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Author summary

The Ross-Macdonald model, a simple mathematical model of malaria transmission

based on the parasite life-cycle, established basic theory and a set of metrics to describe

and measure transmission. Here, we extend the Ross-Macdonald model so it has the

skill to study, simulate, and analyze parasite dispersal and heterogeneous malaria

spatial transmission dynamics in a defined geographical area with malaria importation.

This extended framework was designed to build models with complexity that scales to

suit the needs of a study, including models with enough realism to support monitoring,

evaluation, and national strategic planning. Heterogeneity in human epidemiology or

behaviors – differences in age, immunity, travel, mobility, care seeking, vaccine status,

bed net use, or any trait affecting transmission – can be handled by stratifying

populations. Mosquito spatial ecology and behaviors are responding to heterogeneous

resource availability and weather, which affects adult mosquito dispersal, blood feeding,

and egg laying in a structured set of aquatic habitats. We propose new formulas for

human biting rates and entomological inoculation rates that integrate exposure as

humans move around. We rigorously define parasite dispersal, and we develop matrices

describing the spatial dimensions of vectorial capacity and parasite dispersal in mobile

humans. We relate these to the parasite’s overall reproductive success, local

reproductive numbers and thresholds for endemic transmission. [185/200 words]
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Abstract

The Ross-Macdonald model has exerted enormous influence over the study of malaria

transmission dynamics and control, but it lacked features to describe parasite dispersal,

travel, and other important aspects of heterogeneous transmission. Here, we present a

patch-based differential equation modeling framework that extends the Ross-Macdonald

model with sufficient skill and complexity to support planning, monitoring and

evaluation for Plasmodium falciparum malaria control. We designed a generic interface

for building structured, spatial models of malaria transmission based on a new

algorithm for mosquito blood feeding. We developed new algorithms to simulate adult

mosquito demography, dispersal, and egg laying in response to resource availability. The

core dynamical components describing mosquito ecology and malaria transmission were

decomposed, redesigned and reassembled into a modular framework. Structural

elements in the framework – human population strata, patches, and aquatic habitats –

interact through a flexible design that facilitates construction of ensembles of models

with scalable complexity to support robust analytics for malaria policy and adaptive

malaria control. We propose updated definitions for the human biting rate and

entomological inoculation rates. We present new formulas to describe parasite dispersal

and spatial dynamics under steady state conditions, including the human biting rates,

parasite dispersal, the “vectorial capacity matrix,” a human transmitting capacity

distribution matrix, and threshold conditions. An R package that implements the

framework, solves the differential equations, and computes spatial metrics for models

developed in this framework has been developed. Development of the model and metrics

have focused on malaria, but since the framework is modular, the same ideas and

software can be applied to other mosquito-borne pathogen systems.
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Introduction 1

Plasmodium falciparum transmission dynamics are complex: they involve 2

multiple-agents, non-linear dynamics, localized spatial interactions, spatial, temporal 3

and behavioral heterogeneity, stochasticity, and exogenous forcing by weather, 4

hydrology, and malaria control. Over time, these processes can be modified by economic 5

development; by changing socioeconomic status, human incentives and social norms; 6

and by the evolution of resistance. Every one of these features of malaria transmission 7

dynamics and control presents its own set of challenges to the quantitative study of 8

malaria for scientific research and for analytics to support policy. An important 9

practical problem is how to quantify and synthesize all of the factors affecting 10

transmission at some particular place and time to support malaria control programs in 11

various ways, including monitoring and evaluation of malaria control. The study of 12

complex spatial processes are best addressed using some sort of mathematical model. 13

Here, to fill a need to give robust policy advice, we have developed a modular 14

framework with accompanying software to build and analyze suites of models with 15

scalable complexity for malaria spatial transmission dynamics and control. 16

A starting point for the quantitative study of malaria transmission dynamics has 17

been the Ross-Macdonald model, which played a central role in developing basic theory 18

and metrics for malaria [1, 2]. That model is simple, general, and conceptually useful, 19

but it is not realistic enough to describe many important features of transmission [3]. 20

The model’s lack of realism has also limited its applicability: simple models support 21

generic policy advice, but specific advice – tailored to context – must be based on 22

models that can quantify and weigh the effects of locally relevant details [4]. A basic 23

limitation of the Ross-Macdonald model was that it lacked features required to describe 24

spatial transmission dynamics and control. Mathematical models for spatial dynamics 25

of mosquito-borne pathogens have been developed [5–18], but there is a need for a 26

generalized synthetic framework to develop and use spatial dynamic models, to extend 27

the Ross-Macdonald model to define and analyze parasite dispersal, to define and 28

measure malaria connectivity [19], and to link spatial dynamics to spatial data. The 29

Ross-Macdonald model is also missing other features that are relevant for malaria 30

dynamics and control, which can be identified from a survey of studies that have 31

modeled mosquito-borne diseases (see Box #1) [2]. Modeling and analyzing real 32

systems can become overwhelming because of computational, parametric, or conceptual 33

challenges that arise from combining all the factors, dimensions, interactions, features, 34

and processes. Individual-based models (IBMs) have been developed around algorithms 35

that make it possible to deal with the complexity by simulating individual states and 36

transitions in silico [20], but these high-dimensional computational approaches have 37

some limitations that limit their use and applicability. IBMs require intensive 38

computation, are challenging to parameterize, are difficult to critically evaluate, and 39

their output that is often as difficult to analyze and understand as malaria itself. Using 40

a modular framework, we present an alternative way of dealing with the complexity that 41

is analytically tractable, including some new algorithms to understand mosquito ecology, 42

parasite transmission by mosquitoes, and parasite dispersal on spatial landscapes. 43

In most places, malaria transmission has been modified by control. The extent of 44

effect modification by malaria control is occasionally revealed when health systems are 45
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disrupted (e.g., [21,22]), when malaria control is relaxed or abandoned [23], or when 46

resistance evolves to drugs or insecticides (e.g., [24, 25]). Programs must weigh evidence 47

and make decisions through analysis of counterfactuals, rather than through direct 48

estimation of control effect sizes, since there would be drastic consequences to 49

experimentally disrupting control. A predominant need in most contexts is thus a set of 50

methods to quantify transmission in its local context as a baseline that has been 51

modified by control. A challenge to achieving this has been that the responses to 52

control efforts are context dependent and have been highly variable across settings. 53

