1	Survival of people with untreated tuberculosis: effects of time, geography and setting
2	
3	Carly A Rodriguez ^{1*} , Sarah V Leavitt ^{2*} , Tara C. Bouton ^{3,4} , C Robert Horsburgh ^{1,2} , Pia
4	Abel zur Wiesch ^{5,6} , Brooke Nichols ⁷ , Helen E Jenkins ^{2**} , Laura F White ^{2**}
5	¹ Department of Epidemiology, Boston University School of Public Health, Boston, MA,
6	USA
7	² Department of Biostatistics, Boston University School of Public Health, Boston, MA,
8	USA
9	³ Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA
10	⁴ Boston University School of Medicine, Boston, MA, USA
11	⁵ Division for Infection Control and Environmental Health, Norwegian Institute of Public
12	Health, Norway
13	⁶ Center of Infectious Disease Dynamics, Pennsylvania State University, USA
14	⁷ Department of Global Health, Boston University School of Public Health, Boston, MA
15	USA
16	*Joint first author (equal contribution)
17	**Joint senior author (equal contribution)
18	
19	ABSTRACT
20	Background An estimated 40% of people who developed tuberculosis in 2021 were not
21	diagnosed or treated. Pre-chemotherapy era data are a rich resource on survival for
22	people with untreated TB. We aimed to identify heterogeneities in these data to inform
23	more precise use of them.

It is made available under a	CC-BY-NC-ND 4.0	International license
------------------------------	-----------------	-----------------------

24	Methods We extracted survival data from pre-chemotherapy era papers reporting TB
25	specific mortality and/or natural recovery data. We used Bayesian parametric survival
26	analysis to model the survival distribution, stratifying by geography (North America
27	versus Europe), time (pre-1930 versus post-1930), and setting (sanitoria versus non-
28	sanitoria).
29	Results We found 12 studies with TB-specific mortality data. Ten-year survival was
30	69% in North America (95 CI: 54%-81%) and 36% in Europe (95% CI: 10%-71%). Only
31	38% (95% CI: 18%-63%) of non-sanitorium individuals survived to 10 years compared
32	to 69% (95% CI: 41%-87%) of sanitoria/hospitalized patients. There were no significant
33	differences between people diagnosed pre-1930 and post-1930 (five-year survival pre-
34	1930: 65%; 95% CI: 44%-88% versus post-1930: 72%; 95% CI: 41%-94%).
35	Conclusions Mortality and natural recovery risks vary substantially by location and
36	setting. These heterogeneities need to be considered when using pre-chemotherapy
37	data to make inferences about expected survival of people with undiagnosed TB.
38	

It is made available under a CC-BY-NC-ND 4.0 International license .

40 **INTRODUCTION**

Tuberculosis (TB) is a major infectious cause of global mortality, with case detection (an 41 estimated 40% were undiagnosed in 2021) and failure to cure those treated being major 42 drivers of mortality and transmission¹. Clinical outcomes of individuals with untreated 43 TB are important from a public health perspective and in modelling studies. 44 Several studies have mined the rich pre-chemotherapy era TB literature to understand 45 outcomes for people with untreated TB^{2-4} . As we continue to use these important pre-46 chemotherapy era data, it is important to remember that these studies are not 47 homogeneous. They span decades during which tumultuous events occurred (e.g. 48 49 World Wars, the Great Depression), sanatoria were for treatment to varying degrees, 50 studies were carried out in differing geographic regions (North America and Europe), 51 and the quality and availability of medical care increased over time. TB outcomes among untreated individuals could vary significantly by these factors. 52 Here, we use studies from the pre-chemotherapy era that recorded mortality and natural 53 54 recovery outcomes over time. We aim to estimate TB mortality rates during this era overall and by geographic and temporal context hypothesizing that individuals from 55 countries with more resources during times of great stability would have better 56 57 outcomes than individuals in studies from more turbulent times. We also aim to explore outcome differences between sanitoria patients versus those not in sanitoria and also 58 59 hypothesize that individuals in sanitoria had less severe disease initially than those who 60 were not.

It is made available under a CC-BY-NC-ND 4.0 International license .

