Performance of Rapid Antigen Tests Based on Symptom Onset and Close Contact
 Exposure: A secondary analysis from the Test Us At Home prospective cohort student Authors: Carly Herbert BA¹, Biqi Wang PhD^{1,2}, Honghuang Exposure: A secondary analysis from the Test Us At Home prospective cohort study

Authors: Carly Herbert BA¹, Biqi Wang PhD^{1,2}, Honghuang Lin^{1,2}, Nathaniel Hafer³, Caitlin P

MS¹, Pamela Stamegna¹, Seanan Tar Authors: Carly Herbert BA¹, Biqi Wang PhD^{1,2}, Honghuang Lin^{1,2}, Nathaniel Hafer³ 3 Authors: Carly Herbert BA¹, Biqi Wang PhD^{1,2}, Honghuang Lin^{1,2}, Nathaniel Hafer³, Caitlin Pretz

MS¹, Pamela Stamegna¹, Seanan Tarrant BA¹, Paul Hartin BS¹, Julia Ferranto BS¹, Stephanie

Behar BA¹, MS 1 , Pamela Stamegna 1 , Seanan Tarrant BA 1 , Paul Hartin BS 1 , Julia Ferranto BS 1 MS¹, Pamela Stamegna¹, Seanan Tarrant BA¹, Paul Hartin BS¹, Julia Ferranto BS¹, Stephanie

Behar BA¹, Colton Wright MS¹, Taylor Orwig BS¹, Thejas Suvarna BBA, BS⁴, Emma Harman

MPH⁴, Summer Schrader BA Behar BA $^{\rm 1}$, Colton Wright MS $^{\rm 1}$, Taylor Orwig BS $^{\rm 1}$, Thejas Suvarna BBA, BS $^{\rm 4}$ 5 Behar BA', Colton Wright MS', Taylor Orwig BS', Thejas Suvarna BBA, BS⁴, Emma Harman MPH⁴, Summer Schrader BA⁴, Chris Nowak BA⁴, Vik Kheterpal MD⁴, Elizabeth Orvek MS⁵, Steven Wong BA, Adrian Zai MD, PhD, Br MPH 4 , Summer Schrader BA 4 , Chris Nowak BA 4 , Vik Kheterpal MD 4 , Elizabeth Orvek MS 5 6 MPH⁴, Summer Schrader BA⁴, Chris Nowak BA⁴, Vik Kheterpal MD⁴, Elizabeth Orvek MS⁵, Steven Wong BA, Adrian Zai MD, PhD, Bruce Barton PhD², Ben Gerber MD, MPH⁵, Stephe C Lemon PhD², Andreas Filippaios MD Steven Wong BA, Adrian Zai MD, PhD, Bruce Barton PhD², Ben Gerber MD, MPH⁵ 7 Steven Wong BA, Adrian Zai MD, PhD, Bruce Barton PhD², Ben Gerber MD, MPH³, Stephenie

8 C Lemon PhD², Andreas Filippaios MD¹, Kylie D'Amore¹, Laura Gibson MD, Sharone Greene

MD, Sakeina Howard-Wilson DO¹, C Lemon PhD $^{\rm 2}$, Andreas Filippaios MD $^{\rm 1}$, Kylie D'Amore $^{\rm 1}$ C Lemon PhD², Andreas Filippaios MD¹, Kylie D'Amore¹, Laura Gibson MD, Sharone Greene

MD, Sakeina Howard-Wilson DO¹, Andres Colubri PhD⁶, Chad Achenbach MD, MPH⁷, Robert

Murphy MD⁷, William Heetderks PhD⁸ MD, Sakeina Howard-Wilson DO 1 , Andres Colubri PhD 6 , Chad Achenbach MD, MPH 7 MD, Sakeina Howard-Wilson DO¹, Andres Colubri PhD⁶, Chad Achenbach MD, MPH', Robert
Murphy MD⁷, William Heetderks PhD⁸, Yukari C Manabe MD⁹, Laurel O'Connor MD¹⁰, Nisha
Fahey DO, ScM^{1,5,11}, Katherine Luzuriag Murphy MD⁷, William Heetderks PhD⁸, Yukari C Manabe MD⁹, Laurel O'Connor MD¹⁰ Murphy MD', William Heetderks PhD⁸, Yukari C Manabe MD⁹, Laurel O'Connor MD¹⁰, Nisha
11 Fahey DO, ScM^{1,5,11}, Katherine Luzuriaga MD^{3,12}, John Broach MD, MPH, MBA¹⁰, David D
12 McManus MD, ScM^{1,2,13}, Apurv Son

- McManus MD, ScM^{1,2,13}, Apurv Soni MD, PhD^{1,2,5}
-
-
- ¹Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan
-
- Fahey DO, ScM^{1,5,11}, Katherine Luzuriaga MD^{3,12}, John Broach MD, MPH, MBA¹⁰, David D
12 McManus MD, ScM^{1,2,13}, Apurv Soni MD, PhD^{1,2,5}
13 ¹Program in Digital Medicine, Department of Medicine, University of Mass 13
14
15
16
17
18 14
14
15
16
17
18
19 14 Affiliations:
15 ¹Program in
16 Medical Sch
17 ²Division of
18 ³University
20 Massachus 15 ¹Program in Digital Medicine, Department of Medicine, University of Massachusetts Chan

16 Medical School, Worcester, MA, USA

²Division of Health System Science, Department of Medicine, University of Massachusetts
 Medical School, Worcester, MA, USA

² Division of Health System Science, D

³ Medical School, Worcester, MA, USA

³ University of Massachusetts Center fo

Massachusetts Chan Medical School,

⁴ CareEvolution, LLC, A ²Division of Health System Science, Department of Medicine, University of Massachusetts Chan
- ³University of Massachusetts Center for Clinical and Translational Science, University of
-
- ⁴CareEvolution, LLC, Ann Arbor, MI, USA
- ² Division of Health System Science, Department of Medicine, University of Massachusetts Chan

18 Medical School, Worcester, MA, USA

³ University of Massachusetts Center for Clinical and Translational Science, Univers Medical School, Worcester, MA, USA

³University of Massachusetts Center fo

Massachusetts Chan Medical School,

⁴CareEvolution, LLC, Ann Arbor, MI, U

⁵Department of Population and Quanti

Medical School, Worcester, ⁹University of Massachusetts Center for Clinical and Translational Science, University of

20 Massachusetts Chan Medical School, Worcester, MA, USA

⁴CareEvolution, LLC, Ann Arbor, MI, USA

⁵Department of Population Massachusetts Chan Medical School, Worcester, MA, USA

⁴ Care Evolution, LLC, Ann Arbor, MI, USA

⁵ Department of Population and Quantitative Health Sciences

Medical School, Worcester, MA, USA

⁶ Department of Micro ⁴CareEvolution, LLC, Ann Arbor, MI, USA

⁵Department of Population and Quantitativ

⁶Department of Microbiology and Physiolo

⁶Department of Microbiology and Physiolo

⁷Division of Infectious Disease, Departmen
 ⁵Department of Population and Quantitative Health Sciences, University of Massachusetts Chan
- ⁹Department of Population and Quantitative Health Sciences, University of Massachusetts Chan

123 Medical School, Worcester, MA, USA

⁶Department of Microbiology and Physiological Systems, University of Massachusetts C Medical School, Worcester, MA, USA

⁶Department of Microbiology and Phys

⁷Division of Infectious Disease, Depart

⁷Division of Infectious Disease, Depart

⁷Pincer School of Medicine, Northwe

⁸National Institute ⁶Department of Microbiology and Physiological Systems, University of Massachusetts Chan ⁹Department of Microbiology and Physiological Systems, University of Massachusetts Chan

25 Medical School, Worcester, MA, USA

⁷Division of Infectious Disease, Department of Medicine, Havey Institute for Global Health
- 'Division of Infectious Disease, Department of Medicine, Havey Institute for Global Health,
-
- Medical School, Worcester, MA, USA

⁷ Division of Infectious Disease, Depart

²⁷ Feinberg School of Medicine, Northwe

⁸ National Institute of Biomedical Imagi

⁸ Services, Bethesda, MD, USA

⁹ Division of Infect ⁸National Institute of Biomedical Imaging and Bioengineering, NIH, via contract with Kelly
-
- ⁹Division of Infectious Disease, Department of Medicine, Johns Hopkins University School of
-
- ²⁶ Division of Infectious Disease, Department of Medicine, Havey Institute for Global Health,

²⁷ Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

⁸ National Institute of Biomedical Imaging and Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

⁸National Institute of Biomedical Imaging and Bioengineering, NIH, via co

29 Services, Bethesda, MD, USA

⁹Division of Infectious Disease, Depart ¹⁰Department of Emergency Medicine, University of Massachusetts Chan Medical School,
-
- ⁸National Institute of Biomedical Imaging and Bioengineering, NIH, via contract with Kelly

29 Services, Bethesda, MD, USA

⁹Division of Infectious Disease, Department of Medicine, Johns Hopkins University Schoo

Medic 29 Services, Bethesda, MD, USA

⁹ Division of Infectious Disease,

⁹ Medicine, Baltimore, MD, USA

¹⁰ Department of Emergency Me

¹⁰ Worcester, MA, USA

¹¹ Department of Pediatrics, Un

USA ⁹ Division of Infectious Disease, Department of Medicine, Johns Hopkins University School of

31 Medicine, Baltimore, MD, USA

¹⁰ Department of Emergency Medicine, University of Massachusetts Chan Medical School,

¹⁰ 31 Medicine, Baltimore, MD, USA

¹⁰Department of Emergency Me

Worcester, MA, USA

¹¹Department of Pediatrics, Uni

USA

¹²Program in Molecular Medicin

Worcester, MA, USA ¹⁰Department of Emergency Medicine, University of Massachusetts Chan Medical School,

33 Worcester, MA, USA

¹¹Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester,

35 ¹²Program in Mo 33 Worcester, MA, USA
34 ¹¹Department of Pedia
35 USA
36 ¹²Program in Molecula
37 Worcester, MA, USA ¹¹Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, ¹¹Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA,
USA
¹²Program in Molecular Medicine, University of Massachusetts Chan Medical School,
Worcester, MA, USA
NOTE: This preprint r
- 35 USA
36 ¹²Pro
37 Worc
Not ¹²Program in Molecular Medicine, University of Massachusetts Chan Medical School, ¹² Program in Molecular Medicine, University of Massachusetts Chan Medical School,
Worcester, MA, USA
NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide cl
- 37 Worcester, MA, USA
NOTE: This preprint reports

- ¹³ Division of Cardiology, Department of Medicine, University of Massachusetts Chan Medical ¹³Division of Cardiology, Department of Medicine, University of Massachusetts Chan Medical
39 School, Worcester, MA, USA
40
20 Orresponding author:
42 Apurv Soni, MD PhD
55 Lake Avenue North
44 Worcester, MA 01605
Apurv.
-

- 41
42
43
44
45
46
47
-
-
-
- 39 School, Worcester, MA, USA

40

41 Corresponding author:

42 Apurv Soni, MD PhD

43 55 Lake Avenue North

44 Worcester, MA 01605

45 Apurv.soni@umassmed.edu

46 41 Corresponding author:
42 Apurv Soni, MD PhD
43 55 Lake Avenue North
44 Worcester, MA 01605
45 Apurv.soni@umassme
46
47 42 Apurv Soni, MD PhD
43 55 Lake Avenue Nortl
44 Worcester, MA 01605
45 Apurv.soni@umassm
46
47 43 55 Lake Avenue North
44 Worcester, MA 01605
45 Apurv.soni@umassme
46
47
48 44 Worcester, MA 01605
45 Apurv.soni@umassme
46
47
48
50 45 Apurv.soni@umassmed.edu
46
47
48
50
50
-
-
-
- 47
48
49
50
51 48
48
50
51
52
-
- 49
50
51
52
53 50
51
52
53
54
-
- 52
-
- 53
- 54
- 51
52
53
54
55 52
53
54
55
56 53
54
55
56
57 54
55
56
57
58 55
55
56
58
59 55
- 56
57
58
59
60 56
- 57
58
59
60
61 57
- 58
- 59
- 60
- 61
-
- 58
59
60
61
62 59
59
60
61
62
63 60
61
62
63
64 61
62
63
64
65 --
62
63
64
65 62
- --
63
64
65 63
- --
64
65 64
- 65
|
| 65

66

-
-
-
- 67
68
69
70
71
72
72

67 **Abstract**
68 **Backgrou**
69 relation to
70 relationsh
71 **Objective**
72 symptom
73 **Design, S**
74 that enroll **Background:** The performance of rapid antigen tests for SARS-CoV-2 (Ag-RDT) in temporal

relation to symptom onset or exposure is unknown, as is the impact of vaccination on this

relationship.
 Objective: To evaluate t relation to symptom onset or exposure is unknown, as is the impact of vaccination on this

relationship.
 Objective: To evaluate the performance of Ag-RDT compared with RT-PCR based on day

symptom onset or exposure in o 70 relationship.