Relevant factors affecting responses to control include details about blood feeding, 54

mosquito ecology, and mosquito behaviors that affect contact with interventions (e.g., 55

resting indoors and IRS). To reconstruct the counterfactual baseline, transmission must 56

be understood in terms of innate mosquito behaviors responding to local resources, 57

vector control, and other contextual factors that have been modified by control. All 58

these have been characterized as being notoriously context dependent and 59

heterogeneous [26–28]. What are the local factors that determine baseline malaria 60

transmission, effect modification, and differences in effect modification at some 61

particular place and time? Basic concerns about the heterogeneous impacts of vector 62

control raise a larger set of questions about how to study and quantify transmission in a 63

way that is relevant for planning malaria control. 64

This new framework is thus an attempt to bridge two well-established but somewhat 65

contradictory views of malaria. One view is that human malaria transmission dynamics 66

and control are so moulded by local ecology and other conditions that the factors 67

driving transmission or responses to control at one time and place are unlikely to hold 68

elsewhere [27]. Another view – encouraged by the rigorous analysis of the 69

Ross-Macdonald model and extensions of it – is that malaria transmission intensity can 70

be quantified using a small set of bionomic parameters to compute basic reproductive 71

numbers, which also provide a basis for computing threshold conditions for endemic 72

malaria. To build a bridge, the contextual factors affecting basic bionomic parameters 73

must be identified and integrated with new theory describing spatial extensions of the 74

basic metrics, including rigorous, quantitative description of parasite dispersal, and 75

some estimates of the appropriate spatial scales to measure malaria transmission [3]. 76

Context-dependency is an uncomfortable but unavoidable fact of malaria ecology. 77

The heterogeneous nature of transmission and the causes and consequences of variable 78

responses to control have been a difficult and sometimes contentious problem for 79

scientists studying malaria, for national malaria programs and funding agencies making 80

malaria policy, and for malaria advocates. Historical trends in malaria and the outcomes 81

of malaria control have been so variable that case studies can be found to support rosy 82

projections, alarmist warnings, or contradictory claims about the underlying causes of 83

trends or patterns. To be useful, studies of malaria and programmatic evaluations must 84

acknowledge the important role of context, the multi-factorial nature of causation in 85

these complex systems, non-linear responses to control, the difficulty of measuring 86

heterogeneous systems, and the resulting uncertainty. A consequence of context 87

dependency is the difficulty in drawing conclusions that generalize across systems. 88

The framework is designed to support development of robust malaria policy advice 89

and to find practical ways of dealing with uncertainty. While scientific research and 90

policy analytics grapple with the same issues and use similar methods, they often put 91
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very different weights on uncertainty. Uncertainty affects the ability to do effective 92

inference for scientific research versus policy analytics – questions about what is known 93

versus what should be done. To address these concerns and give policy advice despite 94

uncertainty, an integrated inferential framework is needed to weigh evidence, integrate 95

the effects of multiple exogenous factors (often involving experts from distinct 96

specialties), estimate their effect sizes, quantify uncertainty, and identify critical gaps. 97

Statistical theory and inferential methods have been developed around the principle of 98

parsimony for scientific inference, but substantially less attention has been given to 99

appropriate designs for analyses that can give advice that is robust to uncertainty. Are 100

the conclusions of an analysis robust to reasonable alternative formulations of a model, 101

and how well are policy recommendations really supported by the evidence? Concerns 102

about robustness could lead to study designs that make different tradeoffs between 103

realism and abstraction. For example, compared with parsimonious models, models 104

with a high degree of realism might be more useful for identifying critical missing data 105

and prioritizing studies to collect it. Robust analytics requires having a modeling 106

framework to build suites of models that are realistic enough to weigh the importance of 107

the major drivers of transmission despite major knowledge gaps. 108

To address these needs, we have developed a new, modular framework designed to 109

support development of models for robust, simulation-based analytics and adaptive 110

malaria control with scalable complexity. With scalable complexity in model building, 111

members of a model ensemble could range from very simple to very complex, and that 112

models along that spectrum are related to one another through a logical sequence of 113

structural or parametric changes. At one extreme, this framework includes the 114

Ross-Macdonald model, a simple system of differential equations describing the parasite 115

life-cycle in mosquito and vertebrate host populations linked by transmission during 116

blood feeding [1,29,30]. By extending the Ross-Macdonald model, simple models can be 117

extended step by step to add complexity or heterogeneity that could be important – 118

based on a priori considerations – yet difficult to quantify or poorly informed by 119

existing data (Box #1). With modularity, it is possible to develop new dynamical 120

systems models describing some parts of the system, add or modify components, or add 121

a set of exogenous factors that force a system. It is also relatively straightforward to 122

modify functional responses, or to modify some basic parameters affecting the outcome. 123

Swarms of models can thus be developed to analyze data and to test the robustness of 124

any conclusions. To demonstrate scalable complexity, we here present a complicated 125

family of models that has terms and variables anticipating modification by weather or 126

malaria control. For practical reasons, the model family we present here was scaled back 127

to include a limited set of elements describing transmission, but leaving in place the 128

elements that facilitate modeling control (Box #1). The resulting extensible framework 129

that is capable of describing and analyzing malaria spatial transmission dynamics and 130

control with a high degree of realism in any particular setting. An R package which 131

implements the modular differential equations and spatial metrics presented in the 132

article is available with documentation (Supplement 1 - 133

https://dd-harp.github.io/exDE/). Despite being programmed in R, the 134

implementation of the mathematical framework into code should be easily adapted to 135

any high-level programming language. 136

In Framework, we first present the modular concepts and structural elements, 137
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including a new blood feeding model. Next we present one exemplar model family for 138

each dynamical component. In Spatial Metrics, we develop a set of metrics that 139

describe various aspects of parasite spatial dynamics, including metrics for parasite 140

dispersal, connectivity, and the parasite’s reproductive success. Finally, in 141

Quantifying Transmission in a Place, we discuss the application of these models to 142

the investigation of malaria transmission dynamics and control in a particular place. 143
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Box 1: Features This generalized, modular framework presents equations

integrating multiple agents and interacting processes. Many of these innovations

appeared first elsewhere, but here they are integrated into a single framework:

• Immature mosquito population dynamics structured in distinct aquatic

habitats linked to adult populations through egg laying and emergence

[31,32];

• Spatially heterogeneous blood feeding and parasite mixing on vertebrate

populations (i.e., blood hosts) with dynamically changing availability, such

that feeding rates and the human fraction change adjust to changing

conditions [33–36];

• Heterogeneous adult mosquito behaviors, including dispersal, survival,

blood feeding, egg laying, mating, and sugar feeding on landscapes in

response to spatially heterogeneous resource availability (e.g., mating sites,

sugar sources, blood hosts, aquatic habitats) [37–39];

• Multiple vector species or types with different host preferences, daily

activity patterns, habitats, etc. [40], and potentially with inter-specific

resource-based competition in habitats;

• Human mobility based on a concept of time at risk, which combines time

spent by humans in places where they are at risk with mosquito blood

feeding activity, preferences and other factors [9, 18];

• The capability to model indoor and outdoor spaces for blood feeding,

exposure, and vector control;

• A non-linear relationship between the daily entomological inoculation

rate (EIR) and the daily force of infection (FoI) due to heterogeneous

exposure [41].

