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Abstract 
Cancer and dementia are common in aging populations. Mild cognitive impairment (MCI) is a 
stage between the cognitive changes of normal aging and dementia that can lead to a decline in 
quality of life. With the substantial improvement of survival in many cancers, maintaining a high 
quality of life has become a new goal in cancer care. Identifying those patients with a high risk of 
developing MCI may facilitate early intervention and further improve patient care. The objective 
of this study is to survey machine learning techniques and AutoML to model the early detection of 
MCI in patients with cancers using the features which are known risk factors in dementia and 
accessible in the electronic health records (EHR). We compared multiple machine learning 
methods and explored AutoML to predict 1-year risk of MCI for cancer patients. Among 27 models, 
XGBoost in AutoML gave the highest AUC (0.79), suggesting the superiority of using automated 
machine learning tools to search for the best model and parameters. The feature importance 
analysis revealed that cancer patients with brain malignancy, hypertension, or cardiovascular 
diseases are more likely to develop MCI. The overall poor performance indicates more efforts 
should be made to improve data quality and increase features and sample size.  

Keywords: mild cognitive impairment, risk prediction, cancer, dementia, Alzheimer, Machine 
learning, AutoML 
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Introduction 

Mild cognitive impairment (MCI) can occur naturally as a normal byproduct of aging, and will 
sometimes progress towards more serious conditions such as Dementia or Alzheimer’s Disease. 
MCI or difficulties with memory and attention are one of the top complaints of cancer patients 
found in the literature1. A recent web-based survey revealed 75% of cancer patients reported 
cognitive complaints related to treatments2. As the advances in diagnostic and therapeutic 
strategies have greatly improved the overall survival in many cancers, seeking high-quality of life 
including maintaining normal cognitive function is emerging as a tangible goal in cancer care. 
Predicting susceptibility for MCI, and understanding the progression towards cognitive disease in 
cancer patients, could be of great benefit to public health as well as contribute to cost-preventative 
measures in our health care systems. 
 
Cancer and dementia are both common in aging populations, and previous research has suggested 
inverse3,4 or direct5,6 associations between the two conditions. The occurrence of cognitive 
impairment in cancer patients could be due to treatment, age, predisposing genetic factors and 
comorbidities7. The risk factors of MCI are characterized in many studies, although different 
populations may present distinct risk factors. In recent studies, several machine learning models 
have been proposed to predict the onset of dementia/MCI8,9, however, few studies focused on 
predicting the onset of MCI for cancer patients, a rapidly growing population, using Electronic 
Health Records (EHR). 
  
The objective of this study is thus to evaluate different machine learning techniques to model the 
early detection of MCI in cancer patients using the features collected from EHR data. We leveraged 
the unique biobank patient data at Corewell Health, the largest health care system in Western 
Michigan, and explored features that are known risk factors in MCI/dementia. We implemented 
logistic regression model, random forest model, k-Nearest Neighbor (KNN) model, neural 
networks (NN) and extreme gradient boosting (XGBoost) model to identify the significant risk 
factors for MCI, and to predict 1-year MCI risk for cancer patients. The performance of the models 
was assessed to check if machine learning techniques could be possibly used to predict the MCI 
risk prior to the onset for cancer patients using EHR data.  
 
In recent years, AutoML has been proposed as a way to expand the application domain of machine 
learning algorithms and can be deployed in healthcare area 10and other variety of fields10,11. 
AutoML provides a framework for domain experts to design machine learning pipelines and carry 
out model selection and hyperparameter optimization without a deep knowledge of machine 
learning. Studies have shown that AutoML can accelerate the integration of machine learning in 
healthcare scenarios12, and advance clinical research13. H2O.ai is a software platform offering a 
suite of machine learning and data analysis tools, with AutoML as its automated machine learning 
solution. We thus explored H2O's automated algorithm (H2o AutoML) to find the best machine 
learning model for the 1-year risk of MCI for cancer patients.  
 
Methods 
 
Data Source and Collection and Study Design 
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This study was approved by the Institutional Review Board (IRB) at Corewell Health and 
Michigan State University (SH 2020-071). The Corewell Health data warehouse stores EHR across 
15 hospitals, which contains the digital record of a patient's health information, such as 
demographics, diagnoses, medications, and laboratory data. Corewell Health transitioned to Epic 
from Cerner in 2017, and most of the system shares a single Epic instance. Like many healthcare 
systems, the combination of legacy data and various hospitals' coding practices can be challenging. 
Our team uses a modular scripting approach with SQL to extract data, allowing for easy reuse of 
code across multiple projects. The Corewell Health’s Biobank is a registry of patient data in Epic, 
where patients have consented to share their biospecimens and medical records for research 
purposes. We performed a SQL query on the Corewell Health EHR for subjects, first extracting 
Biobank patients who were aged 45 and older on the index date. We defined the index date as the 
MCI diagnosis date for the MCI group, and the last recorded encounter data for the control cohort 
of cognitively unimpaired (CU) group. The International Classification of Diseases, Ninth 
Revision14 (ICD-9 code = '331.83') and Tenth Revision15 (ICD-10 code = 'G31.84') were used to 
identify patients who had a diagnosis of MCI. 
 