71 **Objective: T**

72 symptom ons

73 **Design, Sett**

that enrolled

75 and February

76 every 48 hou

77 period were i

78 reported a C **Objective:** To evaluate the performance of Ag-RDT compared with RT-PCR based on day after

symptom onset or exposure in order to decide on 'when to test'.
 Design, Setting, and Participants: The Test Us at Home study wa symptom onset or exposure in order to decide on 'when to test'.
 Design, Setting, and Participants: The Test Us at Home study

that enrolled participants over 2 years old across the United Sta

and February 4, 2022. All **Design, Setting, and Participants:** The Test Us at Home study was a longitudinal cohort study

that enrolled participants over 2 years old across the United States between October 18, 2021

and February 4, 2022. All parti that enrolled participants over 2 years old across the United States between October 18, 2021

275 and February 4, 2022. All participants were asked to conduct Ag-RDT and RT-PCR testing

276 every 48 hours over a 15-day pe and February 4, 2022. All participants were asked to conduct Ag-RDT and RT-PCR testing

very 48 hours over a 15-day period. Participants with one or more symptoms during the st

period were included in the Day Post Symptom every 48 hours over a 15-day period. Participants with one or more symptoms during the study
period were included in the Day Post Symptom Onset (DPSO) analyses, while those who
reported a COVID-19 exposure were included in

-
-
-

- period were included in the Day Post Symptom Onset (DPSO) analyses, while those who

reported a COVID-19 exposure were included in the Day Post Exposure (DPE) analysis.
 Exposure: Participants were asked to self-report a reported a COVID-19 exposure were included in the Day Post Exposure (DPE) analysis.
 Exposure: Participants were asked to self-report any symptoms or known exposures to

CoV-2 every 48-hours, immediately prior to conduct **Exposure:** Participants were asked to self-report any symptoms or known exposures to SARS-

CoV-2 every 48-hours, immediately prior to conducting Ag-RDT and RT-PCR testing. The first

day a participant reported one or mor CoV-2 every 48-hours, immediately prior to conducting Ag-RDT and RT-PCR testing. The first

81 day a participant reported one or more symptoms was termed DPSO 0, and the day of exposure

82 was DPE 0. Vaccination status wa day a participant reported one or more symptoms was termed DPSO 0, and the day of exposure

82 was DPE 0. Vaccination status was self-reported.

83 **Main Outcome and Measures:** Results of Ag-RDT were self-reported (positiv was DPE 0. Vaccination status was self-reported.

83
 Main Outcome and Measures: Results of Ag-RD

invalid) and RT-PCR results were analyzed by a c

CoV-2 and sensitivity of Ag-RDT and RT-PCR by

status and calculated wi 84
85
86
88
89
90
91
92 **Main Outcome and Measures:** Results of Ag-RDT were self-reported (positive, negative, or invalid) and RT-PCR results were analyzed by a central laboratory. Percent positivity of SARS

CoV-2 and sensitivity of Ag-RDT and R invalid) and RT-PCR results were analyzed by a central laboratory. Percent positivity of SARS-CoV-2 and sensitivity of Ag-RDT and RT-PCR by DPSO and DPE were stratified by vaccination status and calculated with 95% confide CoV-2 and sensitivity of Ag-RDT and RT-PCR by DPSO and DPE were stratified by vaccination
status and calculated with 95% confidence intervals.
Results: A total of 7,361 participants enrolled in the study. Among them, 2,0
- status and calculated with 95% confidence intervals.
 Results: A total of 7,361 participants enrolled in the s

(7.4%) participants were eligible for the DPSO and D

participants were nearly twice as likely to test posit
- **Results:** A total of 7,361 participants enrolled in the study. Among them, 2,086 (28.3%) and 546 (7.4%) participants were eligible for the DPSO and DPE analyses, respectively. Unvaccinated participants were nearly twice a (7.4%) participants were eligible for the DPSO and DPE analyses, respectively. Unvaccinated

participants were nearly twice as likely to test positive for SARS-CoV-2 than vaccinated

participants in event of symptoms (PCR+
-
-
-
-
-
-
-
- participants were nearly twice as likely to test positive for SARS-CoV-2 than vaccinated

participants in event of symptoms (PCR+: 27.6% vs 10.1%) or exposure (PCR+: 43.8%

22.2%). The highest proportion of vaccinated and participants in event of symptoms (PCR+: 27.6% vs 10.1%) or exposure (PCR+: 43.8% vs.

22.2%). The highest proportion of vaccinated and unvaccinated individuals tested positive of

DPSO 2 and DPE 5-8. Performance of RT-PCR 22.2%). The highest proportion of vaccinated and unvaccinated individuals tested positive on

93 DPSO 2 and DPE 5-8. Performance of RT-PCR and Ag-RDT did not differ by vaccination

59 status. Ag-RDT detected 78.0% (95% Con 93 DPSO 2 and DPE 5-8. Performance of RT-PCR and Ag-RDT did not differ by vaccination

94 status. Ag-RDT detected 78.0% (95% Confidence Interval: 72.56-82.61) of PCR-confirme

95 infections by DPSO 4. For exposed participa 94 status. Ag-RDT detected 78.0% (95% Confidence Interval: 72.56-82.61) of PCR-confirmed
infections by DPSO 4. For exposed participants, Ag-RDT detected 84.9% (95% CI: 75.0-91
PCR-confirmed infections by day five post-expo 95 infections by DPSO 4. For exposed participants, Ag-RDT detected 84.9% (95% CI: 75.0-91.4) of
96 PCR-confirmed infections by day five post-exposure (DPE 5).
97 **Conclusions and Relevance:** Performance of Ag-RDT and RT-PC PCR-confirmed infections by day five post-exposure (DPE 5).
 Conclusions and Relevance: Performance of Ag-RDT and R

and DPE 5 and did not differ by vaccination status. These data

remains integral to enhancing the perfo 97 **Conclusions and Relevance:** Performance of Ag-RDT and RT-PCR was highest on DPSO 0-2
and DPE 5 and did not differ by vaccination status. These data suggests that serial testing
remains integral to enhancing the perform 98 and DPE 5 and did not differ by vaccination status. These data suggests that serial testing
199 remains integral to enhancing the performance of Ag-RDT.
100
02
03
- 99 remains integral to enhancing the performance of Ag-RDT.
00
01
02
03

-
-
-
-
- 101
102
103
104
105 102
103
104
105
106 ---
103
104
105
106 104
105
106 105
106
|
- 105 106

107

108
|
| 108

109 **Introduction:**
110 Rapid a
111 availability ove
112 20 minutes.¹⁻³
113 the risk of false 110 Rapid antigen tests (Ag-RDTs) are commonly used to diagnose COVID-19 due to their

111 availability over-the-counter for home use, relatively low cost, and ability to return results in 15-

112 20 minutes.¹⁻³ Previo 211 availability over-the-counter for home use, relatively low cost, and ability to return results in 15-
20 minutes.¹⁻³ Previous work has informed the FDA guidance on *testing frequency* to minimize
2113 the risk of fa 20 minutes.¹⁻³ Previous work has informed the FDA guidance on *testing frequency* to minimize 20 minutes.¹⁻³ Previous work has informed the FDA guidance on *testing frequency* to minimize

the risk of false negative tests in symptomatic as well as asymptomatic individuals.⁴ However,

important questions remain the risk of false negative tests in symptomatic as well as asymptomatic individuals. 4 However, the risk of false negative tests in symptomatic as well as asymptomatic individuals.⁴ However,

114 important questions remain about *when to begin testing*, particularly among those with

115 symptoms or after close con important questions remain about *when to begin testing*, particularly among those with
symptoms or after close contact with an infected person.^{4,5} Similarly, our understanding
RDT performance by time past exposure is li symptoms or after close contact with an infected person.^{4,5} Similarly, our understanding of Agsymptoms or after close contact with an infected person.^{4,5} Similarly, our understanding of Ag-RDT performance by time past exposure is limited.^{6–8} Understanding Ag-RDT performance
change over the symptom course and in RDT performance by time past exposure is limited. $6-8$ Understanding Ag-RDT performance RDT performance by time past exposure is limited.^{6–8} Understanding Ag-RDT performance

change over the symptom course and in relation to SARS-CoV-2 exposure is crucial to guid

optimal use of diagnostics for risk assessm

change over the symptom course and in relation to SARS-CoV-2 exposure is crucial to guide
118 optimal use of diagnostics for risk assessment.
119 Several prior studies have examined Ag0RDT performance when used serially, b optimal use of diagnostics for risk assessment.
119 Several prior studies have examined Ag
120 these studies predate the arrival of the Omicron
121 vaccination coverage.^{9,10} Currently, approximate
122 least one dose of a Several prior studies have examined Ag0RDT performance when used serially, but

120 these studies predate the arrival of the Omicron variants in the United States and widespre-

121 vaccination coverage.^{9,10} Currently, a these studies predate the arrival of the Omicron variants in the United States and widespread

121 vaccination coverage.^{9,10} Currently, approximately four in every five U.S. adults have received

122 least one dose of a vaccination coverage.^{9,10} Currently, approximately four in every five U.S. adults have received at vaccination coverage.^{9,10} Currently, approximately four in every five U.S. adults have received at
122 least one dose of a SARS-CoV-2 vaccine.¹¹ Vaccination has been associated with changes in
123 the signs and symptom least one dose of a SARS-CoV-2 vaccine.¹¹ Vaccination has been associated with changes in least one dose of a SARS-CoV-2 vaccine.¹¹ Vaccination has been associated with changes in
the signs and symptoms of SARS-CoV-2 infection, including fewer symptoms and a higher
likelihood of asymptomatic infections.¹² T the signs and symptoms of SARS-CoV-2 infection, including fewer symptoms and a higher
124 likelihood of asymptomatic infections.¹² The performance of molecular diagnostics, including
125 reverse transcriptase polymerase likelihood of asymptomatic infections.¹² The performance of molecular diagnostics, including likelihood of asymptomatic infections.¹² The performance of molecular diagnostics, including
125 reverse transcriptase polymerase chain reaction (RT-PCR), and Ag-RDTs is closely related t
126 detectable viral load; there reverse transcriptase polymerase chain reaction (RT-PCR), and Ag-RDTs is closely related to
detectable viral load; therefore, it is important to determine whether changes in viral dynamics
and symptomology due to vaccinati

detectable viral load; therefore, it is important to determine whether changes in viral dynamics

and symptomology due to vaccination have an impact on diagnostic performance.