• Malaria importation through multiple routes [42];

• An exogenously forced, time-varying extrinsic incubation period (EIP) to

model effects of temperature on parasite development;

The model has flexible structural elements to stratify an area into patches, to

model any distribution of aquatic habitats, and to stratify a human population

into sub-populations by age, immunity, or any heterogeneous, epidemiologically

relevant trait. The software also includes time-dependent terms and structures

to model exogenous forcing by weather, modification of exposure or transmission

by vector control in relation to coverage, including effects of spatial repellents

and mosquito behaviors that result in heterogeneous local contact patterns with

vector-based interventions.
144
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Framework 145

To describe malaria spatial dynamics with scalable complexity, we designed a modular 146

framework for model building around four core dynamical components, each one a 147

(potentially non-linear) state-space model. An interface rigidly defines interactions 148

among those components, based on passing terms we call dynamical quantities. All state 149

variables are vectors of arbitrary length, to accommodate models with different 150

structure or spatial granularity. 151

To model mosquito ecology, we consider immature mosquitoes in a set of aquatic 152

habitats, and adult mosquitoes in a set of patches. A state space model describes 153

aquatic immature mosquito populations (L) with dynamics dL/dt requiring an input 154

term from adult mosquito populations: the daily rate eggs are laid in each habitat (η). 155

A coupled state space model describes mature adult female mosquito populations (M) 156

with dynamics dM/dt requiring an input term from the aquatic mosquito populations: 157

the rate adults emerge from all the habitats in each patch (Λ). A state space model for 158

parasite infection dynamics in mosquitoes (Y, which extends M) with dynamics dY/dt, 159

requires an input term from human malaria epidemiology: the net infectiousness of 160

humans (NI), the probability a mosquito becomes infected after blood feeding on a 161

human (denoted κ). A state space model describing parasite infection dynamics in 162

humans, immunity, and disease (X ) with dynamics dX/dt, requires an input term from 163

adult mosquito infection dynamics: the daily EIR (E). The inputs to one component 164

can be passed as trace functions or as the outputs of another coupled component, which 165

is called the interface of each dynamical component; a generic interface is coded for 166

each term and if needed specialized methods can be written for particular models. 167

Models in the framework have the following form: 168

dL/dt = FL (η,L)

dM/dt = FM (Λ,M)

dY/dt = FY (κ,M,Y)

dX/dt = FX (E,X )

. (1)

The interactions among these dynamical components are thus defined by four input 169

terms (η,Λ, κ, and E), which may be computed as outputs of another component or 170

provided as an external forcing term (Fig. 1). Because these terms can be computed 171

from the state of the model and are used to couple different model components together, 172

we call these dynamical quantities. These terms are rates which determine how 173

components interact (e.g., flows between components). Because construction of these 174

dynamical quantities can be done in a generic way, computation of these quantities in 175

code can be done for any model which fulfills the interface of its dynamical component. 176

The dynamical quantities responsible for transfer of pathogens between hosts and 177

vectors are E and κ, the EIR and NI of humans, respectively. These quantities couple 178

the dynamics between the human X and mosquito Y dynamical components. To allow 179

computation of E and κ to be highly generic across various types of models of human 180

and mosquito infection, we developed a new model of blood feeding which produces β, 181

the biting distribution matrix describing how bites arising from mosquitoes at patches 182

are taken on human population strata. 183
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Similarly, the adult M and aquatic L mosquito components are coupled via egg 184

laying from adults in aquatic habitats, and emergence of new adults from those aquatic 185

habitats. Because the patches where adult mosquitoes are found may contain many (or 186

no) aquatic habitats, another matrix translates the rate of egg production from adults 187

into egg deposition in each aquatic habitat η. Likewise, each aquatic habitat produces 188

newly emerging adult mosquitoes at some rate α, which in general depends on the 189

current aquatic population, and therefore on lagged adult densities. Another matrix 190

maps this into the rate at which new adults are added to each mosquito population, Λ. 191

In addition to reformulating blood feeding and egg laying, the framework includes 192

mathematical descriptions of survival, search for blood hosts or habitats, and dispersal. 193

These new models of adult mosquito behaviors have all been reformulated around the 194

concept of heterogeneous resource availability and functional responses to available 195

resources. 196

Fig 1. Models for malaria transmission dynamics are naturally modular (see Eq. 1).
The dynamic modules describe a stratified human population (purple) that interacts
through blood feeding (red) with adult mosquito populations in a discrete spatial
domain; each patch could contain a set of aquatic habitats. Two components, L and M,
describe mosquito ecology: dynamics of immature mosquitoes (blue) in aquatic habitats
are described by a system of equations dL/dt; and dynamics of adult mosquitoes (green)
are described by dM/dt. Habitat locations within patches are described by a
membership matrix, N . Eggs hatch into larval mosquitoes, that develop, pupate, and
later emerge from habitats as mature adults (α) and added to the adult populations in
each patch (Λ). Adults lay eggs (ν), which are distributed spatially according to which
patch habitats belong (N ). Egg deposition rates at the habitats are (η). Two additional
components, Y and X , describe parasite infection dynamics and transmission: that for
mosquitoes, described by dY/dt and in humans, described by dX/dt, are linked through
parasite transmission. A new model for blood feeding describes how blood meals are
allocated among humans (β) and associated parasite transmission rates: the density of
infectious humans by strata (X) is used to compute net infectiousness (NI) of humans
to mosquitoes in patches (κ); and the density of infectious blood feeding mosquitoes (Z)
is used to compute the entomological inoculation rate (EIR) on each strata (E).

