features extracted in step 1 are processed through 

393 another Convolutional Network to detect cancer.

394 5- Upon cancer detection, we perform an additional classification task (PDAC or PNET) by 

395 processing a neighbor of the segmented mass in relation to the whole image. Local features are 

396 obtained by processing the area around the pancreas as well as the pancreas itself. Global 

397 features are computed based on the global attention of the whole image, considering the 
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398 relationship between all regions in the image, providing a global representation of the structure 

399 of the abdominal CT image (55). We use local features around the segmented area and their 

400 relationship along with the global features of the entire image to model both the local 

401 information and the significance of this information relative to the global structure of the 

402 abdominal area. Local features

403 6- For the resectability classification task, we follow an approach similar to detecting the cancer 

404 type. We estimate the chance of successful tumor resection based on local-global feature 

405 extraction.

406 7- Segmentation estimation for plain non-contrast CT images is done by matching them to the 

407 label assigned to their corresponding CE-CT images. As we have segmentation maps for CE-CT 

408 images, we temporally align CT slices of patients with their CE-CT image to use the CE-CT 

409 labels as ground truth annotation for the plain CT images. The rest of the procedure is similar to 

410 the one for CE-CT images. Other tasks performed on the basic CT images are done similarly, as 

411 the true values of cancer labels, resectability, and prognosis results are the same for CE and plain 

412 CT images.

413 8- For prognosis, we model survival time as a conditioned normal variable, with mean and 

414 variance predicted by a 3D-CNN applied on the combination of the segmentation and original 

415 image. The mean head estimates the average survival time, and the (log) variance head estimates 

416 the uncertainty of the prediction. We infer mean and variance by maximizing the likelihood of 

417 the data.

418 Batch effect removal
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419 We designed a multi-level multi-site batch normalization (MMBN) architecture to remove the 

420 batch effect. We aim to remove batch effect at both the data- and feature-level.

421 Data-level batch effect removal

422 To remove the effect of different measurement devices, we normalize the intensity and contrast 

423 of the CT images. We also apply affine normalization to remove geometrical biases caused by 

424 the experimental conditions.

425 Feature-level batch effect removal

426 Only some of the variations in the data can be detected by low-level analysis of raw input 

427 images. We utilize our multi-site dataset to remove the feature-level batch effect that occurs in 

428 higher data abstractions. We deploy a Multi-Site Batch Normalization Layer (MSBNL) that 

429 consists of a batch normalization layer for each site in our dataset. The data sample is normalized 

430 according to the normalization parameters of its site. For a target site, we first estimate the mean 

431 and variance of the samples. Then, for each target-site sample, we pass it to each site-specific 

432 batch normalization layer and aggregate them using the weights defined as the KL divergence of 

433 the distribution of target site data and the corresponding source site data. To lessen the 

434 computational complexity, we assume a normal distribution for the data in each site. More 

435 concretely, assume site statistics (mean and variance) estimates from batch normalization 

436 parameters are (μ𝑖, 𝜎2
𝑖 ) for each site-specific batch normalization layer and (μ𝑡, 𝜎2

𝑡 )are the 

437 statistics of the target site. The weight of each layer for a sample from a target sample is 

438 calculated according to Equations 1 and 2:

439 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1:  𝑤𝑖 = 𝑙𝑜𝑔
𝜎𝑖

𝜎𝑡
+

1
2𝜎2

𝑖
(𝜎2

𝑡 + (𝜇𝑡 ― 𝜇𝑖)2) ―
1
2
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440 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2:  𝑤𝑖 =
𝑤𝑖

∑𝑛
𝑗=1 𝑤𝑗

441

442 If we don’t have enough data from the target site, we also add the likelihood of the target data 

443 according to the distribution of each site using Equation 3:

444 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3:  𝑤𝑖 =
1

2𝜋𝜎2
𝑖

exp [ ―
1

2𝜎2
𝑖

(𝑥𝑡 ― 𝜇𝑖)2]
445 Where  𝑥𝑡, is a feature of the sample from the target data, 𝑢𝑖 and 𝜎𝑡 are expected value and 

446 variance of the feature for each domain according to the batch normalization layer, and 𝑤 = 𝑤 +

447 𝑤  which means that we add computed 𝑤 parameters to 𝑤  to account for a small amount of data 

448 in the target domain.