Using data from Test Us at Home, a prospectiv and symptomology due to vaccination have an impact on diagnostic performance.
128 Using data from Test Us at Home, a prospective cohort study that enrolled
129 from throughout the United States, we examined paired serial A Using data from Test Us at Home, a prospective cohort study that enrolled participants

from throughout the United States, we examined paired serial Ag-RDT and molecular testing to

determine how relative sensitivities of 129 from throughout the United States, we examined paired serial Ag-RDT and molecular testing to
130 determine how relative sensitivities of Ag-RDT and RT-PCR tests vary by day past symptom
131 onset and exposure and how t determine how relative sensitivities of Ag-RDT and RT-PCR tests vary by day past symptom

onset and exposure and how these findings vary based on vaccination status. The results of

study will inform pragmatic use of Ag-RD 131 onset and exposure and how these findings vary based on vaccination status. The results of this
132 study will inform pragmatic use of Ag-RDT at-home tests to detect SARS-CoV-2.
133 Methods: 132 study will inform pragmatic use of Ag-RDT at-home tests to detect SARS-CoV-2.
 Methods:
 Methods:

133 **Methods:**

Study Population:

135 In this analysis, we

136 evaluated the perfor

137 asymptomatic indivi

138 older across the Uni In this analysis, we used data from the Test Us at Home study, a longitudinal cohort study that

evaluated the performance of serial use of Ag-RDTs for detection of COVID-19 among

asymptomatic individuals.⁴ The Test Us evaluated the performance of serial use of Ag-RDTs for detection of COVID-19 among
137 asymptomatic individuals.⁴ The Test Us at Home study enrolled participants ages 2 yea
138 older across the United States between Octo asymptomatic individuals.⁴ The Test Us at Home study enrolled participants ages 2 years and asymptomatic individuals.⁴ The Test Us at Home study enrolled participants ages 2 years and
138 older across the United States between October 18, 2021 and February 4, 2022. This study was
139 approved by the WIRB-Copern older across the United States between October 18, 2021 and February 4, 2022. This study was
approved by the WIRB-Copernicus Group (WCG) Institutional Review Board (20214875). Only
participants who completed at least one A approved by the WIRB-Copernicus Group (WCG) Institutional Review Board (20214875). Only

participants who completed at least one Ag-RDT or RT-PCR were included in this analysis.

Participants were included in the Day Post participants who completed at least one Ag-RDT or RT-PCR were included in this analysis.

Participants were included in the Day Post Symptom Onset (DPSO) analyses if they self-

reported any symptoms during the study perio Participants were included in the Day Post Symptom Onset (DPSO) analyses if they self-
reported any symptoms during the study period (Figure 1). Participants who had a RT-PC
result more than 14 days before or after symptom reported any symptoms during the study period (Figure 1). Participants who had a RT-PCR+
result more than 14 days before or after symptom onset were excluded, as these symptoms
were assumed to be unrelated to the observed result more than 14 days before or after symptom onset were excluded, as these symptoms
were assumed to be unrelated to the observed infection.¹³ Participants who reported
experiencing a COVID-19 exposure during the stud were assumed to be unrelated to the observed infection.¹³ Participants who reported were assumed to be unrelated to the observed infection.¹³ Participants who reported

experiencing a COVID-19 exposure during the study were included in the Day Post E

(DPE) analysis. Participants with an index RT-PCR+ r experiencing a COVID-19 exposure during the study were included in the Day Post Exposure

(DPE) analysis. Participants with an index RT-PCR+ result more than 14 days after the reporte

exposure were excluded from the DPE a (DPE) analysis. Participants with an index RT-PCR+ result more than 14 days after the reported
exposure were excluded from the DPE analyses.
All Test Us at Home participants were asked to conduct Ag-RDT and RT-PCR testing exposure were excluded from the DPE analyses.

148 All Test Us at Home participants were asked to co

149 days over a 15-day period. Participants were aske

150 hours or any known exposures to SARS-CoV-2 at

151 each testi All Test Us at Home participants were asked to conduct Ag-RDT and RT-PCR testing every 2
149 days over a 15-day period. Participants were asked if they had any symptoms in the last 48
150 hours or any known exposures to SA days over a 15-day period. Participants were asked if they had any symptoms in the last 48
hours or any known exposures to SARS-CoV-2 at the beginning of each testing session. Du
each testing session, two anterior nasal sw hours or any known exposures to SARS-CoV-2 at the beginning of each testing session. During
151 each testing session, two anterior nasal swabs were collected by the participant; one swab was
152 used for performing an Ag-R each testing session, two anterior nasal swabs were collected by the participant; one swab was
used for performing an Ag-RDT at home, while the other swab was sent to a central laboratory
for RT-PCR testing. All study acti used for performing an Ag-RDT at home, while the other swab was sent to a central laboratory

for RT-PCR testing. All study activities and questionnaires were conducted through a custom

study app. Additional details about

153 for RT-PCR testing. All study activities and questionnaires were conducted through a custom
154 study app. Additional details about the study design, protocol, and participants are described
155 elsewhere.^{4,14}
156 **M** 154 study app. Additional details about the study design, protocol, and participants are described

elsewhere.^{4,14}
 Measures:
 Measures: elsewhere. $4,14$

155 156 **Measures:**

Symptoms: Participants self-reported symptoms (fever, body aches, fatigue, rash, nausea, abdominal pain, diarrhea, loss of smell, runny nose, cough, headache, or other) during each testing period immediately prior to usi abdominal pain, diarrhea, loss of smell, runny nose, cough, headache, or other) during each
testing period immediately prior to using the Ag-RDT (every 48 hours). The first day that a
participant reported 1 or more symptom

testing period immediately prior to using the Ag-RDT (every 48 hours). The first day that a

participant reported 1 or more symptoms was termed DPSO 0.
 Close-Contact Exposure: Participants self-reported close-contact ex participant reported 1 or more symptoms was termed DPSO 0.
161 **Close-Contact Exposure**: Participants self-reported close-co
162 the time of baseline study enrollment and before each testing
163 as being within 6 feet of a **Close-Contact Exposure**: Participants self-reported close-contact exposures to COVID-19 at
the time of baseline study enrollment and before each testing period. An exposure was defined
as being within 6 feet of an infecte the time of baseline study enrollment and before each testing period. An exposure was defined
as being within 6 feet of an infected person without a mask for at least 15 minutes over a 24-
hour period. DPE 0 was defined as as being within 6 feet of an infected person without a mask for at least 15 minutes over a 24-

hour period. DPE 0 was defined as the first day of the reported exposure.
 Vaccination Status and Previous Infections: Vacc

hour period. DPE 0 was defined as the first day of the reported exposure.

165 Vaccination Status and Previous Infections: Vaccination status and his

166 SARS-CoV-2 infection was self-reported during the enrollment surve

Vaccination Status and Previous Infections: Vaccination status and history of previous

SARS-CoV-2 infection was self-reported during the enrollment survey. Vaccination status

operationalized into two groups: vaccinated (SARS-CoV-2 infection was self-reported during the enrollment survey. Vaccination status was
167 operationalized into two groups: vaccinated (≥1 dose) and unvaccinated (0 doses). Previous
168 infections with SARS-CoV-2 wer

operationalized into two groups: vaccinated (≥1 dose) and unvaccinated (0 doses). Previous
168 infections with SARS-CoV-2 were self-reported.
Molecular Testing (RT-PCR): Molecular comparator RT-PCR results were based on combination of molecular test results for the detection of SARS-Cov-2 infection.⁴ Cycle

infections with SARS-CoV-2 were self-reported.
169 **Molecular Testing (RT-PCR):** Molecular compa
170 combination of molecular test results for the dete
171 threshold (Ct) values for the E-gene from RT-PC
172 **Rapid antigen Molecular Testing (RT-PCR):** Molecular comparator RT-PCR results were based on a
combination of molecular test results for the detection of SARS-Cov-2 infection.⁴ Cycle
threshold (Ct) values for the E-gene from RT-PCR w combination of molecular test results for the detection of SARS-Cov-2 infection.⁴ Cycle
threshold (Ct) values for the E-gene from RT-PCR were used to quantify viral load.
Rapid antigen test positivity: Participants wer threshold (Ct) values for the E-gene from RT-PCR were used to quantify viral load.
 Rapid antigen test positivity: Participants were asked to provide an interpretation

RDT (positive, negative, or invalid) and upload a p Rapid antigen test positivity: Participants were asked to provide an interpretation of each Ag-
RDT (positive, negative, or invalid) and upload a picture of the test result to the study app. All
self-reported positive test RDT (positive, negative, or invalid) and upload a picture of the test result to the study app. All
174 self-reported positive tests were confirmed by study coordinators using the uploaded images.
175 **Data Analysis:** Perce self-reported positive tests were confirmed by study coordinators using the uploaded images.
 Data Analysis: Percent positivity and cumulative positivity of all symptomatic and/or exposed

participants were calculated fo **Data Analysis:** Percent positivity and cumulative positivity of all symptomatic and/or exposed

participants were calculated for RT-PCR and Ag-RDT by DPSO and DPE and stratified by

vaccination status with 95% confidence participants were calculated for RT-PCR and Ag-RDT by DPSO and DPE and stratified by

vaccination status with 95% confidence intervals using Wilson's method.¹⁵ Cumulative posi

was defined as the number of participants w vaccination status with 95% confidence intervals using Wilson's method.¹⁵ Cumulative positivity vaccination status with 95% confidence intervals using Wilson's method.¹⁵ Cumulative positivity
178 was defined as the number of participants with at least one positive test result over the number
179 of participants who was defined as the number of participants with at least one positive test result over the number
179 of participants who had taken at least one test until each DPSO and DPE. Sensitivity analysis
180 was performed to assess 179 of participants who had taken at least one test until each DPSO and DPE. Sensitivity analysis
180 was performed to assess whether findings differed between partially vaccinated (1 dose) and
180 was performed to assess 180 was performed to assess whether findings differed between partially vaccinated (1 dose) and

180 was performed to assess whether findings differed between partially vaccinated (1 dose) and

- fully vaccinated (2+ doses) participants. All analyses were conducted using R software package
182 version 4.2.1.
Results:
Characteristics of Symptomatic and Exposed Participants
184 Characteristics of Symptomatic and
-
-
- 182 version 4.2.1.
183 **Results:**
184 *Characteristic*.
185 A total of 2,08¹
-
-
- 183 **Results:**
184 *Characte*
185 A total of
186 associate
187 reported a
- 2184 *Characteristics of Symptomatic and Exposed Participants*

2185 A total of 2,086 of the 7,361 total Test Us At Home particip

2186 associated with COVID-19 infection and were eligible for the

2187 reported a close-co 185 A total of 2,086 of the 7,361 total Test Us At Home participants (28.3%) reported symptoms
186 associated with COVID-19 infection and were eligible for the DPSO analysis; 546 participant
187 reported a close-contact ex 187 reported a close-contact exposure and were eligible for the DPE analysis (Figure 1).