62 **METHODS**

63 Search strategy

Since the development of anti-TB chemotherapy in the mid-twentieth century, studies 64 reporting outcomes of untreated populations are unethical and pre-chemotherapy era 65 studies are often not indexed in databases (e.g. PubMed, EMBASE). Therefore, we 66 reviewed our personal libraries, which include publications of pre-chemotherapy era 67 cohorts from a previous study of untreated children with TB⁴, and publications used by ² 68 in a similar review to this current study (Table S1). We additionally reviewed the 69 reference lists of these publications for further sources, and reference lists of those 70 71 papers, where possible, to capture additional data on adults to supplement the original review results. 72

73

74 Review of studies

We included cohort studies comprised of TB patients who did not receive anti-TB 75 chemotherapy, and that reported the proportion of the cohort within specified time 76 interval(s) with the following four outcomes: died from TB, died from a non-TB cause, 77 naturally recovered, and lost to follow-up (Figure S1). Outcome definitions would 78 79 depend on specific publications and are included in the results section and Supplement 80 (Table S2). "Natural recovery" in this literature was not clinically well-defined and our 81 definition would need to be driven by publications that we identify. However, natural 82 recovery would likely include patients who no longer had detectable Mycobacterium *tuberculosis* (*Mtb*) in sputum smears, were able to work, or had symptom resolution ⁵. 83

It is made available under a CC-BY-NC-ND 4.0 International license .

85	We excluded publications that were not about TB, did not contain data on natural
86	recovery or TB-specific mortality, were restricted to patients with specific forms of TB
87	(e.g. TB meningitis) or narrow age groups (e.g. children <2 years old), case reports,
88	autopsy studies, or were primarily patients receiving anti-TB drugs. We excluded
89	publications presenting population-level outcome rates, or that did not specify follow-up
90	time or loss to follow-up. Additionally, we excluded reviews or editorials but we did
91	search their reference lists for additional studies of interest.
92	
93	Two reviewers (two of TCB, HEJ, CAR, LFW) independently read each publication to
94	determine inclusion eligibility. Non-English publications were translated by authors
95	fluent in the relevant language (PAzW, BN) and independently reviewed by HEJ and
96	LFW, along with the relevant translator, to determine eligibility. Discrepancies were
97	resolved by group discussion.
98	
99	Data extraction
100	Two reviewers (two of TCB, HEJ, CAR, LFW, PAzW, BN) independently extracted data
101	from each publication using a standardized electronic form. We extracted: study type
102	(e.g. population-based cohort, sanatorium-based cohort), cohort characteristics
103	(geographic location, time period, forms of TB disease, age range), determination of
104	death, outcome definitions, treatment (e.g. sanatorium, surgery, anti-TB drugs), and the
105	start of follow-up time (i.e. notification/diagnosis, sanatorium entry or exit). For

exit and the average sanatorium stay was reported, the follow-up times were shifted

106

consistency among sanatorium studies, if the follow-up start time was the sanatorium

medRxiv preprint doi: https://doi.org/10.1101/2022.12.15.22283231; this version posted December 16, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

ahead by this average length of stay so that the follow-up start was approximately entry
into the sanatorium. If the average length of stay was not reported, then the follow-up
times were shifted by 165 days, the average length of sanatoria stay in the United
States between 1934-1938 ⁶. We extracted data into life tables and stratified by disease
severity when possible.

113

Publications often reported on multiple cohorts and occasionally, the same study 114 115 reported data over multiple publications. Therefore, we enumerated findings using the following terminology: "publications" are individual published reports in the literature; 116 117 "studies" are a population of patients recruited, diagnosed, and treated in a similar fashion during the same time period, which may be reported over multiple publications; 118 119 and "cohorts" are a patient population that may have been recruited, diagnosed, and/or 120 treated differently over varying time periods but were in the same publication. 121 122 Discrepancies between reviewers were resolved by group discussion and reconciled extractions were entered into REDCap electronic data capture tools hosted at Boston 123

¹²⁴ University Medical Campus, Boston, MA, USA. Ethics approval was not required

because all data were from published reports.

126

127 Mortality meta-analysis

We transformed the extracted life-table structured data and created individual-level data with the interval from entry/diagnosis to death or time of censoring for each individual in each cohort. We used parametric survival analysis with interval censoring to estimate

It is made available under a CC-BY-NC-ND 4.0 International license .

the survival times for TB-specific mortality. TB deaths were considered events and
 deaths from other causes were considered censored observations.