The modular framework was implemented as a software package in R [43] 197

(Supplement 1 is the website https://dd-harp.github.io/exDE/). The software 198

builds dynamical models of malaria in a modular way using method dispatch to define 199

generic code which implements the framework described here. The dynamical models 200

are functions which return arrays of derivatives of state variables, and can be solved 201

using the integrators available in deSolve, or other tools in R [43, 44]. The software also 202
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includes routines that compute steady state conditions and spatial metrics (see Spatial 203

Metrics, below). Because each component has an interface – the generic functions that 204

compute and pass of dynamical quantities between components – any new model can be 205

implemented which fulfills a specific interface, independent of the rest of the framework. 206

In this way, building and testing new models of particular components is straightforward, 207

and the framework is flexible and extensible. As new models are required, they will be 208

added to the package, increasing its applicability and scope over time. 209

We have developed a glossary of terms (Supplement 2). In the equations that follow, 210

for each dynamical component, we describe the model structure in detail, and we 211

present one family of models describing transmission dynamics in a single vector species. 212

In Supplement 3, we formulate a model using both conventional notation and the 213

modular notation of this framework. In Supplement 1, we have implemented a 214

previously published model of malaria transmission on Bioko Island [45]. In Supplement 215

4, we extend the discussion of vector dynamics, including a discussion of models with 216

multiple vector species. All the terms and parameters may be time dependent to 217

accommodate seasonality or modification by exogenous factors: seasonal travel, 218

exogenous forcing by weather, and parameter modification by vector control. Analysis 219

of temporal heterogeneity in this same framework is outside the scope of this study, it 220

but would be straightforward extension following approaches analogous to those shown 221

in the supplements. 222

Box 2: Notation Equations describing spatial processes include terms

describing scalar quantities, vectors of scalars, vectors of functions, and

matrices. We have avoided using any notation to designate a vector or

indicate it could be time-dependent, in part, because it would be ubiquitous;

most parameters could vary by space and time. The most general form of a

term or parameter is usually described when it is first presented, but most

terms describing a vector or matrix should be assumed to be modifiable.

In writing out the equations, we consistently use the center dot, “·”, in

equations to denote the dot product of two matrices, or a matrix and a

vector. The juxtaposition of two vectors denotes element-wise product,

and 1/∗ denotes the vector of the inverses of each element. The symbol �
denotes the Hadamard product (i.e., element-wise multiplication) of two

matrices. When x is a vector, diag(x) is a matrix with the elements of x

on the main diagonal. The identity matrix is denoted I, and 1 denotes a

row or column vector with each element equal to 1. When F is a functional

response, we assume it accepts vector arguments and returns a vector of

the same length, i.e., |F (X)| = |X|. The glossary (Supplement 1) discusses

the dimensions of each term.
223

224
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Model Structure 225

The following describes, in detail, the structural elements and the algorithms that 226

connect them. Adult mosquito and human population strata are connected through 227

blood feeding and transmission, and adult and aquatic mosquito populations are 228

connected through egg laying and emergence. 229

Structural Elements The framework has been designed to build model ensembles 230

with the goal of studying the spatial transmission dynamics of malaria in a defined 231

geographical area, called the spatial domain. An important part of this framework is 232

having flexibility in defining the model structure to describe spatial and population 233

heterogeneity at the appropriate level of detail, depending on the needs of a study and 234

the available data. The structural elements – the patches, the aquatic habitats, and the 235

population strata – were designed to handle arbitrary patch definitions, arbitrary 236

human population residency patterns and stratification, and arbitrary numbers and 237

locations of aquatic habitats. 238

To deal with spatial heterogeneity in transmission, we subdivide the spatial domain 239

and identify a set of p patches that includes all locations relevant for studying and 240

quantifying mosquito ecology or transmission: places where people live; places where 241

mosquitoes blood feed; or places with aquatic habitats where mosquitoes lay eggs. We 242

assume that there are l aquatic habitats with actual physical locations that are nested 243

within the patches. To deal with heterogeneity in the human population, the model 244

accommodates stratification. The human population is sub-divided into a set of n 245

population strata by residency, immunity, behaviors affecting risk, or any other 246

epidemiologically relevant factors (Supplement 5). Human populations are assigned a 247

single residency patch, where they live and spend most of their nights. Other 248

subdivisions of the human population could take into account age, sex, travel patterns, 249

ITN usage, or any trait that is heterogeneous and epidemiologically relevant. The total 250

census population size, the number of people who reside in each patch in the spatial 251

domain, is given by a vector denoted P (of length p). The number of people in each 252

stratum is given by a vector H (of length n). In this model, it is not necessary for every 253

patch to have some residents. 254

To manage terms for interactions among structural elements, we create two 255

mathematical objects called membership matrices that aggregate quantities to patches 256

(Supplement 3). Since the l aquatic habitats are scattered among the patches, we define 257

the habitat membership matrix N , a p× l matrix, that aggregates quantities from the l 258

aquatic habitats to p patches where they are found. Similarly, we define the strata 259

membership matrix J , a p× n matrix, that aggregates the n human population strata 260

to the p patches where they reside. The census population size, for example, is 261

P = J ·H. If a human population were stratified by other traits, such as frequent travel 262

or age, a membership matrix could be created to aggregate model output by trait. 263

The framework has also been designed to accommodate models with multiple 264

mosquito vector species or types (see Supplement 4). Most of the following discussion 265

assumes there is just one vector species, but we point out where the framework has can 266

generalize to multiple vector species. 267
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Human Mobility After defining the model structure (i.e., the patches and 268

population strata), the next challenge is to construct the algorithms describing local 269

human mobility and travel. Local mobility determines where and when humans are 270

available and exposed to blood feeding mosquitoes within the spatial domain. We define 271

travel in this model by time spent outside the spatial domain; travel and mobility are 272

thus different modalities and handled with different constructs. 273

To model local human mobility patterns within the patches, we develop a model 274

describing the fraction of time spent by humans in each stratum among the 275

patches [9, 18]. The information is summarized in a time-dependent p× n matrix Θ(t), 276

called the Time Spent (TiSp) matrix (Supplement 5). Each column in a TiSp matrix 277

describes the fraction of time spent in each patch by an individual from a single 278

stratum. In formulating the TiSp matrix, we account for time spent by time of day in 279

the patches where mosquitoes are blood feeding. Total time spent should subtract time 280

spent traveling and and time spent in the spatial domain in places where there is no risk 281

(e.g., in office buildings). 282

Blood feeding combines human and mosquito behaviors. Since mosquito blood 283

feeding has a daily rhythm [46], time at risk modifies time spent to account for 284

differences in mosquito daily blood feeding activity rates. We let ξ(t) denote a 285

species-specific circadian weighting function for blood feeding rates, constrained such 286

that
∫ 1

0
ξ(t)dt = 1, which appropriately assigns a weight to time spent by time of day 287