188 Approximately 10% of vaccinated and 20% of unvaccinated participants reported at l

189 previous SARS-CoV-2 infection (Table 1).
- associated with COVID-19 infection and were eligible for the DPSO analysis; 546 participants
reported a close-contact exposure and were eligible for the DPE analysis (Figure 1).
Approximately 10% of vaccinated and 20% of u Approximately 10% of vaccinated and 20% of unvaccinated participants reported at least one

previous SARS-CoV-2 infection (Table 1). Participants less than 18 years old comprised 36.99

and 47.6% of unvaccinated participan
- previous SARS-CoV-2 infection (Table 1). Participants less than 18 years old comprised 36.9%
and 47.6% of unvaccinated participants in the DPSO and DPE analyses, respectively, while
they comprised 7.2% and 10.6% of vaccina
-
-
- and 47.6% of unvaccinated participants in the DPSO and DPE analyses, respectively, while

191 they comprised 7.2% and 10.6% of vaccinated individuals. The majority of vaccinated

192 participants (1677, 93.8%) had received
-
- they comprised 7.2% and 10.6% of vaccinated individuals. The majority of vaccinated
192 participants (1677, 93.8%) had received 2+ doses of a SARS-CoV-2 vaccine.
193 Percent Positivity of Ag-RDT and Molecular Tests by Day
- participants (1677, 93.8%) had received 2+ doses of a SARS-CoV-2 vaccine.
193 Percent Positivity of Ag-RDT and Molecular Tests by Day Past Symptom Ons.
194 Vaccinated and Unvaccinated Individuals
195 Among 2,086 participan Percent Positivity of Ag-RDT and Molecular Tests by Day Past Symptom Onset among
194 Vaccinated and Unvaccinated Individuals
195 Among 2,086 participants that reported at least one symptom, 12.5% tested positive by Vaccinated and Unvaccinated Individuals
195 Among 2,086 participants that reported at
196 during the study (Table 1; Supplemental F
197 participants tested positive for SARS-CoV
198 participants (Unvaccinat Among 2,086 participants that reported at least one symptom, 12.5% tested positive by RT-PCR

196 during the study (Table 1; Supplemental Figure 1a). Significantly fewer symptomatic vaccinated

197 participants tested posi
- during the study (Table 1; Supplemental Figure 1a). Significantly fewer symptomatic vaccinated

participants tested positive for SARS-CoV-2 during the study period compared to unvaccinated

participants (Unvaccinated: PCR+
-
- participants (Unvaccinated: PCR+: 27.6% vs Vaccinated PCR+: 10.1%; Unvaccinated Ag-RDT+: 25.3% vs. Vaccinated Ag-RDT+: 10.9%) (Supplemental Figure 1b). Trends were si
among those who were fully vaccinated (2+ doses) and pa
-
- participants tested positive for SARS-CoV-2 during the study period compared to unvaccinated
198 participants (Unvaccinated: PCR+: 27.6% vs Vaccinated PCR+: 10.1%; Unvaccinated Ag-
199 RDT+: 25.3% vs. Vaccinated Ag-RDT+: 1 RDT+: 25.3% vs. Vaccinated Ag-RDT+: 10.9%) (Supplemental Figure 1b). Trends were similar
200 among those who were fully vaccinated (2+ doses) and partially vaccinated (1 dose)
201 (Supplemental Figure 1c). The highest prop 200 among those who were fully vaccinated (2+ doses) and partially vaccinated (1 dose)

201 (Supplemental Figure 1c). The highest proportion of vaccinated and unvaccinated sy

202 individuals tested positive on DPSO 2 (Fig
-
- 201 (Supplemental Figure 1c). The highest proportion of vaccinated and unvaccinated symptomatic

202 individuals tested positive on DPSO 2 (Figure 2a, 2b).

203 Percent positivity of Rapid Antigen Tests and Molecular Tests individuals tested positive on DPSO 2 (Figure 2a, 2b).
203 Percent positivity of Rapid Antigen Tests and Molecula
204 Vaccinated and Unvaccinated Individuals 203 *Percent positivity of Rapid Antigen Tests and Molecular Tests by Day Past Exposure among*
- 204 *Vaccinated and Unvaccinated Individuals*

205 Of the 546 participants who reported a close-contact exposure during the study, 17.6% tested
206 positive by RT-PCR (Table 1; Supplemental Figure 1d). More than 50% of vaccinated and
207 unvaccinated individuals with c positive by RT-PCR (Table 1; Supplemental Figure 1d). More than 50% of vaccinated and

unvaccinated individuals with close contact exposures also reported COVID-related sympt

during the study (Table 1). Exposed unvaccinat unvaccinated individuals with close contact exposures also reported COVID-related symptoms

208 during the study (Table 1). Exposed unvaccinated participants tested positive for SARS-CoV-2

209 twice as often than exposed during the study (Table 1). Exposed unvaccinated participants tested positive for SARS-CoV-2

twice as often than exposed vaccinated participants, on both RT-PCR and Ag-RDT

(Unvaccinated PCR+: 43.8% vs. Vaccinated PCR+: 2 twice as often than exposed vaccinated participants, on both RT-PCR and Ag-RDT

(Unvaccinated PCR+: 43.8% vs. Vaccinated PCR+: 22.2%; Unvaccinated Ag-RDT+

Vaccinated Ag-RDT+: 23.4%) (Supplemental Figure 1e). The cumulativ (Unvaccinated PCR+: 43.8% vs. Vaccinated PCR+: 22.2%; Unvaccinated Ag-RDT+: 44.3% vs
211 Vaccinated Ag-RDT+: 23.4%) (Supplemental Figure 1e). The cumulative positivity of exposed
212 participants was conditioned on symptom Vaccinated Ag-RDT+: 23.4%) (Supplemental Figure 1e). The cumulative positivity of exposed

participants was conditioned on symptom status, such that exposed individuals with symptoms

were much more likely to test positive participants was conditioned on symptom status, such that exposed individuals with symptoms

were much more likely to test positive within the first week since exposure (≤DPE 6) than

participants who were exposed but did were much more likely to test positive within the first week since exposure (≤DPE 6) than
214 participants who were exposed but did not have symptoms on the day of testing (Supplen
215 Figure 2). Percent positivity was hi participants who were exposed but did not have symptoms on the day of testing (Supplemental
215 Figure 2). Percent positivity was highest on DPE 5 through DPE 8, irrespective of vaccination or
216 symptom status (Figure 3a Figure 2). Percent positivity was highest on DPE 5 through DPE 8, irrespective of vaccination or
216 symptom status (Figure 3a, 3b).
217 Diagnostic Performance by Timing of Symptom Onset and Exposure
218 We did not observe symptom status (Figure 3a, 3b).
217 Diagnostic Performance by Timin
218 We did not observe significant di
229 significantly between vaccinated Diagnostic Performance by Timing of Symptom Onset and Exposure
218 We did not observe significant differences in the performance of RT-F
219 vaccination status by DPSO or DPE (Figure 2, Figure 3), and Ct value
320 signific We did not observe significant differences in the performance of RT-PCR and Ag-RDT by

219 vaccination status by DPSO or DPE (Figure 2, Figure 3), and Ct values did not differ

220 significantly between vaccinated and unva vaccination status by DPSO or DPE (Figure 2, Figure 3), and Ct values did not differ
220 significantly between vaccinated and unvaccinated participants (Supplemental Figure
221 both vaccinated and unvaccinated participants significantly between vaccinated and unvaccinated participants (Supplemental Figure 3). Among

221 both vaccinated and unvaccinated participants, Ct value was lowest (i.e., highest viral burden)

222 at DPSO 0-2 and DPE 5 both vaccinated and unvaccinated participants, Ct value was lowest (i.e., highest viral burden)

at DPSO 0-2 and DPE 5 (Supplemental Figure 3). Among symptomatic participants, RT-PCR

detected 81.6% (95% Cl: 76.2-85.9) of at DPSO 0-2 and DPE 5 (Supplemental Figure 3). Among symptomatic participants, RT-PCR
223 detected 81.6% (95% CI: 76.2-85.9) of all PCR-confirmed infections on DPSO 0, while Ag-RD
224 detected 59.0% (95% CI: 52.9-64.8) of detected 81.6% (95% CI: 76.2-85.9) of all PCR-confirmed infections on DPSO 0, while Ag-RDT
detected 59.0% (95% CI: 52.9-64.8) of PCR-confirmed infections at this time (Figure 2c, 2d,
Supplemental Table 1). Ag-RDT detected detected 59.0% (95% CI: 52.9-64.8) of PCR-confirmed infections at this time (Figure 2c, 2d,

225 Supplemental Table 1). Ag-RDT detected 79.9% (95% CI: 73.4-85.1) of vaccinated PCR-

226 confirmed infections and 73.8% (95% Supplemental Table 1). Ag-RDT detected 79.9% (95% Cl: 73.4-85.1) of vaccinated PCR-

confirmed infections and 73.8% (95% Cl: 63.2-82.1) of unvaccinated PCR-confirmed infe

by DPSO 4 (Figure 2c). For exposed participants, R confirmed infections and 73.8% (95% CI: 63.2-82.1) of unvaccinated PCR-confirmed infections
by DPSO 4 (Figure 2c). For exposed participants, RT-PCR and Ag-RDT detected over 94.7%
(95% CI: 87.1-97.9) and 84.9% (95% CI: 75.0 by DPSO 4 (Figure 2c). For exposed participants, RT-PCR and Ag-RDT detected over 94.7%

(95% Cl: 87.1-97.9) and 84.9% (95% Cl: 75.0-91.4) of PCR-confirmed infections on day five

post-exposure (DPE 5), respectively (Figure 228 (95% CI: 87.1-97.9) and 84.9% (95% CI: 75.0-91.4) of PCR-confirmed infections on day five

229 post-exposure (DPE 5), respectively (Figure 3c, 3d, Supplemental Table 2).

229 post-exposure (DPE 5), respectively (Figure 229 post-exposure (DPE 5), respectively (Figure 3c, 3d, Supplemental Table 2).

230 **Discussion:**
231 In this
232 time since syr
233 vaccinated ag
234 the real-world In this study, we report the performance of nasal-swab Ag-RDT and molecular testing by

232 time since symptom onset and time since exposure among individuals who were and were not

233 vaccinated against SARS-CoV-2. Our s time since symptom onset and time since exposure among individuals who were and were not
vaccinated against SARS-CoV-2. Our study highlights three important findings: 1) we report that
the real-world performance of Ag-RDT vaccinated against SARS-CoV-2. Our study highlights three important findings: 1) we report that

the real-world performance of Ag-RDT and RT-PCR peaked at DPSO 0-2 for symptomatic

individuals and on DPE 5 for exposed indi the real-world performance of Ag-RDT and RT-PCR peaked at DPSO 0-2 for symptomatic

235 individuals and on DPE 5 for exposed individuals; 2) we show that the performance of Ag-F

236 tests is similar among vaccinated and u individuals and on DPE 5 for exposed individuals; 2) we show that the performance of Ag-RDT
tests is similar among vaccinated and unvaccinated participants, likely because the viral peak
did not differ between these groups tests is similar among vaccinated and unvaccinated participants, likely because the viral peak
did not differ between these groups; and 3) we demonstrate real-world evidence that
participants who were vaccinated had signif did not differ between these groups; and 3) we demonstrate real-world evidence that

participants who were vaccinated had significantly lower likelihood of testing positive

PCR or Ag-RDT after an exposure than those who w participants who were vaccinated had significantly lower likelihood of testing positive on RT-

PCR or Ag-RDT after an exposure than those who were unvaccinated. Taken together, thes

findings reinforce the importance of A PCR or Ag-RDT after an exposure than those who were unvaccinated. Taken together, these

findings reinforce the importance of Ag-RDT tests for detection of SARS-CoV-2 virus and

highlight the need for serial testing after findings reinforce the importance of Ag-RDT tests for detection of SARS-CoV-2 virus and

241 highlight the need for serial testing after symptom onset or exposure, as well as indicate th

242 continued importance of vaccin

highlight the need for serial testing after symptom onset or exposure, as well as indicate the

continued importance of vaccination.