133

134 We used a Bayesian framework to estimate the survival distribution which included a frailty term for each study (see Supplement). We analyzed all of the studies together in 135 one model and then we compared mortality outcomes by time (pre-1930 to post-1930), 136 geography (North America versus Europe) and setting (sanatorium/hospital studies and 137 non-sanatorium studies) due to the difference in care pattern and start of follow-up time. 138 139 We choose 1930 as a cut-off as the approximate mid-point of the total time period covered by our included studies. For all analyses, we plotted the study-level survival 140 curves overlaid with the overall survival curves (the mean of the frailty distribution) with 141 142 95% credible intervals. We estimated study-specific one, five, and ten-year survival probabilities and median survival times with 95% credible intervals. 143 144 145 We compare the baseline reported severity in individuals treated in sanitoria/hospitals to those not treated in sanitoria, where disease severity reporting is available. We provide 146 147 summary statistics of this data and test for associations using a chi square test. 148 We used R v4.0.2 with Bayesian models fit using JAGS with R2jags v0.6-1. Model 149 150 diagnostic results are in the supplement. All data and code are available on GitHub at 151 https://github.com/sarahleavitt/TB_mortality. 152

153 **RESULTS**

It is made available under a CC-BY-NC-ND 4.0 International license .

154 Literature review

155	We identified 153 publications (93 from personal libraries, 60 from a manual reference
156	search of personal library publications) during screening and obtained 142 (93%) for
157	full-text review (Figure 1). We excluded 122 publications, most due to not reporting an
158	outcome of interest (n=48), unclear follow-up time (n=23), or reporting population-level
159	rates (n=17). Data from 20 publications were included; three publications included data
160	from the same cohort but were stratified by disease severity across three publications.
161	For two studies ^{7,8} , data required modification to conform to a life table format (see
162	Supplement).
163	

164 Characteristics of cohorts

Of the 20 included publications, 10 (50%) were from North America, 5 (25%) from the 165 United Kingdom, 3 (15%) from Germany (one from an area that is now part of Poland), 166 1 (5%) from the Netherlands, and 1 (5%) from Norway (Table 1). Twelve studies (60%) 167 168 were conducted primarily before 1930. Most publications enrolled patients between the 1910s and 1940s. Ten (50%) publications included patients treated at a sanatorium or 169 an inpatient hospital. Six (30%) publications indicated a subset of patients received 170 171 surgical treatment; anti-TB chemotherapy was provided to a minority in two publications (Table 1). 172

173

174 Outcome definitions were not standardized during the pre-chemotherapy era and

definition reporting was minimal in some publications (Table S2). Only five (25%)

176 studies described determination of death. These included clinician-determined cause of

medRxiv preprint doi: https://doi.org/10.1101/2022.12.15.22283231; this version posted December 16, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

death, via questionnaire mailed to households, or through multiple sources such as family report or vital record review. Natural recovery definitions included patients with no longer detectable *Mtb*, able to work, and the more stringent, standardized definitions of the United States' National Tuberculosis Association's (USNTA) *Diagnostic Standards*, which required symptom resolution, negative culture, and improved chest x-ray for \geq two years to establish recovery (Table S2)⁵.

183

The 20 publications represented 18 studies. The 18 studies followed 84 cohorts with some studies following one cohort and others identifying different cohorts at each time point for a total of 35,900 patients. Of the 18 studies, 12 (67%) representing 53 (63%) of the cohorts reported TB-specific death. Of the 18 studies, 12 (67%) representing 63 (72%) of the cohorts classified alive patients as either having chronic TB or having naturally recovered by each time point.

190

191 Overall mortality results

Using all data, there were 12 studies, 53 cohorts and 17,166 patients with follow-up
data on TB-specific mortality. Assuming a lognormal distribution, we estimated TBspecific mortality survival (meanlog=2.51, sdlog=1.72). Overall, 93% of individuals
survived one year (95% CI: 0.84-0.98) while 55% of individuals survived 10 years (95%
CI: 0.36-0.73) with a median survival time of 12.33 years (95% CI: 5.47-28.93) (Table 2,
Figure S3). Model fit diagnostic plots for all models are in the supplement (Figures S11S17).

It is made available under a CC-BY-NC-ND 4.0 International license .

200 Sanitoria results

201	Survival was higher in the sanatorium studies than in the non-sanatorium studies (Table
202	2, Figure 2, Figure S4). Only 38% (95% CI: 18%-63%) of non-sanitorium individuals
203	survived to ten years compared to 69% (95% CI: 41%-87%) of sanitoria/hospitalized
204	patients. There were more individuals with far advanced disease at baseline among
205	those treated outside of sanitoria (43.0% versus 22.0%) and overall, there was a
206	significant difference in disease severity between those treated in sanitoria compared to
207	those treated elsewhere (p<0.001) (Table S7).
208	
209	Mortality by time
210	In studies primarily enrolling individuals prior to 1930, ten-year survival was 50% (95%
211	CI: 26%-75%), which was similar to survival estimated in studies primarily enrolling after
212	1930 [60% (95% CI: 29%-89%)]. Median TB survival time was nearly twice as long for
213	studies conducted after 1930 (17.23 years, 95% CI: 2.98-129.05 versus 9.90 years,
214	95% CI: 4.10-25.24) (Table 2, Figures 2 and 3, Figure S5).
215	
216	Mortality by geography
217	Overall mortality outcomes in North American studies compared to European studies
218	were much better. Ten-year survival was estimated to be 69% in North America (95 CI:
219	54%-81%) compared to 36% in European studies (95% CI: 10%-71%). Median survival
220	times were four-fold higher in North American studies: 21.33 years (95% CI: 11.54,