(Supplement 5). Using ξ, we compute the Time At Risk (TaR) matrix as time spent 288

weighted by mosquito activity: Ψ(t) = diag (ξ(t)) ·Θ(t). 289

This distinction between TiSp and TaR matrices makes it possible to study human 290

mosquito contact in detail, to quantify differential transmission by multiple vectors with 291

the same human mobility patterns, and to quantify other aspects of mosquito-human 292

contact [47,48]. A model could have two or more vector species, each with different 293

blood feeding patterns (ξ1 and ξ2), so that one TiSp matrix would be transformed into 294

two different TaR matrices (Ψ1 = ξ1Θ and Ψ2 = ξ2Θ). 295

Denominators and Availability After defining host population movement, it is 296

necessary to compute appropriate denominators to model blood feeding, based on the 297

models for time spent and time at risk. Because of mobility, mosquito preferences, and 298

human behaviors, the denominators for blood feeding are different from the resident 299

population size – the number that would be used by most studies (Fig. 2). 300

An important intermediate quantity is ambient population density, which describes 301

the population present in patches at a point in time. In a mobile population, the 302

ambient population density will tend to be different from resident population density. 303

From the time spent matrix, the ambient population density is a vector of length p 304

given by: 305

A(t) = Θ(t) ·H. (2)

Similarly, ambient population density at risk is given by: Ψ(t) ·H. One way to 306

understand what the TiSp matrix means is by taking ratios of ambient to resident 307

populations. The ambient density of residents is Ar = (J �Θ) ·H, where � denotes the 308

Hadamard (element-wise) product. The non-resident, non-visitor, ambient population is 309

A−Ar. The ratios of various census and ambient population densities (e.g., the ratio of 310
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Fig 2. Denominators and Mixing A schematic diagram relating various concepts of
population density under a model of human mobility, resulting in a biting distribution
matrix, β. Here, and and in Figures 3-6, rounded rectangles denote endogenous state
variables, sharp rectangles denote endogenous dynamical quantities, and parallelograms
represent exogenous data or factors. Purple indicates the element is related to human
populations, green for mosquitoes, and red for biting and transmission. Population
strata (H) describe how persons are allocated across demographic characteristics. The
matrix J distributes these strata across space (patch), according to place of residency.
By combining information on how people spend their time across space (Θ(t)) and
mosquito activity (ξ(t)) a time at risk (TaR) matrix Ψ is generated describing how
person-time at risk is distributed across space. Because blood feeding can be modified
by human and mosquito factors (e.g., net use and biting preferences), search weights
(wf (t)) may further weight person-time at risk. The final result is a biting distribution
matrix β, which is the fraction of each bite in each patch that would arise on an
individual in each stratum, so diag(H) · β = 1.

residents to ambient population P/A, defined wherever A > 0), can be used to 311

understand and diagnose unrealistic terms in a TiSp or TaR matrix. The ambient 312

population thus provides one easy statistic to understand TiSp or TaR matrices. 313

To model the denominators for blood feeding, we also consider other factors – 314

mosquito preferences or human behaviors or traits such as ITN usage – that affect host 315

availability to mosquitoes and relative biting rates on the strata [33]. We assign biting 316

weights, wf , to each strata, where we think of wf = 1 as the value that would be 317

assigned to an average person under baseline conditions (e.g., without a net). These 318

weights affect both the total biting rates and the relative biting rates on the ambient 319

population. We define the availability of the host populations to mosquitoes for blood 320

feeding as: 321

W = Ψ · wfH. (3)

Availability is thus defined in units of weighted person-days at risk, and W is a vector 322

of length p describing total human availability in each patch. 323

We also consider the presence of a population of visitors, a non-resident population 324

spending time in the spatial domain (Supplement 5). We assume that some visitors 325

could be present, and that some of them could be infectious. We can let Aδ denote the 326

ambient density of visitors, but we let Wδ denote their availability by patch. The 327

resident fraction or fraction of human blood meals taken on a resident in each patch, a 328

vector of length p denoted υ, is: 329

υ =
W

W +Wδ
. (4)
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The total availability of humans for blood feeding, in each patch, is thus W +Wδ. 330

Fig 3. Blood Feeding and Human Biting Rates The daily human biting rates
(HBR) for the resident population strata are defined as the expected number of bites by
vectors, per person, per day. To compute the HBR, we count up exposure over all the
patches where residents spend time. We also consider the presence of visitors and other
bloodhosts (yellow input), which increases the total available hosts.

Blood Feeding With a well-defined population denominator, we can compute the 331

frequency of blood feeding rates and the human fraction (i.e., the fraction of human 332

blood meals among all blood meals) in each patch in response to the availability of 333

humans and other available vertebrate hosts. To do so, we use functional responses to 334

model blood feeding rates and habits [33–36]. 335

Human availability, W , is often highly variable among patches and over time, which 336

could affect the rate mosquitoes blood feed (Fig. 3). Mosquitoes could also feed on other 337

vertebrate hosts. To model blood feeding, we supply a vector of functions describing the 338

availability of non-human vertebrate hosts in each patch over time, denoted O(t). We 339

assume that mosquito preferences could scale with host densities, so we assign a shape 340

parameter, ζ, that modifies how preferences scale with host densities. Total availability 341

of all vertebrate hosts for blood feeding is B = W +Wδ +Oζ (Supplement 5). 342

Let f(t) denote the blood feeding rate, the number of blood meals, per mosquito, 343

per day. To guarantee mathematical consistency in computing blood feeding rates (e.g., 344

if B = 0, then it should be true that f = 0), we can model time-dependent blood 345

feeding rates, where f(t) is a vector of length p, as: 346

f(t) = Ff (B) = fx
sfB

1 + sfB
. (5)

Depending on a shape parameter(s), sf , blood feeding rates increase with host 347

availability up to a maximum (or maxima) fx, which is limited by the time it takes to 348

search, process the blood meal, lay eggs, and perhaps to sugar feed. The fraction of 349

blood meals taken on humans at a point in time, a vector of length p denoted q(t), is 350

called the human blood feeding fraction or human fraction: 351

q(t) =
W +Wδ

B
. (6)

The local human fraction, the fraction feeding on resident humans, is thus υq = W/B. 352

The functional forms guarantee that when no humans are present, it must be true that 353

fq = 0; and when only humans are available, it must be true that q = 1. 354
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Mixing and Parasite Transmission The model for mixing is an answer to the 355

question: How are blood meals in a patch allocated among humans in the strata? The 356

time at risk matrix and the factors affecting blood feeding rates and habits in each 357

patch must be consistent with the algorithm that computes the distribution of biting 358

and parasite mixing. 359

To allocate mosquito bites in patches among the resident strata, we let β denote a 360

n× p biting distribution matrix: 361

β(t) = diag(wf ) ·ΨT · diag

(
1

W (t)

)
. (7)

Each column of β describes the fraction of a bite in a patch that lands on an individual 362

in each strata, so the matrix diag(H) · β gives the fraction of bites that land on each 363

stratum, and its columns sum to unity. 364

In the models for mosquito ecology and infection dynamics, we define variables 365

(vectors of length p) for the density of mosquitoes (M) and infectious mosquitoes (Z). 366