449 Evaluation metrics and proposed model

450 The model performance will be tested in internal validation (test set) and external validation 

451 (from external hospital). For segmentation, we use IOU (intersection over union) to evaluate the 

452 proportion of detected mass. We also measure pixel-wise sensitivity and specificity to assess the 

453 model's power to correctly find the true segmented areas and discard the unsegmented areas. F1 

454 concludes these concepts as a single number. For classification (cancer and resectability), we 

455 measure the area under the receiver operating characteristic curve (AUROC), accuracy, 

456 sensitivity, specificity, and F1 by using the K-fold cross-validation technique (56). In addition, a 

457 calibration curve will be used to show how well the probabilistic predictions of a binary 

458 classifier are calibrated (57). We perform a simple statistical test to evaluate the prognosis's 

459 predicted mean and variance values. For each ground truth prediction in the test dataset, we 
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460 examine if it comes from the proposed normal distribution or not. The proportion of samples that 

461 pass the test is defined as a measure of the model's performance.

462 Explainable AI

463 The adaptation of AI models in the clinical setting has been constrained by their “black-box” 

464 nature, which makes it challenging for clinicians to comprehend and believe their predictions 

465 (58). Herby, we will embed Explainable AI (XAI) approach to increase its use case in the 

466 medical field. XAI is one of the branches of artificial intelligence concerned with building 

467 models that can offer clear and understandable justifications for their predictions and choices. By 

468 using architectures such as U-net, we can incorporate XAI techniques, such as Layer-wise 

469 Relevance Propagation (LRP) or Local Interpretable Model-agnostic Explanations (LIME), and 

470 we can provide visual explanations of the model's predictions. Also, by segmenting the 

471 cancerous masses and pinpointing their location, medical professionals can better understand the 

472 reasons behind the model's decisions and build trust in its predictions (58-60).

473 Discussion

474 The development of CDSS and CAD tools requires interdisciplinary teamwork (17). PanCanAID 

475 is a multipurpose CDSS project addressing the current needs of pancreatic cancer care delivery 

476 across multiple phases of the disease. In developing the PanCanAID protocol, we addressed 

477 various aspects of team building, data collection and annotation, and model development. The 

478 process evolved over months of collaborative sessions with medical and computational experts. 

479 Many challenges were faced during protocol design, including the feasibility of data collection 

480 and annotation, complex multidisciplinary collaboration, optimization of data storage capacity, 
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481 and the development of a state-of-the-art ML model. The protocol development process 

482 addressed these challenges and fostered effective cross-disciplinary collaboration toward a 

483 common goal.

484 CDSSs depend highly on a large, precisely-labeled dataset representing real-world data patterns 

485 (14). However, the truly adequate dataset size is unknown without conducting pilot studies (34). 

486 ML models of medical imaging may require even large datasets than models of tabular data due 

487 to the complexities of imaging data. The lack of publicly available cases on The Cancer Imaging 

488 Archive (TCIA) highlights the challenge of acquiring pancreatic cancer image data (Table 3). 

489 We constructed a multi-institutional team and designed it to collect sufficient cases for our 

490 models. Our initial aim is to gather 500 cases and 500 controls, but this number may be extended 

491 to reach the desired model performance: an AUC of 0.85 for diagnosis and 0.80 for cancer 

492 prognosis.