As the pandemic enters its third year, use of COVID-19 diagnostics has shifted away

fro continued importance of vaccination.

243 As the pandemic enters its this

244 from general screening and mandated

245 people using Ag-RDT in response to a

246 important to advise individuals on the 243 As the pandemic enters its third year, use of COVID-19 diagnostics has shifted away
244 from general screening and mandated testing towards personal risk assessment, with most
245 people using Ag-RDT in response to acu from general screening and mandated testing towards personal risk assessment, with most

people using Ag-RDT in response to acute symptoms or COVID-19 exposure.¹⁶ It is increasi

important to advise individuals on the ti people using Ag-RDT in response to acute symptoms or COVID-19 exposure.¹⁶ It is increasingly people using Ag-RDT in response to acute symptoms or COVID-19 exposure.¹⁶ It is increasingly

246 important to advise individuals on the timing of Ag-RDT use, to facilitate accurate test

247 interpretation and minimize important to advise individuals on the timing of Ag-RDT use, to facilitate accurate test

interpretation and minimize false-negative results. The present results reinforce the im

of serial testing when individuals are eit interpretation and minimize false-negative results. The present results reinforce the importance
248 of serial testing when individuals are either symptomatic or exposed to SARS-CoV-2, in line with
249 our previous recomme of serial testing when individuals are either symptomatic or exposed to SARS-CoV-2, in line with

our previous recommendations (i.e., symptomatic individuals should perform two Ag-RDT 48

hours apart and asymptomatic indiv our previous recommendations (i.e., symptomatic individuals should perform two Ag-RDT 48
hours apart and asymptomatic individuals should perform three Ag-RDT 48 hours apart each)
In case of symptoms, we recommend that indi hours apart and asymptomatic individuals should perform three Ag-RDT 48 hours apart each).⁴ 251
252
253
254 251 In case of symptoms, we recommend that individuals test with Ag-RDT on DPSO 2 and 4 to
252 minimize the risk of false negative results. Further, to decrease transmission of SARS-CoV-2
253 individuals should isolate unt minimize the risk of false negative results. Further, to decrease transmission of SARS-CoV-2,

253 individuals should isolate until DPSO 4, regardless of a negative test result on DPSO 2. For

254 symptomatic individuals i individuals should isolate until DPSO 4, regardless of a negative test result on DPSO 2. For
254 symptomatic individuals in our study, close to 80% of PCR-confirmed infections were detected
354 symptomatic individuals in o 254 symptomatic individuals in our study, close to 80% of PCR-confirmed infections were detected

by Ag-RDT by DPSO 4. Among exposed participants, Ag-RDT detected 5 in 6 PCR-confirmed

infections by DPE 5, regardless of symptomatic status. Few new cases of SARS-CoV-2 were

detected following DPE 6. These results were c infections by DPE 5, regardless of symptomatic status. Few new cases of SARS-CoV-2 were
detected following DPE 6. These results were consistent among vaccinated and unvaccinated
participants and support the CDC recommendat detected following DPE 6. These results were consistent among vaccinated and unvaccinated

258 participants and support the CDC recommendations to isolate for 5 days post-exposure.¹⁷ A

259 previous study of 225 individu participants and support the CDC recommendations to isolate for 5 days post-exposure.¹⁷ A participants and support the CDC recommendations to isolate for 5 days post-exposure.¹⁷ A
259 previous study of 225 individuals with PCR-confirmed SARS-CoV-2 infections similarly founce
260 that RT-PCR had a positivity r previous study of 225 individuals with PCR-confirmed SARS-CoV-2 infections similarly found

that RT-PCR had a positivity rate of approximately 60% on the day of illness onset (defined as

symptom onset among symptomatic in 260 that RT-PCR had a positivity rate of approximately 60% on the day of illness onset (defined as
261 symptom onset among symptomatic individuals and first RT-PCR+ test among asymptomatic
262 individuals).¹⁰ However, t symptom onset among symptomatic individuals and first RT-PCR+ test among asymptomatic

262 individuals).¹⁰ However, these investigators found that PCR-positivity and Ag-RDT-positivity

263 peaked on day 3 and 4 past illn individuals).¹⁰ However, these investigators found that PCR-positivity and $Aq-RDT$ -positivity 262 individuals).¹⁰ However, these investigators found that PCR-positivity and Ag-RDT-positivity
263 peaked on day 3 and 4 past illness onset, which differs from our own results showing that the
264 diagnostic performan beaked on day 3 and 4 past illness onset, which differs from our own results showing that that
264 diagnostic performance peaked on DPSO 0 and 2. The observed difference may be explained
265 by the emergence of new variant diagnostic performance peaked on DPSO 0 and 2. The observed difference may be explained
by the emergence of new variants, as over 75% of infections in our study were due to the
Omicron variant, which has a shorter incubati by the emergence of new variants, as over 75% of infections in our study were due to the

266 Omicron variant, which has a shorter incubation period than all previous SARS-CoV-2

267 strains.^{18,19} This discrepancy betwee 266 Omicron variant, which has a shorter incubation period than all previous SARS-CoV-2
267 strains.^{18,19} This discrepancy between results emphasizes the importance of re-evaluat
268 SARS-CoV-2 diagnostic performance and strains.^{18,19} This discrepancy between results emphasizes the importance of re-evaluation of 267 strains.^{18,19} This discrepancy between results emphasizes the importance of re-evaluation of
268 SARS-CoV-2 diagnostic performance and testing advisories as new SARS-CoV-2 variants
269 continue to arise.
270 To our k

SARS-CoV-2 diagnostic performance and testing advisories as new SARS-CoV-2 variants

continue to arise.

To our knowledge, most studies evaluating treatment effects of vaccination for SAR

CoV-2 has demonstrated vaccine's 269 continue to arise.
270 To our knc
271 CoV-2 has demor
272 death from COVID
273 studies have beer 270 To our knowledge, most studies evaluating treatment effects of vaccination for SARS-
271 CoV-2 has demonstrated vaccine's efficacy for preventing severe disease, hospitalization, an
272 death from COVID-19, but few ha 271 CoV-2 has demonstrated vaccine's efficacy for preventing severe disease, hospitalization, and

272 death from COVID-19, but few have demonstrated efficacy for preventing infections. Previous

273 studies have been lim death from COVID-19, but few have demonstrated efficacy for preventing infections. Previous
studies have been limited in their ability to determine the impact of vaccination on susceptibility
and transmission of COVID-19. 273 studies have been limited in their ability to determine the impact of vaccination on susceptibility
274 and transmission of COVID-19.^{20–22} In our study, unvaccinated individuals exposed to SARS-
275 CoV-2 had nearly and transmission of COVID-19. $20-22$ In our study, unvaccinated individuals exposed to SARS-274 and transmission of COVID-19.^{20–22} In our study, unvaccinated individuals exposed to SARS-CoV-2 had nearly twice the likelihood of infection compared to exposed vaccinated individual
275 CoV-2 had nearly twice the l CoV-2 had nearly twice the likelihood of infection compared to exposed vaccinated individuals.

276 This finding indicates that SARS-CoV-2 vaccination may indeed prevent against infection

277 following exposure to the vir 276 This finding indicates that SARS-CoV-2 vaccination may indeed prevent against infection
277 following exposure to the virus. This is especially noteworthy, as breakthrough infections of
278 the Omicron variant have bec following exposure to the virus. This is especially noteworthy, as breakthrough infections due to
the Omicron variant have become common.²³ Our finding provides real-world data that is similar
to previous reports based o the Omicron variant have become common. 23 Our finding provides real-world data that is similar the Omicron variant have become common.²³ Our finding provides real-world data that is similar
279 to previous reports based on passive data collection through electronic medical records and
279 to previous reports based 279 to previous reports based on passive data collection through electronic medical records and

1990 to previous reports based on passive data collection through electronic medical records and

1991 to previous reports ba

workplace studies, which suggest that even one dose of vaccination decreases the risk of
281 infection from SARS-CoV-2.²⁴⁻²⁶ In contrast to those studies, we account for both RT-PCR
282 Ag-RDT results in this study, and infection from SARS-CoV-2.²⁴⁻²⁶ In contrast to those studies, we account for both RT-PCR and 281 infection from SARS-CoV-2. ²⁴⁻²⁶ In contrast to those studies, we account for both RT-PCR and
282 Ag-RDT results in this study, and all participants, regardless of vaccination status, used the
283 same diagnostics a Ag-RDT results in this study, and all participants, regardless of vaccination status, used the

same diagnostics and procedures to screen for infection every 48 hours, which allowed for

rigorous evaluation of the efficacy 283 same diagnostics and procedures to screen for infection every 48 hours, which allowed for

284 rigorous evaluation of the efficacy of vaccination for preventing infection after exposure. It is

285 important to note th rigorous evaluation of the efficacy of vaccination for preventing infection after exposure. It is

285 important to note that, among those who acquired infection, vaccination status did not affect

286 PCR or Ag-RDT tests' important to note that, among those who acquired infection, vaccination status did not affect RT-

PCR or Ag-RDT tests' sensitivity or viral dynamics, thus not requiring different testing strategies

based on vaccination s

PCR or Ag-RDT tests' sensitivity or viral dynamics, thus not requiring different testing strategies

based on vaccination status.

Despite differences in the rates of infection among vaccinated and unvaccinated

participan 287 based on vaccination status.