From these, we derive an expression for the daily human biting rate (HBR) and 367

entomological inoculation rate (EIR) for all the strata. The sporozoite rate (SR) in each 368

patch is given by: 369

z =
Z

M
. (8)

The net per-capita human blood feeding rates in each patch, or fqM/W , are hereafter 370

called the patch HBR (pHBR), and fqZ/W is hereafter called the patch EIR (pEIR) 371

for infectious mosquitoes. By way of contrast, exposure risk for the strata – the HBR 372

and EIR – are defined as the number of bites / infectious bites by vectors, per person, 373

per day. The HBR is β · fqυM , and the EIR is the product of the HBR and the SR, or 374

E = β · fqυZ. (9)

To draw a sharp contrast between the terms, the pHBR and pEIR describe the number 375

of bites / infectious bites, per person, in patches. They are stratified by location, so 376

they are vectors of length p. The HBR and the EIR are stratified quantities that sum 377

exposure over all locations for the strata, so they are vectors of length n. 378

Each model for parasite infection dynamics in humans defines a quantity, x, the 379

probability a mosquito becomes infected after biting a human in each stratum. The 380

quantity X = xH, a vector of length n, is herein called the infective density of 381

infectious human residents. We can also specify the infective density of visitors, Xδ 382

where Xδ = xδWδ is intrinsically using the availability of visitors. The net 383

infectiousness (NI) for the mosquito populations in all the patches, denoted κ, is: 384

κ = υβT ·X + (1− υ)Xδ (10)

The force of infection for the mosquito population is thus fqκ. 385

Egg Laying To compute quantities affecting mosquito ecology and population 386

dynamics, we need to formulate algorithms to compute egg laying rates and egg laying 387

distributions: how many eggs are laid by adult mosquitoes in a patch, and how are they 388
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Fig 4. Egg Laying and Egg Deposition The availability of aquatic habitats (Q)
the patch sum of habitat search weights (Q = N · wν), and the egg distribution matrix
(U) describes the locally normalized search weights. Available habitat determines
per-capita oviposition rates (ν) by the population of gravid mosquitoes (G) in a patch
through a functional response to availability, Fν(Q). The net egg laying rate, per-patch,
is Γ = χνG. The eggs are distributed among the aquatic habitats (U) so that the egg
deposition rates in habitats is η = U · Γ.

distributed among the aquatic habitats in that patch? To do so, we develop the concept 389

of habitat availability. We assign a search weight to each aquatic habitat, wν . Using the 390

patch membership matrix, N , we define aquatic habitat availability as: 391

Q(t) = N · wν(t) (11)

For each patch, total habitat availability is the sum of the search weights for habitats in 392

that patch. 393

Daily, per-capita oviposition rates of gravid mosquitoes are computed using a 394

functional response to habitat availability, such as: 395

ν = Fν(Q) = νx
sνQ

1 + sνQ
. (12)

where νx is the highest possible egg-laying rate for a gravid female, and sν is a shape 396

parameter. We note that if Q = 0, then ν = Fν(0) = 0. We let G = FG(M) denote the 397

density of gravid mosquitoes, and we let χ denote the number of eggs laid, per batch. 398

The net egg laying rate, per patch, per day, is: 399

Γ = χνG (13)

To model egg distribution among habitats, we formulate an egg distribution matrix (U) 400

that allocates eggs to habitats in proportion to local habitat availability. To compute U , 401

for computational reasons we first create Q∗ by setting any zero entries to an arbitrary 402

positive value (if Q = 0, then ν = 0, so associated products will later be multiplied by 403

zero), and the egg deposition rate, η, is computed by: 404

U (N , wν) = diag(wν) · N T · diag

(
1

Q∗

)
. (14)

Finally, we can compute egg deposition rates in the habitats: 405

η = U · Γ (15)
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While Γ (a vector of length p) describes the net egg-laying rate of the adult mosquito 406

population in each patch, per day η (a vector of length l) describes the number of eggs 407

laid, in each habitat, per day. 408

Core Dynamical Components 409

The dynamical quantities whose computation was described above, are configurable 410

elements that connect the four dynamical components: aquatic mosquito ecology; adult 411

mosquito ecology and infection dynamics; and infection and immunity, including human 412

demography. In the following, we describe one model family for each component, 413

including functions that compute terms required for the dynamical quantities; in code 414

these are the generic interface of each dynamical component. In Supplement 1 415

(https://dd-harp.github.io/exDE/), we have formulated alternative model families for 416

some of the components. 417

Aquatic Mosquito Ecology The first core dynamical component describes aquatic 418

mosquito population dynamics; the algorithm computes mosquito survival and 419

development from eggs laid through adults emerging. For aquatic population dynamics, 420

we here adapt a previously published model [31,32]. 421

Let L(t) denote the total density of immature mosquitoes. We let ψ(t) denote 422

maturation rates, φ(t) the density independent mortality rate, and θ(t)L(t) describes 423

increased per-capita mortality due to mean crowding. The aquatic dynamics are thus: 424

dL

dt
= η − (ψ + φ+ θL)L (16)

The total emergence rate of female mosquitoes in this model, per aquatic habitat, is: 425

α(t) = Fα (L (t)) =
ψ(t)L(t)

2
. (17)

These are recruited into the adult population in the patch, so that the net emergence 426

rate per patch is: 427

Λ(t) = N · α (18)

While α is a vector of length l, Λ is a vector of length p. This is passed as input to the 428

equations describing adult populations (below). 429

Given uncertainty about the factors affecting immature mosquito populations, we 430

assume studies might choose to formulate and analyze alternative dynamics. Other 431

dynamical systems models for aquatic ecology in the framework are defined by state 432

variables, L, with dynamics defined by a system of equations dL/dt = η − FL(L), and a 433

function such that α = FΛ(L), such that Λ = N · α (Supplement 4). 434

Adult Mosquito Ecology The second core dynamical component describes adult 435

mosquito ecology. Given all the functions, terms and parameters above, we have 436

formulated a set of algorithms describing adult mosquito mortality and dispersal that 437

are internally consistent. All this is embodied in the mosquito demographic matrix, 438

called Ω(t). 439
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Fig 5. Adult mosquito demography is defined by survival and dispersal. Mobility
rates and dispersal are determined by the available of resources: aquatic habitats (Q),
available humans (W +Wδ) and other blood hosts (Oζ), and sugar (S). The emigration
rate is a functional response (Fσ) that increases if any one of the resources is missing.
Resource availability and distance also play a role in computing the dispersal kernel, K,
that determines where mosquitoes land if they leave a patch. When combined with
mortality, a matrix Ω is produced which describes the behavior of adult mosquitoes
after emergence.