221 37.95) versus 5.02 (95% CI: 0.86, 28.73) (Table 2, Figure 2, Figure S6).

It is made available under a CC-BY-NC-ND 4.0 International license .

223 Natural recovery data

The raw natural recovery data are summarized in the Supplement (Figures S6-S9).

225 Consistent with findings from mortality data, overall trends in reported recovery rates

- were higher among individuals treated in sanitoria, post-1930 and from North America.
- 227

228 **DISCUSSION**

Data from TB patients during the pre-chemotherapy era are a rich resource that can inform current TB management. However, our study illustrates that researchers should be mindful of the context when using these data. There are substantial differences in outcomes based on time, geography, and whether or not patients were in a sanatorium. Inferences from these data should take account of these potential biases and not view pre-chemotherapy era data as homogeneous.

235

Geographically, people in North American studies experienced better outcomes than 236 237 those in Europe. This may be because North America was more shielded from the worst effects of the two world wars in the early 20th century than Europe. Also, an increased 238 proportion of the North American studies used data from sanatoria (6/8 studies versus 239 240 2/10 studies). Our results indicate that outcomes from sanatoria were better than in studies using community data. However, for studies that reported data on severity at 241 presentation, we found that patients with less severe disease were more likely to spend 242 time in a sanatorium, consistent with the hypothesis that sanatoria were less likely to 243 244 admit moribund patients as they could not help them. Thus, providing an additional reason why data from North American studies could be biased towards improved 245

It is made available under a CC-BY-NC-ND 4.0 International license .

outcomes, and illustrating a bias intrinsic to sanatoria data. Stadler et al. ⁹ also
suggested that sanatoria preferentially treated people of higher socioeconomic status;
even if their stay was paid, some people declined a sanatorium stay because they had
to work to support family; and some people were excluded as "unsuited" for sanatoria.
All of these factors are still seen today regarding the inequities of who does and does
not receive TB care. We note that we did not observe significant differences in survival
among studies enrolling individuals pre-1930 compared to those enrolling after 1930.

253

It is well documented that people with fewer resources, poor access to care, or live in political or social turmoil, such as war-torn areas, have poorer TB outcomes ^{10–18}. Our results are consistent with this in that people without access to sanatoria, or living through wartime experienced poorer TB outcomes. Aggregating the pre-chemotherapy era data obscures this important heterogeneity. When making inferences from these data for modern day TB management, it might be necessary to identify specific relevant studies for analysis, depending on the research question.

261

A study strength is our focus on TB-specific mortality. Previous studies have looked at all-cause mortality, which would not only over-estimate TB-specific mortality, but also might suffer from different types of heterogeneities, thus obscuring differences in TBspecific mortality between groups ^{2,3}. Also, we have used parametric survival modeling to estimate parameters that can be used to generate survival probabilities and parameterize modeling studies.

It is made available under a CC-BY-NC-ND 4.0 International license .

268

269	Our study has some limitations. The sanatorium discharge start time was used for the
270	sanatoria studies with the average stay added (two of seven sanitoria studies) to this
271	whereas it was notification/diagnosis for the non-sanatoria studies. Therefore, only
272	individuals who survived their sanatorium stay were included. This may have
273	contributed to improved survival in sanatorium studies. Asymptomatic patients were not
274	included in our cohorts since they would not have presented to medical services.
275	Nonetheless, our analyses will have included nearly all symptomatic smear-positive
276	patients. "A few" patients were reported to receive anti-TB drugs and therefore our
277	estimated survivals might be overestimates. However, the availability of anti-TB drugs
278	and types of regimens provided during our study period was limited and inferior to those
279	used nowadays, so it is unlikely that this affected our results substantially. Lastly, our
280	data do not account for the impact of HIV co-infection on TB survival and recovery,
281	since they are from the pre-HIV era.
282	

Since around 40% of people estimated to develop TB disease in 2021 were not
diagnosed ¹, results from the pre-chemotherapy era provide important insights that are
relevant nowadays. These data are also critical for modeling studies. However, the
context must be considered when using these data to ensure that we make suitable
inferences for 21st century TB management.