288 Despite differences in

289 participants, once infected, po

290 individuals, consistent with pr

291 observe a significant difference Despite differences in the rates of infection among vaccinated and unvaccinated

289 participants, once infected, peak viral load did not differ between vaccinated and unvacc

290 individuals, consistent with previous repo participants, once infected, peak viral load did not differ between vaccinated and unvaccinated

individuals, consistent with previous reports. ^{27,28} This also helps to explain why we did not

observe a significant diff individuals, consistent with previous reports. $27,28$ This also helps to explain why we did not individuals, consistent with previous reports. ^{27,28} This also helps to explain why we did not

291 observe a significant difference in performance of Ag-RDT among vaccinated and unvaccin

292 individuals, as performanc observe a significant difference in performance of Ag-RDT among vaccinated and unvaccinated

individuals, as performance of Ag-RDTs is tightly correlated with viral load, with Ag-RDT

diagnostic performance showing major d individuals, as performance of Ag-RDTs is tightly correlated with viral load, with Ag-RDT
diagnostic performance showing major declines when Ct > 30.¹⁸ Vaccinated and unvacci
individuals did not differ in magnitude nor diagnostic performance showing major declines when $Ct > 30$.¹⁸ Vaccinated and unvaccinated diagnostic performance showing major declines when $Ct > 30.^{16}$ Vaccinated and unvaccinated

294 individuals did not differ in magnitude nor timing of viral load with relation to DPSO and DPE;

295 therefore, no differen individuals did not differ in magnitude nor timing of viral load with relation to DPSO and DPE;
295 therefore, no differences in diagnostic performance would be expected. However, while
296 magnitude and timing of peak vir therefore, no differences in diagnostic performance would be expected. However, while
296 magnitude and timing of peak viral load did not differ between vaccinated and unvaccina
297 individuals, previous studies have shown magnitude and timing of peak viral load did not differ between vaccinated and unvaccinated

individuals, previous studies have shown that the duration of infectiousness may differ, with

unvaccinated individuals showing pr individuals, previous studies have shown that the duration of infectiousness may differ, with

unvaccinated individuals showing prolonged infectiousness. Together, these results add to

evidence that vaccination against SA unvaccinated individuals showing prolonged infectiousness. Together, these results add to the
evidence that vaccination against SARS-CoV-2 may decrease the risk of subsequent infection,
but more studies are needed to under evidence that vaccination against SARS-CoV-2 may decrease the risk of subsequent infection,

200 but more studies are needed to understand the impact of vaccination on levels of

201 infectiousness, as a function of viral but more studies are needed to understand the impact of vaccination on levels of

infectiousness, as a function of viral load, during SARS-CoV-2 infection.
 Study Strengths and Limitations:

This is one of the first stud

infectiousness, as a function of viral load, during SARS-CoV-2 infection.
302 **Study Strengths and Limitations:**
303 This is one of the first studies to analyze the diagnostic performance of F
304 for COVID-19 based on day **Study Strengths and Limitations:**
303 This is one of the first studies to ana
304 for COVID-19 based on days past ao
absor 303 This is one of the first studies to analyze the diagnostic performance of RT-PCR and Ag-RDT
304 for COVID-19 based on days past acute symptom onset or exposure to an individual infected
304 for COVID-19 based on days p 304 for COVID-19 based on days past acute symptom onset or exposure to an individual infected

with SARS-CoV-2. Our study assessed serial paired longitudinal data to evaluate the
306 performance of Ag-RDT and RT-PCR over the duration of infection using a large nation
307 sample of children and adults. This is also,

-
- performance of Ag-RDT and RT-PCR over the duration of infection using a large nationwide
sample of children and adults. This is also, to the best of our knowledge, the first study to
quantify time from exposure to Ag-RDT p
-
- sample of children and adults. This is also, to the best of our knowledge, the first study to

quantify time from exposure to Ag-RDT positivity.

Our study has limitations that need to be considered when interpreting our f quantify time from exposure to Ag-RDT positivity.
309 Our study has limitations that need to be consider
RDT and RT-PCR testing, as well as symptom tra
48-hours. Assessing diagnostic performance at a
48-hours. Assessing di Our study has limitations that need to be considered when interpreting our findings. Paired Ag-

RDT and RT-PCR testing, as well as symptom trackers, were completed by participants every

48-hours. Assessing diagnostic per 810 RDT and RT-PCR testing, as well as symptom trackers, were completed by participants every
311 48-hours. Assessing diagnostic performance at a finer temporal resolution might be useful in
312 future studies. Symptoms, e

- 312 future studies. Symptoms, exposures, and Ag-RDT results were based on participant self-
313 report. However, all positive Ag-RDT results were verified by research coordinators using
314 images of the test strip that we
-

48-hours. Assessing diagnostic performance at a finer temporal resolution might be useful in

1312 future studies. Symptoms, exposures, and Ag-RDT results were based on participant self-

1313 functions and positive Ag-RDT report. However, all positive Ag-RDT results were verified by research coordinators using
314 images of the test strip that were uploaded by participants. In this analysis, we categorized
315 anyone who received 1 or more images of the test strip that were uploaded by participants. In this analysis, we categorized
anyone who received 1 or more vaccines for SARS-CoV-2 as vaccinated due to sample siz
limitations; therefore, there may be heter

315 anyone who received 1 or more vaccines for SARS-CoV-2 as vaccinated due to sample size

316 limitations; therefore, there may be heterogeneity in the vaccine responses and immunity with

317 this group. However, sensit

limitations; therefore, there may be heterogeneity in the vaccine responses and immunity within
317 this group. However, sensitivity analyses showed that results were consistent when those with 1
318 vaccination dose and 2 this group. However, sensitivity analyses showed that results were consistent when those with 1
318 vaccination dose and 2+ doses were examined separately.
Conclusions:
320 In conclusion, this study supports testing imme vaccination dose and 2+ doses were examined separately.
 Conclusions:

In conclusion, this study supports testing immediately after :

days after exposure for optimal detection of SARS-CoV2 vir

vaccination prevents SARS 319 **Conclusions:**
320 In conclusion, 1
321 days after expo
322 vaccination pre
323 or RT-PCR tes

In conclusion, this study supports testing immediately after symptom onset and between 3-5
days after exposure for optimal detection of SARS-CoV2 virus. Our findings suggest that
vaccination prevents SARS-CoV-2 infection b days after exposure for optimal detection of SARS-CoV2 virus. Our findings suggest that
322 vaccination prevents SARS-CoV-2 infection but not does not affect the performance of Ag
323 or RT-PCR tests. Taken in sum, our res

vaccination prevents SARS-CoV-2 infection but not does not affect the performance of Ag-RDT
or RT-PCR tests. Taken in sum, our results highlight the effectiveness of vaccination and serial
testing in the context of symptom

-
-

or RT-PCR tests. Taken in sum, our results highlight the effectiveness of vaccination and serial
1324 testing in the context of symptom onset or close contact as public health strategies to manage
1325 transmission of SARS transmission of SARS-CoV-2 virus.
325 transmission of SARS-CoV-2 virus.
326 **Competing Interest Statement**: VK is principal, and TS, SS, CN, and EH are employees of thealth care technology company CareEvolution, which was transmission of SARS-CoV-2 virus.
325 **Competing Interest Statement**: VK
1328 health care technology company Ca
329 smartphone study app, provide oper
1330 research approach. DDM reports co 327
328
329
330 **Competing Interest Statement**: VK is principal, and TS, SS, CN, and EH are employees of the
health care technology company CareEvolution, which was contracted to configure the
smartphone study app, provide operational and 328 health care technology company CareEvolution, which was contracted to configure the
329 smartphone study app, provide operational and logistical support, and collaborate on ov
330 research approach. DDM reports consult 329 smartphone study app, provide operational and logistical support, and collaborate on overall
330 research approach. DDM reports consulting and research grants from Bristol-Myers Squibb a
330 research approach. DDM repo 330 research approach. DDM reports consulting and research grants from Bristol-Myers Squibb and

Prizer, consulting and research support from Fitbit, consulting and research support from
Flexcon, research grant from Boehringer Ingelheim, consulting from Avania, non-financial
research support from Apple Computer, consu Flexcon, research grant from Boehringer Ingelheim, consulting from Avania, non-financial

research support from Apple Computer, consulting/other support from Heart Rhythm Socie

YCM has received tests from Quanterix, Becto

research support from Apple Computer, consulting/other support from Heart Rhythm Society.

YCM has received tests from Quanterix, Becton-Dickinson, Ceres, and Hologic for research-

related purposes, consults for Abbott on

YCM has received tests from Quanterix, Becton-Dickinson, Ceres, and Hologic for research-

related purposes, consults for Abbott on subjects unrelated to SARS-CoV-2, and receives

funding support to Johns Hopkins Universit related purposes, consults for Abbott on subjects unrelated to SARS-CoV-2, and receives

stunding support to Johns Hopkins University from miDiagnostics. LG is on a scientific advis

board for Moderna on projects unrelated funding support to Johns Hopkins University from miDiagnostics. LG is on a scientific advisory

board for Moderna on projects unrelated to SARS-CoV-2. AS receives non-financial support

from CareEvolution for collaborative board for Moderna on projects unrelated to SARS-CoV-2. AS receives non-financial support

from CareEvolution for collaborative research activities. Additional authors declare no financi

or non-financial competing interest from CareEvolution for collaborative research activities. Additional authors declare no financial

or non-financial competing interests.

340
 Funding Statement: This study was funded by the NIH RADx Tech program under
 or non-financial competing interests.

340
 Funding Statement: This study was

342 3U54HL143541-02S2 and NIH CTSA

manuscript are those of the authors a

lnstitute of Biomedical Imaging and B

1345 Institute; the Nationa **Funding Statement**: This study was funded by the NIH RADx Tech program under
342 3U54HL143541-02S2 and NIH CTSA grant UL1TR001453. The views expressed in
343 manuscript are those of the authors and do not necessarily repr

341
342
343
344
345
347
348 342 3U54HL143541-02S2 and NIH CTSA grant UL1TR001453. The views expressed in this
343 manuscript are those of the authors and do not necessarily represent the views of the Na
344 Institute of Biomedical Imaging and Bioengi

manuscript are those of the authors and do not necessarily represent the views of the National

Institute of Biomedical Imaging and Bioengineering; the National Heart, Lung, and Blood

Institute; the National Institutes of Institute of Biomedical Imaging and Bioengineering; the National Heart, Lung, and Blood

19345 Institute; the National Institutes of Health, or the U.S. Department of Health and Human

1946 Services. Salary support from th Institute; the National Institutes of Health, or the U.S. Department of Health and Human

Services. Salary support from the National Institutes of Health U54HL143541, R01HL14

R01HL137794, R61HL158541, R01HL137734, U01HL14 Services. Salary support from the National Institutes of Health U54HL143541, R01HL141434,

R01HL137794, R61HL158541, R01HL137734, U01HL146382 (AS, DDM), U01AG068221 (HL

U54EB007958-13 (YCM, MLR), Al272201400007C, UM1Al068 R01HL137794, R61HL158541, R01HL137734, U01HL146382 (AS, DDM), U01AG068221 (HL),
348 U54EB007958-13 (YCM, MLR), Al272201400007C, UM1Al068613 (YCM), U54EB027049 and
349 U54EB027049-02S1 (CJA, RLM).
Acknowledgment: We are g U54EB007958-13 (YCM, MLR), Al272201400007C, UM1AI068613 (YCM), U54EB027049 and
349 U54EB027049-02S1 (CJA, RLM).
350 Acknowledgment: We are grateful to our study participants and to our collaborators from the
351 National I U54EB027049-02S1 (CJA, RLM).
350 **Acknowledgment**: We are grateft
351 National Institute of Health (NIBIB
1352 this study and interpretation of our
1353 institutional policies and to the Foc
1354 Radiological Health) for t **Acknowledgment**: We are grateful to our study participants and to our collaborators from the

National Institute of Health (NIBIB and NHLBI) who provided scientific input into the design of

this study and interpretation

National Institute of Health (NIBIB and NHLBI) who provided scientific input into the design of

352 this study and interpretation of our results, but could not formally join as co-authors due to

353 institutional policie this study and interpretation of our results, but could not formally join as co-authors due to

institutional policies and to the Food and Drug Administration (Office of In Vitro Diagnostics

Radiological Health) for their institutional policies and to the Food and Drug Administration (Office of In Vitro Diagnostics and
Radiological Health) for their involvement in the primary TUAH study. We received meaningful
contributions from Drs. Bruce

Radiological Health) for their involvement in the primary TUAH study. We received meaningful

contributions from Drs. Bruce Tromberg, Jill Heemskerk, Felicia Qashu, Dennis Buxton, Erin

Iturriaga, Jue Chen, Andrew Weitz, a

355 contributions from Drs. Bruce Tromberg, Jill Heemskerk, Felicia Qashu, Dennis Buxton, Erin
156 Iturriaga, Jue Chen, Andrew Weitz, and Krishna Juluru. We are thankful to county health
157 departments across the country

1356 Iturriaga, Jue Chen, Andrew Weitz, and Krishna Juluru. We are thankful to county health
1357 departments across the country who helped with recruitment for this siteless study by spr
1358 the word in their networks.