We assume mosquito mobility is driven by a search for resources. We have already 440

defined total blood host availability B, and aquatic habitat availability Q. We also 441

consider sugar availability, S(t), which is passed to the model as a function vector of 442

length p. We assume mosquitoes leave a patch while searching for resources, and that 443

they leave a patch more frequently if the resources are less available. Patch-specific 444

emigration rates, σ(t), are a functional response to resource availability: 445

σ = Fσ(B,Q, S) = σx

(
σB

1 + sBB
+

σQ
1 + sQQ

+
σS

1 + sSS

)
(19)

The parameters σB , σQ, and σS determine the rate that mosquitoes leave a patch if no 446

resources are available, and the shape parameters sB , sQ, and sS determine how the 447

rate of patch leaving is reduced by the availability of resources. The shape parameter σx 448

is a scaling parameter that can be used to adjust models with differing patch sizes. 449

Similarly, we formulate a mosquito dispersal matrix, K(t) that describes where 450

mosquitoes land after they leave each patch (the diagonal elements of K are constrained 451

to be equal to zero, Supplement 4). 452

We let g(t) denote the local per-capita mortality rate of mosquitoes in each patch. 453

The matrix Ω(t) describes adult mosquito survival and dispersal: 454

Ω = diag(g) + (I −K) · diag(σ) (20)

where I is the identity matrix. 455

We let Λ(t) be the net emergence rate of mosquitoes into the patches from aquatic 456

habitats (see Eq. 18, above). The dynamics of adult mosquitoes are described by the 457

equation: 458

dM

dt
= Λ− Ω ·M (21)
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Under the assumptions of this model, the density of gravid mosquitoes, G, is: 459

dG

dt
= f(M −G)− νG− Ω ·G (22)

This model thus assumes that only gravid mosquitoes can lay eggs (Eq. 13), but that all 460

mosquitoes (including gravid mosquitoes) can blood feed. 461

Other models for adult mosquito ecology, denoted dM/dt, could be formulated that 462

describe separate functions for mosquito survival and dispersal, depending on their 463

behavioral states (possibly including sugar feeding, mating and maturation), or that 464

describe a mosquito’s reproductive states, or its chronological age or reproductive age. 465

All models developed in this framework must accept the adult emergence rates, Λ, and 466

they must be formulated in enough detail to specify a population of egg-laying 467

mosquitoes, G, to compute ν (see Eq. 13). 468

Parasite Infection Dynamics in Mosquitoes The third core dynamical 469

component describes parasite infection dynamics in adult mosquito populations. Here, 470

we extend a previously published delay differential equation for the density of infectious 471

mosquitoes to include space and a time-varying extrinsic incubation period (EIP) [49]. 472

Let Y (t) denote the density of infected mosquitoes. Using κ from Eq. 10, the 473

dynamics of infection in mosquitoes are described by: 474

dY

dt
= fqκ(M − Y )− Ω · Y (23)

We include a time-dependent EIP so that parasite development can be modulated by 475

temperature or other factors exogenous to the system: let τ(t) denote the EIP for a 476

mosquito that becomes infected at time t (i.e., it becomes infectious at time t+ τ(t), 477

Supplement 4). We must also define the inverse τ−1(t), the delay for a mosquito that 478

became infectious at time, t. Let Υτ (t) denote a matrix describing survival and dispersal 479

of a cohort from time t− τ−1(t) through the EIP to become infectious at time t: 480

− ln Υτ (t) =

∫ t

t−τ−1(t)

Ω(s)ds. (24)

When Ω and τ are constant, survival and dispersal through the EIP is Υτ = e−Ωτ . 481

Otherwise, let the τ -subscript denote the value of a variable or parameter at time 482

t− τ−1(t). 483

To model the density of infectious mosquitoes, let Z(t) denote the density of 484

infectious mosquitoes. The dynamics of infectious mosquitoes are: 485

dZ

dt
= Υτ · fτqτκτ (Mτ − Yτ )− Ω · Z (25)

The number of human blood meals per patch, called the net infectious biting rate, is 486

fqZ. 487

Models for infection dynamics, generically denoted dY/dt are nested within the 488

model for adult mosquito population dynamics dM/dt (for example, see [50]). These 489

models accept the net infectiousness (κ), they must define a variable describing the 490
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density of infectious, blood feeding mosquitoes, Z, in order to compute the EIR (see 491

Eq. 9). 492

Epidemiology The fourth core dynamical component describes parasite infection 493

dynamics in human populations. Models for malaria infection, immunity, disease, and 494

infectiousness in humans, denoted dX/dt, can become quite complicated, depending on 495

the needs of a study. Studies of malaria epidemiology could consider the complex time 496

course of infections, superinfection, disease, detection, infectiousness, and immunity. 497

The state space describing malaria infection and immunity X can be modified to suit 498

the needs of a study, and the framework also has enormous flexibility to model 499

heterogeneity in populations through stratification. The following is one model family 500

that is complex enough to illustrate the generic features of the framework. 501

Let h = fh(E) denote the local daily force of infection (FoI) and δ(t) the FoI during 502

travel. In general, fh(E) could be modified to include heterogeneous biting [41], but in 503

this model, we assume h = bE. Both terms are defined for each sub-population. In 504

these models, we stratify on variables relevant for the epidemiology, including immunity, 505

and we model the effects by assigning different parameter values to each stratum. 506

To model infection dynamics, we modify a hybrid model for the multiplicity of 507

infection (MoI). The dynamics are based on a queuing model, in which new infections 508

occur at the rate h, and each parasite clears at the rate r, where we track apparent and 509

actual clearance as linked but distinct processes. The variables m1 and m2 track the 510

mean MoI for present and detectable parasites in each strata, which fully describe the 511

epidemiological state space in a simple model with superinfection [51]. We assume that 512

parasites clear at the per-capita rate, r1, so that: 513

dm1

dt
= h+ δ − r1m1 (26)

In this model, the true prevalence is: 514

x1 = 1− e−m1 (27)

We also formulate a model for the MoI of apparent infections. We assume parasite 515

infections are detectable for a shorter time so they appear to clear at a higher rate, r2, 516

and 517

dm2

dt
= h+ δ − r2m2 (28)

Similarly, we let x2 denote the apparent prevalence 518

x2 = 1− e−m2 (29)

We assume that if the infection is patent, a bite infects a mosquito with a higher 519

probability, c2, and c1 if it is not. A bite on a person in each stratum infects a mosquito 520

with probability: 521

x = c2x2 + c1(x1 − x2) (30)

To compute κ, the infective density of infectious resident hosts by strata is X = xH. 522