288

It is made available under a CC-BY-NC-ND 4.0 International license .

290 **REFERENCES**

291 292	1.	Global tuberculosis report 2022. Accessed November 6, 2022. https://www.who.int/publications/i/item/9789240061729
293 294 295	2.	Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJD. Natural history of tuberculosis: Duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: A systematic review. <i>PLoS One</i> . 2011;6(4). doi:10.1371/journal.pone.0017601
296 297 298	3.	Ragonnet R, Flegg JA, Brilleman SL, et al. Revisiting the Natural History of Pulmonary Tuberculosis: A Bayesian Estimation of Natural Recovery and Mortality Rates. <i>Clinical Infectious</i> <i>Diseases</i> . 2021;73(1):e88-e96. doi:10.1093/cid/ciaa602
299 300 301	4.	Jenkins HE, Yuen CM, Rodriguez CA, et al. Mortality in children diagnosed with tuberculosis: a systematic review and meta-analysis. <i>Lancet Infect Dis</i> . 2017;17(3). doi:10.1016/S1473-3099(16)30474-1
302	5.	Diagnostic Standards and Classification of Tuberculosis.; 1940.
303 304	6.	TUBERCULOSIS FACILITIES IN THE UNITED STATES. <i>J Am Med Assoc</i> . 1940;114(9):765-804. doi:10.1001/jama.1940.02810090043014
305 306 307	7.	Mitchell RS. Mortality and replapse of uncomplicated advanced pulmonary tuberculosis before chemotherapy: 1,504 consecutive admissions followed for fifteen to twenty-five years. <i>Am Rev Tuberc</i> . 1955;72:502-512.
308 309	8.	Stephens MG. Follow-up of 1,041 Tuberculous Patients. <i>Am Rev Tuberc</i> . 1941;44(4):451-462. doi:10.1164/art.1941.44.4.451
310 311	9.	Stadler E. Der Einfluss der Lungetuberkulose of Lebensdauer und Erwerbsfähigkeit und der Werth der Volksheilstättenbehandlung. <i>Deutsch Arch Klin Med</i> . 1903;95:412-440.
312 313	10.	Houk V, Baker J, Sorensen K, Kent D. The epidemiology of tuberculosis infection in a closed environment. <i>Arch Environ Helath</i> . 1968;16:26-35.
314	11.	Ochs C. The epidemiology of tuberculosis. JAMA. 1962;179:247-252.
315 316	12.	Enarson D, Wang JS, Dirks J. The incidence of active tuberculosis in a large urban area. <i>Am J Epidemiol</i> . 1989;129:1268-1276.
317 318	13.	Bhaatti N, Law M, Morris J. Increasing incidence of tuberculosis in England and Wales: a study of the likely causes. <i>Br Med J</i> . 1995;310:967-969.
319	14.	Spence D, Hotchkiss J, Davies P. Tuberculosis and poverty. Br Med J. 1993;307:759-761.
320 321	15.	McKeown T, Record R. Reasons for the decline in mortality in England and Wales during the nineteenth century. <i>Popul Studies</i> . 1962;16:94-122.
322 323	16.	Terris M. Relation of Economic Status to Tuberculosis Mortality by Age and Sex. <i>Am J Public Health</i> . 1948;38:1061-1070.