Based on the medical reports and the published literature, we then identified 52 major risk factors 
for MCI, and extracted those risk factors from Epic. When possible, we followed the literature to 
define and group features. Some features were customized to create a machine-readable dataset 
(See Supplementary Table 1 for features definitions). If a feature was not present in a patient's 
medical record as indicated by ICD codes, it was assumed to be absent for that patient. Then 
patients’ EHR records 1 year prior to the index data were pulled out for the prediction. The 
outcome for the prediction model was defined as the presence or absence of MCI. We excluded 
Biobank patients without a cancer diagnosis 1 year prior to the index date. Two features with more 
than 20% missing data were excluded. We excluded patients with missing urbanization (rural, 
suburban, and urban) group data (0.02% missing values) from analysis. We used mean imputation 
(MI) for BMI (with 7.56% missing values). Patients' BMI were categorized as BMI groups 
(underweight, normal, overweight, and obese), and used in the analysis. Data was gathered up until 
July 31, 2022. The flowchart of the study is shown in Figure 1. 
 

 

Figure 1. Flowchart of the Machine Learning Modeling for MCI Prediction 
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Statistical Analysis and modeling 

The data were split into training (70%), and validation (30%) sets using stratified sampling to train, 
test and compare different machine learning algorithms. We implemented four baseline machine 
learning algorithms, including logistic regression, random forest (RF), k-Nearest Neighbor (KNN), 
Neural networks (NN) and Extreme Gradient Boosting (XGBoost). The algorithms were trained 
and validated through 10-fold cross-validation. Due to the substantial imbalance between the MCI 
cases and controls, strategies for resampling, including random under-sampling, random over-
sampling, synthetic minority over-sampling technique (SMOTE1616) were examined. The 
SMOTE resampling data well balanced the train set, and has shown the best performance for each 
machine learning algorithm. However, due to the relatively low sample size, three predictors: acute 
Leukaemia cancer, TBI, and nasopharynx cancer were removed in the SMOTE resampling, and 
were not included in the model development. We evaluated the performance of all models by 
comparing the overall accuracy, sensitivity, specificity, F1 score ((2*((precision*recall)/ 
(precision + recall))), and area under the receiver operating characteristic curve (AUC). Shapley 
additive explanation (SHAP)17 was used to interpret the results of the best performed model. All 
the modeling and comparison were performed in R. The caret R package was used to tune the 
machine learning algorithms. The hyperparameter tunes can be found in Supplementary Table 3. 
R packages including dplyr, ggplot2, tidyr, caret, sjPlot, tableone, InformationValue, 
DataExplorer, ConfusionTableR and h2o were used.  
 
AutoML was used to create, evaluate and deploy machine learning models using multiple 
algorithms. The following models were trained and cross validated in H2O AutoML process: three 
pre-specified XGBoost GBM (Gradient Boosting Machine) models, a fixed grid of GLMs, a 
default Random Forest (DRF), five pre-specified H2O GBMs, a near-default Deep Neural Net, an 
Extremely Randomized Forest (XRT), a random grid of XGBoost GBMs, a random grid of H2O 
GBMs, a random grid of Deep Neural Nets. In addition, a stacked ensemble of all the models 
trained above, and a “Best of Family” Stacked Ensemble that contains the best performing model 
for each algorithm class were also developed1817. 
 
Results 

In this study, 8,671 patients aged 45 and older were selected from the Corewell Health Biobank. 
Out of these, 283 (3%) patients were diagnosed with MCI by July 31, 2022, while 4,182 (48%) 
patients had a cancer diagnosis in the year prior to the index date. Among the non-cancer group, 
123 (2.7%) patients had a diagnosis of MCI. In the cancer group, 160 (3.8%) patients were 
diagnosed with MCI. 

A total of 4,181 patients were included in the final analysis, with a female-to-male ratio of 
approximately 4:3 (2349 women and 1832 men). Of these, approximately 10.78% (451 patients) 
were aged 45-54, 25.66% (1,073 patients) aged between 55-64, 35.49% (1483 patients) between 
65-74, 22.09% (924 patients) between 75-84, and 5.98% (250 patients) aged 85 and above. 