357 departments across the country who helped with recruitment for this siteless study by spreading
358 the word in their networks.

358 the word in their networks.

-
- 2. Covid-19. The BMJ. 2021;372. doi:10.1136/bmj.n208

2. Peeling RW, Olliaro PL, Boeras DI, Fongwen N. Scaling up COVID-19 rapid antigen tests: pron

and challenges. *Lancet Infect Dis.* 2021;21(9). doi:10.1016/S1473-3099(
-
- Covid-19. *The BMJ*. 2021;372. doi:10.1136/bmj.n208
Peeling RW, Olliaro PL, Boeras DI, Fongwen N. Scaling
and challenges. *Lancet Infect Dis.* 2021;21(9). doi:10.1
Drain PK. Rapid Diagnostic Testing for SARS-CoV-2. *Ne*
20 2022;386(3):264-272. doi:10.1056/REJMCP2117115

2. Prain PK. Rapid Diagnostic Testing for SARS-CoV-2. New England Journal of Medicine.

2022;386(3):264-272. doi:10.1056/NEJMCP2117115

4. Soni A, Herbert C, Lin H, et al. Pe and challenges. *Lancet Infect Dis. 2021;21(9)*. doi:10.1016/*31413-3099(21)00048-7*
Drain PK. Rapid Diagnostic Testing for SARS-CoV-2. *New England Journal of Medicin*
2022;386(3):264-272. doi:10.1056/NEJMCP2117115
Soni A 3. Bramin R. Rapid Diagnostic Testing for SARS-CoV-2. New England Journal of Medicine.
2022;386(3):264-272. doi:10.1056/NEJMCP2117115
4. Soni A, Herbert C, Lin H, et al. Performance of Screening for SARS-CoV-2 using Rapid 2022;2022;2621:272. doi:10.1072. doi:10.1003735
Boni A, Herbert C, Lin H, et al. Performance of Screen
Tests to Detect Incidence of Symptomatic and Asympthe Test Us at Home prospective cohort study. *medR*
2022:2022.08.05. Tests to Detect Incidence of Symptomatic and Asymptomatic SARS-CoV-2 Infection: findings the Test Us at Home prospective cohort study. *medRxiv*. Published online August 6, 2022:2022.08.05.22278466. doi:10.1101/2022.08.05.
- the Test Us at Home prospective cohort study. *medRxiv*. Published online August 6,
2022:2022.08.05.22278466. doi:10.1101/2022.08.05.22278466
Brümmer LE, Katzenschlager S, Gaeddert M, et al. Accuracy of novel antigen rapi
- the Test Us at Home prospective conort study. *Intention*. Tubilished online August 0,
2022:2022.08.05.22278466. doi:10.1101/2022.08.05.22278466
Brümmer LE, Katzenschlager S, Gaeddert M, et al. Accuracy of novel antigen ra Brümmer LE, Katzenschlager S, Gaeddert M, et al. Accuracy of notificantly and SARS-CoV-2: A living systematic review and meta-analysis. *PLoS*
https://doi.org/10.1371/journal.pmed.1003735
Torres I, Poujois S, Albert E, Col SARS-CoV-2: A living systematic review and meta-analysis. *PLoS Med.* 2021;18(8):e1003735-
https://doi.org/10.1371/journal.pmed.1003735
formes I, Poujois S, Albert E, Colomina J, Navarro D. Evaluation of a rapid antigen te SARS-CoV-2: A living systematic review and meta-analysis. PLOS Med. 2021;18(0):e1003733-.
https://doi.org/10.1371/journal.pmed.1003735
Torres I, Poujois S, Albert E, Colomina J, Navarro D. Evaluation of a rapid antigen tes https://doi.org/10.1371/journal.pmediation.
Torres I, Poujois S, Albert E, Colomina J, Navarro
COVID-19 patients. *Clinical Microbiology and Infl*
doi:10.1016/J.CMI.2020.12.022
Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. I 6. Torres I, Poujois S, Albert E, Colomina J, Navarro D. Evaluation of a rapid antigen test (Panbio

COVID-19 Ag rapid test device) for SARS-CoV-2 detection in asymptomatic close contacts of

COVID-19 patients. *Clinical M*
- COVID-19 patients. *Clinical Microbiology and Infection*. 2021;27(4):636.e1-636.e4.
doi:10.1016/J.CMI.2020.12.022
Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 Caused by Unique
SARS-CoV-2 Strain
- COVID-19 patients. Clinical Microbiology and Injection. 2021;27(4):036.e1-036.e4.
doi:10.1016/J.CMI.2020.12.022
Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 Caused b
SARS-CoV-2 Strains A System Mu Y, Kang L, Guo Z, Liu J, Liu M
SARS-CoV-2 Strains A Systematic
JAMA Netw Open. 2022;5(8):222
Robinson ML, Mirza A, Gallagher
for SARS-CoV-2 in Symptomatic
2022;60(7). doi:10.1128/JCM.00 SARS-CoV-2 Strains A Systematic Review and Meta-analysis Key Points + Supplemental conte

JAMA Netw Open. 2022;5(8):2228008. doi:10.1001/jamanetworkopen.2022.28008

Robinson ML, Mirza A, Gallagher N, et al. Limitations of JAMA Netw Open. 2022;5(8):2228008. doi:10.1001/jamanetworkopen.2022.28008
Robinson ML, Mirza A, Gallagher N, et al. Limitations of Molecular and Antigen Test Performance
for SARS-CoV-2 in Symptomatic and Asymptomatic COVID Bobinson ML, Mirza A, Gallagher N, et al. Limitations of Molecular and Antigen Test
for SARS-CoV-2 in Symptomatic and Asymptomatic COVID-19 Contacts. *J Clin Micro.*
2022;60(7). doi:10.1128/JCM.00187-22/SUPPL_FILE/JCM.0018
- 8. Robinson Multipletines and Asymptomatic COVID-19 Contacts. J Clin Microbiol.

2022;60(7). doi:10.1128/JCM.00187-22/SUPPL_FILE/JCM.00187-22-S0001.PDF

9. Smith RL, Gibson LL, Martinez PP, et al. Longitudinal Assessment o
- for SARS-CoV-2 in Symptomatic and Asymptomatic COVID-19 Contacts. J Clin Microbiol.
2022;60(7). doi:10.1128/JCM.00187-22/SUPPL_FILE/JCM.00187-22-50001.PDF
Smith RL, Gibson LL, Martinez PP, et al. Longitudinal Assessment of Smith RL, Gibson LL, Martinez PP, et al. Longitudinal Assessment of Diagnostic 1
Over the Course of Acute SARS-CoV-2 Infection. J Infect Dis. 2021;224(6):976-98
doi:10.1093/infdis/jiab337
Chu VT, Schwartz NG, Donnelly MAP, Over the Course of Acute SARS-CoV-2 Infection. *J Infect Dis*. 2021;224(6):976-982.

doi:10.1093/infdis/jiab337

Chu VT, Schwartz NG, Donnelly MAP, et al. Comparison of Home Antigen Testing With RT-PCR

and Viral Culture D Over the Course of Acute SARS-Cov-2 Infection. J Myet Dis. 2021;224(6):376-962.

doi:10.1093/infdis/jiab337

Chu VT, Schwartz NG, Donnelly MAP, et al. Comparison of Home Antigen Testing V

and Viral Culture During the Cour Chu VT, Schwartz NG, Donn
and Viral Culture During the
709. doi:10.1001/jamainter
Vaccines for COVID-19 | CD
https://www.cdc.gov/coror
Antonelli M, Penfold RS, Me
-
- 10. and Viral Culture During the Course of SARS-CoV-2 Infection. JAMA Intern Med. 2022;182(7):7

10. doi:10.1001/jamainternmed.2022.1827

11. Vaccines for COVID-19 | CDC. Accessed October 13, 2022.

11. Antonelli M, Penfol and Viral Culture During the Course of SARS-CoV-2 Infection. SAMA Intern Med. 2022,182(7):701
709. doi:10.1001/jamainternmed.2022.1827
Vaccines for COVID-19 | CDC. Accessed October 13, 2022.
https://www.cdc.gov/coronavirus Vaccines for COVID-19 | CDC. Accessed Octol
https://www.cdc.gov/coronavirus/2019-ncov
Antonelli M, Penfold RS, Merino J, et al. Risk
CoV-2 infection in UK users of the COVID Sym
nested, case-control study. *Lancet Infect D* https://www.cdc.gov/coronavirus/2019-ncov/vaccines/inc
12. Antonelli M, Penfold RS, Merino J, et al. Risk factors and di
12. Antonelli M, Penfold RS, Merino J, et al. Risk factors and di
13. Lauer SA, Grantz KH, Bi Q, et a Antonelli M, Penfold RS, Merino J, et al. Risk factors and disease procov-2 infection in UK users of the COVID Symptom Study app: a pronested, case-control study. *Lancet Infect Dis.* 2022;22(1):43-55. doi 3099(21)00460-6

- nested, case-control study. *Lancet Infect Dis.* 2022;22(1):43-55. doi:10.1016/S1473-
3099(21)00460-6
Lauer SA, Grantz KH, Bi Q, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19)
From Publicly Reported Co nested, case-control study. *Lancet Inject Dis. 2022*,22(1):43-55. doi:10.1016/51475
3099(21)00460-6
Lauer SA, Grantz KH, Bi Q, et al. The Incubation Period of Coronavirus Disease 2019
From Publicly Reported Confirmed Case 2099
Lauer SA, Grantz K
From Publicly Rep
https://doi.org/10 13. From Publicly Reported Confirmed Cases: Estimation and Application.
https://doi.org/107326/M20-0504. 2020;172(9):577-582. doi:10.7326/M20-0504
https://doi.org/107326/M20-0504. 2020;172(9):577-582. doi:10.7326/M20-0504 From Public J. (Person Commune Cases: Estimation and Application.
https://doi.org/107326/M20-0504. 2020;172(9):577-582. doi:10.7326.
. https://doi.org/107326/M20-0504. 2020;172(9):577-582. doi:10.7326/M20-0504

-
-
- 14. Somethia. Soni A, Herbert C, Pretz C, Standard Study of Serial Rapid Antigen Testing to Identify

Asymptomatic SARS-CoV-2 Infection. *medRxiv*. Published online August 8, 2022.

15. Wilson EB. Probable Inference, the L IMPLEMENTATION CONTROLLER IN A DIGITAL SARY THEORY OF A DIGITAL STRELL WILSON EB. Probable Inference, the Law of Succession, and Statistical Inference. J Am Stat Ass
1927;22(158):209-212. doi:10.1080/01621459.1927.10502953 Asymptomatic SARS-Cov-2 Infection. *Incural* P. Fublished online August 8, 2022.
At aparticipal inference, the Law of Succession, and Statistical Inference. J
1927;22(158):209-212. doi:10.1080/01621459.1927.10502953
Rader
- 19. Wilson EB. Frobable Inference, the Eaw of Succession, and Statistical Inference. 3 Am Stat Assoc.
1927;22(158):209-212. doi:10.1080/01621459.1927.10502953
16. Rader B, Gertz A, Iuliano AD, et al. Use of At-Home COVID-1 2227;22(22):21):2022. MMWR Morb Mortal Wkly Rep. 2022;71
2021–March 12, 2022. MMWR Morb Mortal Wkly Rep. 2022;71
doi:10.15585/MMWR.MM7113E1
CDC streamlines COVID-19 guidance to help the public better p
their risk. CDC News 2021–March 12, 2022. *MMWR Morb Mortal Wkly Rep.* 2022;71(13):489-494.