324 325 326	17.	Ragan EJ, Kleinman MB, Sweigart B, et al. The impact of alcohol use on tuberculosis treatment outcomes: A systematic review and meta-analysis. <i>International Journal of Tuberculosis and Lung Disease</i> . 2020;24(1):73-82. doi:10.5588/ijtld.19.0080
327 328 329	18.	Vasankari T, Holmström P, Ollgren J, Liippo K, Kokki M, Ruutu P. Risk factors for poor tuberculosis treatment outcome in Finland: A cohort study. <i>BMC Public Health</i> . 2007;7. doi:10.1186/1471- 2458-7-291
330 331	19.	Heise FH, Hennigar WAP. The condition in 1931 of patients discharged from the Trudeau Sanatorium from 1916-1930. <i>Tubercle</i> . 1933;15:120-123.
332 333 334	20.	Rutledge JA, Crouch JB. The Ultimate Results in 1654 Cases of Tuberculosis Treated at the Modern Woodmen of America Sanatorium. <i>Am Rev Tuberc</i> . 1919;2(12):755-763. doi:10.1164/art.1919.2.12.755
335 336	21.	Ferguson RG. Follow up information on 1747 tuberculosis patients one to seven years after discharge from a sanatorium. <i>Am Rev Tuberc.</i> 1926;14(6):625-645.
337 338	22.	Wherrett GJ. Follow-up information on 2031 tuberculosis patients one to thirteen years after discharge from sanatoria. <i>Am Rev Tuberc</i> . 1935;31(1):62-73.
339 340	23.	Zacks D. Pulmonary Tuberculosis in the Second Decade of Life. <i>Am Rev Tuberc</i> . 1939;39(6):683- 702. doi:10.1164/art.1939.39.6.683
341 342 343	24.	Munchbach W. Das Schicksal des lungentuberkulösen Erwachsenen. Ergibnisse der Heilstattenbehandlung von annähernd 10000 Männern und Frauen. <i>Tuberkulose-Bibliothek</i> . 1933;49(64).
344 345	25.	Baart de la Faille R. Onderzoek Naar de Resultaten Der Tuberculosebehandeling in Het Sanatorium "Berg En Bosch." 1939.
346 347 348	26.	Mitchell RS. Mortality and replapse of uncomplicated advanced pulmonary tuberculosis before chemotherapy: 1,504 consecutive admissions followed for fifteen to twenty-five years. <i>Am Rev Tuberc</i> . 1955;72:502-512.
349 350	27.	Alling DW, Lincoln S, Bosworth EB. The after history of pulmonary tuberculosis. <i>Am Rev Tuberc.</i> 1954;70(6):995-1008.
351 352	28.	Alling DW, Bosworth EB, Lincoln NS. The after-history of pulmonary tuberculosis. V. Moderately advanced tuberculosis. <i>Am Rev Tuberc</i> . 1955;71(4):519-528. doi:10.1164/artpd.1955.71.4.519
353 354	29.	Lincoln NS, Bosworth EB, Alling DW. The after-history of pulmonary tuberculosis. III. Minimal tuberculosis. <i>Am Rev Tuberc</i> . 1954;70(1):15-31. doi:10.1164/art.1954.70.1.15
355 356	30.	Braeuning H, Neissen A. Die Prognose der offenen Lungentuberkulose. <i>Tuberkulose-Bibliothek.</i> 1933;52(40).
357 358 359	31.	Tattersall WH. The survival of sputum-positive consumptives: A study of 1,192 cases in a County Borough between 1914 and 1940. <i>Tubercle</i> . 1947;28(6):107-123. doi:https://doi.org/10.1016/S0041-3879(47)80088-1

It is made available under a CC-BY-NC-ND 4.0 International license .

- 360 32. Holst P, Nicolaysen L, Ustvedt Y. Untersuchungen über die Lebensdauer der Schwindsüchtigen in
 361 Norwegen. *Deutsch Arch Klin Med*. 1906;88(325-350).
- 362 33. Cox L. Sanatorium treatment contrasted with home treatment; after-histories of 4,067 cases.
 363 British Journal of Tuberculosis. 1923;17:27-30.
- 364 34. Bentley F J, Grzybowski S, Benjamin B. Tuberculosis in childhood and adolescence. The National
 365 Association for the Prevention of Tuberculosis. London, England: Waterlow and Sons Ltd, 1954.
- 366 35. Lowe CR. Recent trends in survival of patients with respiratory tuberculosis. *Br J Prev Soc Med*.
 367 1954;8:91-98.
- 368 36. Springett VH. Ten-year results during the introduction of chemotherapy for tuberculosis.
 369 *Tubercle*. 1971;52(2):73-87. doi:10.1016/0041-3879(71)90015-8
- 370

It is made available under a CC-BY-NC-ND 4.0 International license .

372	ACKNOWLEDGEMENTS We acknowledge Margaret Zimmer for research assistance
373	and Annelies Mesman for translation support. The results reported herein correspond to
374	specific aims of grants R01GM122876 and R35GM141821 to investigator LFW, HEJ,
375	and CRH, and R01GM122876-04S1 to CAR from the National Institute of General
376	Medical Sciences of the National Institutes of Health. This work was also supported by
377	grant K23 AI152930 from the National Institutes of Health to TCB and a Burroughs
378	Wellcome Fund/American Society for Tropical Medicine and Hygiene Postdoctoral
379	Fellowship in Tropical Infectious Diseases to TCB. The content is solely the
380	responsibility of the authors and does not necessarily represent the official views of the
381	National Institutes of Health.
382	
383	DATA AND CODING: We used R v4.0.2 with Bayesian models fit using JAGS with
384	R2jags v0.6-1. All data and code are available on GitHub at
385	https://github.com/sarahleavitt/TB_mortality.
386	