The characteristics of the control group compared with the MCI were shown in Supplementary 
Table 2. Statistically significant differences (P value < 0.05) were observed in age group, diabetes, 
hearing loss, heart disease, hyperlipidemia, hypertension, vascular diseases, antidepressants, CAD, 
stroke, brain cancer, pancreas cancer, and uterus cancer.  
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After evaluating the performance of the models, all models showed relatively high specificity but 
low sensitivity, leading to overall poor F1 scores. The XGBoost model produced the highest AUC 
of 0.723, with the highest F1 Score (0.170). This model also had the best performance with an 
accuracy of 0.823, followed by the logistic model with an accuracy of 0.816. The KNN and RF 
models have an accuracy of 0.794 and 0.784, respectively. The NN model showed the lowest 
accuracy of 0.767. Overall, the XGBoost model showed a better performance on the accuracy, 
specificity, F1 score, and AUC compared with other models, however, with a relatively low 
sensitivity. 
 
Table 1. Evaluation of the performance of the five algorithms using SMOTE resampling  

Model Accuracy Sensitivity Specificity F1 AUC 

Logistic  0.816 0.478 0.831 0.161 0.711 

RF  0.784  0.522 0.795 0.155 0.703 

KNN  0.794 0.458 0.807 0.145 0.710 

NN  0.767 0.563 0.775 0.156 0.725 

XGBoost  0.823 0.478 0.837 0.170 0.723 

RF, Random Forest; KNN, k-Nearest Neighbor; NN, Neural Networks; XGBoost, Extreme Gradient 
Boosting; AUC, Area Under the Receiver-Operating Characteristic Curve. 
 
Features importance and explanation of risk factors 
Through the importance analysis of variables, the top five most important features for each model 
were displayed. Antidepressants, vascular disease and brain cancer were the common top features 
among all the five models. Pancreas cancer, hypertension, hyperlipidemia, and anxiolytics have 
also been observed as important risk factors in developing MCI.  
 
Table 2. The top 5 significant predictors of the importance of the model 

Sort Logistic  RF KNN ANN XGBoost 

1 brain cancer vascular vascular  antidepressants     brain cancer 

2 vascular antidepressants  hyperlipidemia  brain cancer hyperlipidemia 

3 antidepressants brain cancer antidepressants vascular hypertension 

4  hyperlipidemia hyperlipidemia  brain cancer  BMI group3 vascular 

5 hypertension  anxiolytics hypertension  pancreas cancer antidepressants 

 
Figure 2a depicts the top 10 features most effective at predicting MCI outcomes in the XGBoost 
model. The importance matrix plot ranked the variables contributing to 1-year MCI risk prediction 
from the most to least important as vascular, antidepressants, brain cancer, hyperlipidemia, 
anxiolytics, age group, BMI group, urbanization, uterus cancer, and colon cancer. In the SHAP 
summary plot, vascular disease was found to be the most important risk factor, with a high value 
(presence) in vascular disease corresponding to positive SHAP values and an increase in MCI risk. 
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Similarly, patients with high values (presence) of antidepressants, brain cancer, hyperlipidemia, 
and hypertension tend to be associated with an increased 1-year risk of MCI. For the features of 
anxiolytics, uterus cancer, urbanization, and lung cancer, we observed the high values (presence) 
of those features have negative SHAP values, which indicates that patients with those features 
were associated with a decreased risk of MCI.  
 

 
Figure 2. Importance Plot and SHAP Summary Plot for XGBoost model. (a) Importance Plot.(b) SHAP 
Summary Plot. One dot per patient per feature is colored according to a feature value, where purple 
represents a higher value and yellow represents a lower value. A positive SHAP value indicates an increase 
in risk and vice versa. 
 
We observed antidepressants, hyperlipidemia, hypertension, and vascular disease shown 
significant association with increased MCI risk, while patients with anxiolytics use showed a 
decreased risk. Our findings are consistent with many research outcomes with respect to these 
significant risk factors. Several studies suggested that antidepressants use was associated with an 
increased risk of developing MCI or dementia19,20,21,22. Hyperlipidemia is an early risk factor for 
Alzheimer's disease. Zambón et al found that patients with familial hyperlipidemia showed a high 
incidence of MCI compared with those without23. Previous studies indicated that vascular 
disease24,30 and hypertension25 were related to a higher risk of cognitive decline and dementia, 
including Alzheimer disease (AD). A study conducted by Burke Slet al suggested that anxiolytics 
might moderate the effect of anxiety on MCI and AD development26. Finally, females were at 
slightly high risk for MCI, corroborating with the observation in Alzheimer's disease27. Although 
most of the included features were explored to characterize the risk of MCI, our models indicate 
only a few of them are significant in the cancer population.  
 