2021–March 12, 2022. *MMWR Morb Mortal Wkly Rep.* 2022;71(13):489-494.

doi:10.15585/MMWR.MM7113E1

CDC streamlines COVID-19 guidance to help the publ 2021–March 12, 2022. MMWR Morb Mortal Wkly Rep. 2022, 71(13):409-494.
doi:10.15585/MMWR.MM7113E1
CDC streamlines COVID-19 guidance to help the public better protect themsel
their risk. CDC Newsroom Releases. Published Augu CDC streamlines COVID-19 guidance
their risk. CDC Newsroom Releases
https://www.cdc.gov/media/releases
Soni A, Herbert C, Filippaios A, et a
Delta and Omicron Variants of SAR
doi:10.7326/M22-0760
- 19. CDC Newsroom Releases. Published August 11, 2022. Accessed December 20, 2022.

https://www.cdc.gov/media/releases/2022/p0811-covid-guidance.html

18. Soni A, Herbert C, Filippaios A, et al. Comparison of Rapid Antigen https://www.cdc.gov/media/releases/2022/p0811-covid-guidance.html
Soni A, Herbert C, Filippaios A, et al. Comparison of Rapid Antigen Tests' Performance Betweer
Delta and Omicron Variants of SARS-CoV-2. *Ann Intern Med*. P Soni A, Herbert C, Filippaios A, et al. Comparison of Rapid Antigen Tests'
Delta and Omicron Variants of SARS-CoV-2. Ann Intern Med. Published o
doi:10.7326/M22-0760
Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation P
- Delta and Omicron Variants of SARS-CoV-2. Ann Intern Med. Published online October 11, 2022.

doi:10.7326/M22-0760

Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 Caused by Unique

SARS-CoV-2 Str Belta and Omicron Vanants of SARS-CoV-2. Ann Intern Med. Published online October 11, 2022.
doi:10.7326/M22-0760
Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 Caused by Unique
SARS-CoV-2 Strains
- Vu Y, Kang L, Guo Z, Liu
SARS-CoV-2 Strains: A S
2022;5(8):e22228008-e2:
el Sahly HM, Baden LR, I
Completion of Blinded F
doi:10.1056/NEJMOA21 SARS-CoV-2 Strains: A Systematic Review and Meta-analysis. JAMA Netw Open.

2022;5(8):e22228008-e2228008. doi:10.1001/jamanetworkopen.2022.28008

el Sahly HM, Baden LR, Essink B, et al. Efficacy of the mRNA-1273 SARS-CoV-2
- SARS-CoV-2 Strains: A Systematic Review and Meta-analysis. SAMA Netw Open.
2022;5(8):e2228008-e2228008. doi:10.1001/jamanetworkopen.2022.28008
el Sahly HM, Baden LR, Essink B, et al. Efficacy of the mRNA-1273 SARS-CoV-2 V; 2022; 2022-2022 PHELI PERRIM B, et al. Efficacy of the mRNA-1273 SARS-CoV-2
Completion of Blinded Phase. New England Journal of Medicine. 2021;385(19
doi:10.1056/NEJMOA2113017/SUPPL_FILE/NEJMOA2113017_DATA-SHARIN
Tenforde 22. Completion of Blinded Phase. New England Journal of Medicine. 2021;385(19):1774-1785

20. el Sahly H. Raioti EA, et al. Sustained Effectiveness of Pfizer-BioNTech and N

2021. MMWR Morb Mortal Wkly Rep. 2021;70(34):115 Completion of Billided Triase. Wew England Journal by Medicine. 2021;385(15):1774-1785.
doi:10.1056/NEJMOA2113017/SUPPL_FILE/NEJMOA2113017_DATA-SHARING.PDF
Tenforde MW, Self WH, Naioti EA, et al. Sustained Effectiveness of Tenforde MW, Self WH, Naioti EA, et al. Sustained Effectiveness of Pfizer-BioNTech
Vaccines Against COVID-19 Associated Hospitalizations Among Adults - United State
2021. *MMWR Morb Mortal Wkly Rep.* 2021;70(34):1156-1162.
- Vaccines Against COVID-19 Associated Hospitalizations Among Adults United States, March-July
2021. MMWR Morb Mortal Wkly Rep. 2021;70(34):1156-1162. doi:10.15585/MMWR.MM7034E2
22. Emary KRW, Golubchik T, Aley PK, et al.
- 2021. *MMWR Morb Mortal Wkly Rep.* 2021;70(34):1156-1162. doi:10.15585/MMWR.MM7034E2
Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against
SARS-CoV-2 variant of concern 202012/01 (B. 2021. MMWR Morb Mortal Wkly Rep. 2021;70(34):1150-1102. doi:10.15585/MMWR.MM7034E2
Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against
SARS-CoV-2 variant of concern 202012/01 (B.1. SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised
controlled trial. *Lancet*. 2021;397(10282):1351-1362. doi:10.1016/S0140-6736(21)00628-0
Birhane M, Bressler S, Chang G, et al. COV controlled trial. *Lancet*. 2021;397(10282):1351-1362. doi:10.1016/S0140-6736(21)00628-0
Birhane M, Bressler S, Chang G, et al. COVID-19 Vaccine Breakthrough Infections Reported to
— United States, January 1–April 30, 2021 Birhane M, Bressler S, Chang G, et al. COVID-19 Vaccine Breakthrough Infections Reported t
— United States, January 1–April 30, 2021. *MMWR Morb Mortal Wkly Rep.* 2021;70(21):79
doi:10.15585/MMWR.MM7021E3
Buchan SA, Chung
- 13. Buchan SA, Chang H, Brown KA, et al. Estimated Effectiveness of COVID-19 Vaccines Against
24. Buchan SA, Chung H, Brown KA, et al. Estimated Effectiveness of COVID-19 Vaccines Against
24. Buchan SA, Chung H, Brown KA,
- United States, January 1–April 30, 2021. MMWMM019 Mortal Wity Rep. 2021, 10(21).15585/MMWR.MM7021E3
Buchan SA, Chung H, Brown KA, et al. Estimated Effectiveness of COVID-19 Vaccines Against
Omicron or Delta Symptomatic Inf Buchan SA, Chung H, Brown KA, et
Omicron or Delta Symptomatic Infe
2022;5(9):e2232760-e2232760. do
Ioannou GN, Bohnert ASB, O'Hare
Against Infection, Hospitalization, a
Variant Era. *https://doi.org/10732e*
doi:10.7326/M22 24. Buchan Sa, Chung H, Brown Election and Severe Outcomes. JAMA Netw Open.

2022;5(9):e2232760-e2232760. doi:10.1001/JAMANETWORKOPEN.2022.32760

10annou GN, Bohnert ASB, O'Hare AM, et al. Effectiveness of mRNA COVID-19 Va Omicron or Delta Symptomatic infection and Severe Outcomes. JAMA Netw Open.
2022;5(9):e2232760-e2232760. doi:10.1001/JAMANETWORKOPEN.2022.32760
Ioannou GN, Bohnert ASB, O'Hare AM, et al. Effectiveness of mRNA COVID-19 Vacc 10annou GN, Bohnert ASB, O'Hare AM, et al. Effectiveness of mRNA COVID-19 V;
Against Infection, Hospitalization, and Death: A Target Trial Emulation in the Om
Variant Era. *https://doi.org/107326/M22-1856*. Published onlin Against Infection, Hospitalization, and Death: A Target Trial Emulation in the Omicron (B.1.1.529
Variant Era. *https://doi.org/107326/M22-1856*. Published online October 11, 2022.
doi:10.7326/M22-1856
26. Nanduri S, Pilis Agriant Era. https://doi.org/107326/M22-1856. Published online October 11, 2022.
doi:10.7326/M22-1856
Manduri S, Pilishvili T, Derado G, et al. Effectiveness of Pfizer-BioNTech and Moderna Vaccines in
Preventing SARS-CoV-2
- Variant Era. *https://doi.org/107526/M22-1856.* Published online October 11, 2022.
doi:10.7326/M22-1856.
Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During
Preventing SARS-CoV-2 Infection Among Aanduri S, Pilishvili T, De
Preventing SARS-CoV-2
The Mars of Sars CoV-2 22. Nandalis S, Pilishow, S. Pilishow, S. Pilishow, S. Pilishow, S. Philip College and Modern American Vaccine
Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread

- March 1–August 1, 2021. *MMWR Morb Mortal Wkly Rep.* 2021;70(34):1163-1166.
doi:10.15585/MMWR.MM7034E3
Boucau J, Marino C, Regan J, et al. Duration of Shedding of Culturable Virus in SARS-CoV-2
Omicron (BA.1) Infection. *N*
- March 1–August 1, 2021. MMWN Morb Mortal WKI, Rep. 2021, 70(34).1103-1100.
doi:10.15585/MMWR.MM7034E3
Boucau J, Marino C, Regan J, et al. Duration of Shedding of Culturable Virus in SARS
Omicron (BA.1) Infection. *New Engl* Boucau J, Marino C, Regan J, et al.
Omicron (BA.1) Infection. *New Eng*
doi:10.1056/NEJMc2202092
Ke R, Martinez PP, Smith RL, et al. I
Infections Reveals Limited Infectior
Forum Infect Dis. 2022;9(7):ofac19. 27. Boucau D, Infection Mew England Journal of Medicine. 2022;387(3):275-277.

27. Boucau J, 10.56/NEJMc2202092

28. Ke R, Martinez PP, Smith RL, et al. Longitudinal Analysis of SARS-CoV-2 Vaccine Breakthrou

28. Ke R, Mar Omicron (BA.1) Infection. New England Journal of Medicine. 2022;387(3):275-277.
doi:10.1056/NEJMc2202092
Ke R, Martinez PP, Smith RL, et al. Longitudinal Analysis of SARS-CoV-2 Vaccine Bre
Infections Reveals Limited Infect ke R, Martinez PP, Smith RL,
Infections Reveals Limited Inf
Forum Infect Dis. 2022;9(7):0
. Infections Reveals Limited Infectious Virus Shedding and Restricted Tissue Distribution. Open
Forum Infect Dis. 2022;9(7):ofac192. doi:10.1093/ofid/ofac192
-
The Sarage Breakthrough Restricted Tissue Distribution. Open Infections Reveals Limited Infectious Virus Shedding and Restricted Tissue Distribution. Open
Forum Infect Dis. 2022;9(7):ofac192. doi:10.1093/ofid/ofac192 Forum Infect Dis. 2022;9(7):ofac192. doi:10.1093/ofid/ofac192

Tables and Figures:

Table 1: Characteristics of Vaccinated and Unvaccinated Participants included in Analyses

Figure 1: Consort Diagram for DPSO and DPE Analyses

Figure 2: PCR and Rapid Antigen Test Positivity by Day Past Symptom Onset

Figure 3: PCR and Rapid Antigen Test Positivity by Day Past Exposure