388 **TABLES**

389 Table 1. Descriptive characteristics of pre-treatment era cohorts with data on tuberculosis-specific mortality

390 and/or, natural recovery from tuberculosis (N=20 publications, 18 studies)

Reference	Enrollment	Setting	Population	Diagnostic	Treatment	Stratification
	period			method		
	(years)					
Heise ^{19b}	1917-1931	New York,	Sanatorium cohort of	Chest X-ray	Sanatoria	By disease
		USA	patients with		(100%)	severity
			pulmonary tuberculosis			
			treated at Trudeau			
			Sanatorium			
Rutledge ^{20b}	1909-1914	Colorado,	Sanatorium cohort	Sputum smear	Sanatoria	By disease
		USA	treated at the Modern	and clinical	(100%)	severity
			Woodmen of America	findings		
			sanatorium			

Stephens ^{8a,b}	1919-1938	New York,	Employment-based	Signs and	Sanatoria	By disease
		USA	sanatorium cohort of	symptoms (pre-	(100%)	severity
			employees ages 17-64	1924) and		
			of the Metropolitan Life	chest X-ray		
			Insurance Company	(1925+)		
Ferguson ^{21a,b}	1917-1924	Saskatchew	Sanatorium survivor	Not reported	Sanatoria	None
		an, Canada	cohort of patients ages		(100%), surgery	
			0-69 treated at Fort		(1%)	
			Qu'Appelle Sanatorium			
Wherrett ^{22a}	1917-1924	Saskatchew	Sanatorium survivor	Not reported	Sanatoria	None
		an, Canada	cohort of patients		(100%)	
			treated at Fort			
			Qu'Appelle Sanatorium			
Zacks ^{23b}	Approximat	Massachuse	Cohort of children with	Not reported	Surgery and/or	None
	ely 1927-		pulmonary TB; unclear			

	1932	tts, USA	whether cohort were		sanatoria (55%)			
			inpatient, outpatient, or					
			population-	population-				
			representative					
Munchbach ^{24a}	1920-1927	Black Forest,	Sanatorium cohort of	Not reported	Sanatoria	None		
		south-west	patients with		(100%)			
		Germany	pulmonary TB					
Baart de la	1922-1935	Bilthoven,	Sanatorium-based	Chest x-ray	Sanatoria	None		
Faille ^{25a}		Netherlands	cohort of adults with		(100% and			
			pulmonary tuberculosis		collapse therapy			
			at the Berg en Bosch		(34%)			
			sanatorium					
Mitchell ^{26a,b}	1930-1939	New York,	Sanatorium cohort of	Chest X-ray	Sanatoria	By disease		
		USA	patients aged 15+ with	and symptoms	(100%)	severity		
			pulmonary TB treated					
			at the Trudeau					

Sanatorium Alling, 1954²⁷, 1938-1948 New York, **Outpatient clinical** Sputum smear Among far-By disease Alling, 1955²⁸, (Alling, USA cohort of smear+ and chest Xadvanced severity Lincoln^{29a,b} 1954 and patients ages 10+ with patients: Bed ray 1955) far advanced (Alling, rest (27%), 1954), moderately collapse therapy 1937-1947 advanced (Alling, (27%) (Lincoln) 1955), and minimal Among (Lincoln) TB treated at moderately-Hermann M Biggs advanced Memorial Hospital patients: Anti-TB drugs ("a few"), collapse therapy (37%), bed rest (63%) Among minimal

					patients: NR		
Braeuning ^{30a,b,c}	1920/21, 1927/28,	21, Stettin, Population-based (Chest x-ray	Surgery or	By disease	
		Germany (at	cohort of pulmonary		sanatoria (%	severity	
	1930, 1933	the time of	TB patients attending a		receiving each		
		the study,	public TB clinic		unclear)		
		currently					
		Poland)					
Stadler ^{9a}	1893-1902	902 Marburg, Pop Germany coh TB	Population based	Not reported	Not reported	None	
			cohort of pulmonary				
			TB patients attending				
			public outpatient clinics				
Tattersall ^{31b}	1914-1940	Reading, UK	Population-based	Smear positive	Sanatoria (38%)	By disease	
			cohort of smear+			severity	
			patients from the				
			Tuberculosis Service				
			of Reading County				