H2O AutoML Exploration 
 
Using H2O AutoML, models were trained, tuned, and cross-validated through the automatic 
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process, with a maximum of 30 models being developed or a maximum running time of 3,000 
seconds. A total of 27 machine learning models were implemented to predict the 1-year risk of 
MCI for cancer patients. The performance of the models was evaluated using AUC values, and the 
results were displayed in the model leaderboard (Table 3). As expected, there is a huge variation 
of the model performances. Even for the same model, different parameter settings could result in 
distinct performances, highlighting the necessity to use automated machine learning tools to build 
baseline models. The best-performing model was identified and shown in the leaderboard with 
model ID XGBoost_grid_1_AutoML_2_20230119_91531_model_3, with the highest AUC of 
0.787. This model was selected as the top-ranking model from the list of trained models in the 
leaderboard. For convenience, we renamed this best model “XGBoost_AutoML”. 
 
Table 3. Performance Metrics of the Twenty-seven Models in H2O AutoML  

 
 
The confusion matrix showed that the accuracy, specificity and F1 score for this best-performing 
XGBoost_AutoML model were 0.888, 0.975 and 0.222, respectively. The results have been 
improved comparable with the baseline XGBoost model (0.823, 0.837, 0.170, respectively). 
However, sensitivity became lower (XGBoost_AutoML: 0.152, XGBoost baseline model: 0.478), 
likely because additional SMOTE resampling was employed to balance the performance in the 
baseline model.  
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Table 4. Confusion Matrix of XGBoost_AutoML 
Vertical: actual, and across: predicted.  
Sensitivity = 0.152, specificity = 0.975,  

positive predictive value = 0.417, and negative predictive value = 0.907. 
 CU MCI 

CU 1094 112 

MCI 28 20 

Total 1122 132 

 
Discussion 
 
In this study, we explored the potential to employ machine learning algorithms and AutoML for 
1-year MCI prediction for cancer patients using routine EHR data. As far as we are aware, this is 
the first to utilize machine learning and AutoML in the MCI prediction for cancer patients. Our 
analysis revealed that the 1-year risk of MCI for patients with a brain cancer history was high. 
Patients with lung cancer or uterus cancer tend to have a low risk of developing MCI. For cancer 
types, like lung cancer, it may be due to those cancer patients not living long enough to develop 
MCI/dementia, or that the treatment they received altered the trajectory of MCI development. 
However, more research needs to be done to explore the association between cancer and MCI. The 
use of anxiolytics may decrease the risk for developing MCI among cancer patients. 
 
H2o AutoML was also utilized to identify the optimal machine learning model, with the XGBoost 
model being the best. This result was consistent with our findings with improvement on the model 
accuracy. However, due to a highly imbalanced dataset, the AutoML models were not effective in 
classifying MCI patients since only the down-sampling and oversampling in H2o AutoML were 
used. Our research suggests that the optimal approach would involve first searching for the best 
model and parameters using AutoML, then manually optimizing them (for example, using SMOTE 
resampling to address imbalanced data). 
 
However, none of the models led to considerable performances in classifying true positive MCI 
patients. This is likely because only a relatively small number of patients were available for the 
analysis with the high imbalanced distribution, and only known risk factors were included. The 
presence of more comorbidities in the cancer patients could be another reason. For example, 
vascular disease is a common comorbidity for cancer patients28, and a risk factor of MCI29. That 
explained the high odds ratio for vascular in the odds ratio table and forest plot (Supplementary 
Table 4 and Figure 1). To further increase the model performance, more advanced techniques 
like Grid Search Cross-Validation for hyperparameter optimization and resampling methods such 
as SMOTE+ENN and SMOTETomek can be explored. However, our preliminary exploration of 
H2o and a couple of other AutoML tools (data not shown) suggested only improving machine 
learning algorithms would not boost the overall performance and the future work should be 
directed towards improving the quantity and quality of the data. Our recent studies demonstrated 
a data-driven approach could be used to standardize lab measurements30 and the state-of-the-art 
nature language processing tool like BERT has a huge potential to extract useful features from 
clinical notes31. Nevertheless, more efforts should be made to apply machine learning to construct 
new features to improve the performance of MCI predictions and identify novel risk factors. 
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This study has some limitations that future research should address. The models were only trained 
using data from one health care institution and were note validated with external datasets. A larger 
cohort of cancer patients should be included in future studies. Additionally, this study did not take 
into account potential time-varying effects. For example, a diagnosis of hypertension was weighted 
the same whether it was given 1 year or 3 years before an MCI event. Furthermore, more complex 
EHR features such as cancer stages, metastasis status, lab measurements, imaging data, and 
medications were not considered in the analysis. To enhance the prediction performance, these 
limitations should be considered. 

Conclusion  

Early detection of cancer patients at risk of developing MCI can facilitate early intervention and 
further improve patient care. In this study, we explored the potential of using machine learning 
techniques and AutoML on EHR data to identify the risk factors of MCI for cancer patients, and 
to build models that could be possibly used in clinical settings to help predict risk of developing 
MCI. This study provides a useful baseline for future work, and further efforts are necessary to 
uncover novel risk factors and improve the model's performance.  
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