493 The data collection task for pancreatic cancer is more difficult for three reasons. First, a 

494 pancreatic cancer diagnosis is a relatively rare event (2). Second, the life span of patients is short, 

495 and many cases pass away within the first months, which makes patient identification even 

496 harder (1, 61). The third and most important reason is the winding journey of pancreatic cancer 

497 patients during diagnosis and management. Multiple medical centers and specialties manage 

498 pancreatic cancer, and the data is stored in various sources (Fig 5). The collection of this data 

499 needs rigorous amounts of time and a substantial amount of effort (17). We used an ambispective 

500 design to collect more accessible cases retrospectively and precise data prospectively. However, 

501 finding pathologically confirmed patients with survival outcomes can be unattainable in many 

502 cases. We aim to collect the survival of patients, which is needed for some tasks, by calling 

503 patients diagnosed in the last year or included prospectively.
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504 Fig 5. Dissemination, storage, patient data sources, and the journey of patients with 

505 pancreas cancer.

506 The next issue is the time and effort needed to label the data. In our case, tumor characteristics, 

507 pancreas segmentation, tumor segmentation, and resectability assessment were warranted. We 

508 assembled a team of junior radiologists with six years of experience who will handle 

509 segmentation. An active learning model will also be developed using publicly available data for 

510 pancreas organ segmentation and less than 100 local cases.  Two senior radiologists who are 

511 experts in the field will validate and confirm the labeled data. The interobserver variability will 

512 be reported to show the use case of CADs.

513 In addition, we sought to collect other data, such as EUS images and clinical data (symptoms, 

514 past medical history, and demographics). We will use the collected data to develop a cross-

515 modality platform, which is the future direction of PanCanAID. This data bank can overcome the 

516 current bottleneck in the model development of pancreatic cancers.

517 Our project involves a comprehensive benchmarking of previous models and the development of 

518 new algorithms. However, several challenges make our task more complex than a typical 

519 classification/segmentation task. Firstly, labeling all CT scans, particularly those with narrow 

520 imaging cuts, is impractical due to the high cost of segmentation labeling. To overcome this, we 

521 have adopted an active learning approach where radiologists interact with our team to validate 

522 and correct segmentation labels. This results in higher quality annotations and improved sample 

523 efficiency. Secondly, the complex structure of abdominal images, especially the irregular shape 

524 of the pancreas, can benefit from large-scale external data with extensive labeling. We aim to 

525 deploy a domain adaptation framework to transfer the knowledge learned from the large-scale 

526 external data into our dataset. Thirdly, we have designed a batch-effect removal protocol to 
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527 eliminate batch effects in our multi-source data, which we will extend using other domain 

528 generalization techniques. Finally, we aim to build our model with unlabeled data, using semi-

529 supervised learning as a key component of our framework.

530 Although we tried to overcome several challenges during the protocol design process, several 

531 unknown factors could still affect our future work. The presence of all three needed data 

532 modalities (CT scans, pathology reports, and survival data) may be unachievable in many 

533 pancreatic cancer cases. In addition, the quality of CT scan images, especially in the arterial 

534 phase, may be insufficient. Developing a generalizable model will need rigorous effort for batch 

535 effect removal. In addition, the segmentation and labeling of data require a vast amount of time 

536 from radiologists, which may be exhausting. We hope to overcome upcoming challenges through 

537 interdisciplinary teamwork. 

538 Conclusion

539 PanCanAID is a large-scale AI project developing CADs and CDSSs using pancreatic cancer CT 

540 scan images. In hopes of improving pancreatic cancer prognosis, it will tackle the current 

541 bottleneck of model development and data shortage. We plan to collect good quality, sufficient 

542 amounts, and precisely labeled data banks by creating a team of experts from various institutions. 

543 Besides, in our model development, we utilize and expand different concepts according to the 

544 challenges we have in our task, including active learning, semi-supervised learning, and domain 

545 adaptation and generalization. Experts in medical and computational fields were involved in 

546 protocol development, striving to describe the problem from all aspects. The protocol design 

547 lasted for months, but it fostered the replicability of the method and cross-disciplinary teamwork.
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