			Borough			
Holst ^{32a}	1891-1900	Norway	People with TB as	Clinical signs	Not reported	None
			reported through forms	and symptoms		
			filled out by doctors			
Lissant Cox ^{33a,b}	Approximat	Lancaster,	Cohort of smear+	Sputum or	Sanatoria	By disease
	ely 1934-	UK	patients while in	other specimen	(100%)	severity
	1935		residential treatment at	smear, signs		
			sanatoria and	and symptoms		
			pulmonary hospitals			
Bentley ^{34a,b}	1942-1946	Brentwood,	Hospital-based cohort	Chest X-ray	Sanatoria	None
		Essex, UK	of pediatric patients	and clinical	(100%)	
			ages 0-16 years	findings		
			treated at High Wood			
			Hospital			
Lowe ^{35b}	1930-1951	Birmingham,	Population-based	Not reported	Not reported	None
			cohort of all patients			

			UK	with respiratory TB			
				identified from			
				registers			
Spr	ingett ^{36a}	1947	Birmingham,	Outpatient clinical	Sputum smear	Surgery (30%),	None
			UK	cohort of sputum+,		Anti-TB drugs	
				respiratory TB patients		(0.2% ^d)	
				ages 15+ seeking care			
				the Birmingham Chest			
				Service			
^a Da	ta available oi	n natural recov	very				

- ³⁹² ^bData available on TB-specific mortality
- ³⁹³ ^cIncludes TB-specific mortality data that were not stratified by severity and for a subset of this cohort, TB-specific mortality
- 394 and natural recovery data stratified by severity

395

391

	Survival	1-Year	5-Year	10-Year	Median Survival	Number	Number	Number of
Setting	Distribution	Survival	Survival Survival Survival Ti 95% CI) (95% CI) (95% CI)	Time (95%	of	of	Individuals	
		(95% CI)		(95% CI)	CI)	Studies	Cohorts	:
Combined	lognormal(2.	0.93 (0.84,	0.7 (0.52,	0.55 (0.36,	12.33 (5.47,	12	53	17,166
Combined	51, 1.72)	0.98)	0.85)	0.73)	28.93)			
Time Stratifi	ed							
Pre-1930	lognormal(2.	0.95 (0.84,	0.69 (0.44,	0.50 (0.26,	9.90 (4.10,	7	30	10,732
	29, 1.40)	0.99)	0.88)	0.75)	25.24)			
Deat 4020	lognormal(2.	0.91 (0.70,	0.72 (0.41,	0.60 (0.29,	17.23 (2.98,	5	23	6,434
Post-1930	85, 2.13)	0.99)	0.94)	0.89)	129.05)			
Geography	Stratified							
North	lognormal(3.	0.98 (0.94,	0.83 (0.71,	0.69 (0.54,	21.33 (11.54,	7	28	10,619
America	06, 1.56)	0.99)	0.90)	0.81)	37.95)			
Europe	lognormal(1.	0.8 (0.47,	0.5 (0.18,	0.36 (0.10,	5.02 (0.86,	5	25	6,547

Table 2. Survival analysis results TB-specific mortality with the combined and stratified models

	61, 1.92)	0.96)	0.82)	0.71)	28.73)				
Setting Stratified									
Sanatorium/h	lognormal(3.	0.98 (0.90,	0.83 (0.59,	0.69 (0.41,	21.77 (7.09,	7	41	12,330	
ospital	08, 1.56)	1.00)	0.94)	0.87)	59.58)				
Non-	lognormal(1.	0.80 (0.58,	0.51 (0.28,	0.38 (0.18,	5.29 (1.53,	5	12	4,836	
Sanatorium	67, 2.03)	0.93)	0.75)	0.63)	19.92)				

It is made available under a CC-BY-NC-ND 4.0 International license .

401 FIGURES

402

403 Figure 1 Flow chart describing the review process and exclusions

It is made available under a CC-BY-NC-ND 4.0 International license .

404

405 Figure 2. Survival curves for TB-specific mortality for the time period, study

location, and treatment location stratified analyses. The thin, grey lines represent
the specific survival curves for each study. The black dotted line represents the overall
survival curve (the mean of the frailty distribution). The grey shaded area is the 95%
credible interval for the overall survival curve.

- 410
- 411
- 412

It is made available under a CC-BY-NC-ND 4.0 International license .

Setting -- Non-Sanatorium -- Sanatorium/hospital

413

Figure 3. Forest plot of one, five, and ten-year survival probabilities for TB-

specific mortality for the combined model. The studies are sorted by first year of enrollment (earliest to latest) with a horizontal line splitting the pre-1930 and post-1930 studies. The two panels for stratify the studies by geography and the dots and bars are colored by setting. The rows are the survival probabilities with 95% credible intervals for the different studies. The overall estimate of the survival probabilities is located at the bottom of the plot and represented with a diamond

421