The vector X is passed to Eq. 10 to compute a vector of patch-specific net 523
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infectiousness, κ. 524

To compute some of the spatial transmission metrics, including basic reproductive 525

numbers (see below), a model must compute the human transmitting capacity 526

(HTC) [52]. In this model, the number of days infecting mosquitoes at the higher 527

probability, c2 is 1/r2. The remaining days, are spent infecting mosquitoes at the lower 528

probability. Expressed as the equivalent number of perfectly infectious days, the HTC is: 529

D =
c2
r2

+ c1

(
1

r1
− 1

r2

)
(31)

This framework can accommodate other systems of equations describing parasite 530

infection and immune dynamics in humans. This particular model was designed to 531

illustrate some basic features of the modular design. These particular equations were 532

designed to incorporate the effects of immunity on transmission through stratification, 533

allowing parameters describing the duration of infections or detection and the 534

infectiousness to vary among strata (e.g., r1, r2, c1 and c2). New models for human 535

epidemiology can use any epidemiological state space, X , and any system of equations, 536

dX/dt, including models with dynamical changes in the host population size. While the 537

travel FoI is recommended, it is not required. The modules should accept the EIR, and 538

to interact with other components, they must provide a function to compute the 539

infective density of infectious hosts, X. 540

Spatial Metrics 541

The Ross-Macdonald model defined a set of concepts and metrics that have formed a 542

basis for measuring and understanding malaria transmission, including vectorial capacity 543

and the basic reproductive number R0, but that model and associated metrics did not 544

include metrics for spatial dynamics, parasite dispersal, or malaria importation [3]. 545

Here, we define parasite dispersal by the set of locations (i.e. patches) where 546

infecting bites occurred in continuous chains of transmission stretching back in time. 547

Dispersal for any parasite transmission chain is thus defined by locations of the bites 548

that caused each infection, and dispersal alternating between moving humans and 549

mosquitoes between bites. We acknowledge that, due to an observational process, there 550

is an important difference between where an infection occurred and where an infectious 551

person or mosquito is found. There is also an important difference between the formulas 552

defining dispersal and those used to compute reproductive numbers, which count from 553

after a host becomes infectious. Using this definition of parasite dispersal in the context 554

of a model, we have developed formulas and metrics to compute and study parasite 555

dispersal and reproductive success. 556

To develop these metrics, we assume steady state conditions. This is done for 557

convenience to avoid discussing the complications of understanding spatial dispersal 558

under dynamically changing conditions, and it is a necessary first step to understanding 559

such models. Analysis of malaria transmission dynamics under temporally varying 560

conditions are being developed in a subsequent manuscript. 561

The formulation of this static model helps to clarify the role of some of the 562

intermediate terms – if all parameters in a model were constant, the transmission model 563
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could be fully defined by a much smaller set of parameters, but it may not be clear why 564

the parameters take on those values. Some of the terms that appear in the static 565

analysis correspond to parameters or variables in some Ross-Macdonald models, while 566

others are new: net emergence rates (Λ) or adult mosquito density (M), scaled to the 567

appropriate human population density denominator of host availability (W ), mosquito 568

bionomics (f , q, and Ω), and epidemiological parameters (r1, r2, c1, and c2). New terms 569

describe the spatial biting distribution matrix (β) and parameters describing malaria 570

importation (δ, υ, and xδ). 571

In models where the context is changing dynamically – due possibly to weather, land 572

use changes, or vector control – exogenous forcing functions can be passed to the model 573

that change resource availability or that perturb the dynamics; the functional forms and 574

intermediate terms (e.g. availability) are used to describe changes in the local 575

parameter values and guarantee mathematical consistency. In these static models, the 576

functions and terms are used to set up the model, but after setting parameter values, 577

they need not be called again. 578

Fig 6. To model malaria importation, we define a travel FoI for each stratum, δ(t), and
two set of terms to model the role of visitors in mosquito blood feeding and parasite
transmission: the available visitor population Wδ and the NI for the visitor population,
by patch xδ. To model blood feeding and transmission, we compute a patch-specific
resident fraction for blood feeding, υ, the fraction of all biting that occurs on a resident
of the spatial domain. From this, we can compute the visitor reservoir fraction, γ, the
travel fraction for incidence, and other measures of malaria importation.

Net Malaria Importation and Travel Fractions 579

Terms describing the travel FoI (δ) and visitor populations were defined above and 580

integrated into the models for blood feeding and human epidemiology. We define an 581

imported malaria case as a human infection that traces back to a location outside of the 582

spatial domain in the parasite’s previous generation, i.e., the mosquito and human host 583

preceding this one in a chain of infections [42]. Net malaria importation rates describe 584

the number of imported malaria cases, per day. 585

The fraction of all cases that were imported called the travel fraction can be defined 586

as either: 1) the fraction of incident infections that were imported; or 2) the fraction of 587

prevalent infections that were imported [45,53]. To compute these travel fractions, we 588
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let γ = (1− υ)xδ/κ denote the visitor fraction, the fraction of infectious mosquitoes that 589

were infected by visitors. We let h denote the FoI. The travel fraction for incidence is: 590

hγ + δ

h+ δ
(32)

The travel fraction for true prevalence is: 591

1− e−(δ+hγ)/r1

1− e−(δ+h)/r1
(33)

We note that these are per-capita terms defined for the strata. The net malaria 592

importation rate, the number of imported malaria incidence per day for each patch is: 593

J · (hγ + δ)H (34)

so the travel fraction for incidence for the patches would be: 594

J · (hγ + δ)H

J · (h+ δ)H
(35)

Formulas for the travel fraction for prevalence are formulated in the same way. 595

Parasite Dispersal 596

To compute quantities related to parasite dispersal, from bite to bite, we focus on local 597

transmission, and we need some formulas that describe how mosquitoes move around in 598

humans and in mosquitoes. 599

Mosquito Dispersal and Steady States In these models, we can compute steady 600

state mosquito population density, assuming Λ is constant over time. At the steady 601

state of Eq. 21, 602

M = Ω−1 · Λ (36)

Here, the inverse Ω−1 can be understood as a measure of time spent alive in each patch 603

by mosquitoes emerging habitats in each patch. In other Markov chain models with 604

finite state space, it has also been shown that the elements of the matrix inverse can be 605

interpreted as residence times [54,55]. In the simpler Ross-Macdonald model, the 606

inverse of a mortality rate, g, is a measure of time spent alive or the average mosquito 607

lifespan [56,57]. The time spent alive interpretation of Ω−1 is more apparent if there is 608

no movement: if we set σ = 0, then Ω−1 = diag(1/g). 609

In spatial models, the matrix Ω accounts for both survival and movement. To 610

illustrate – and to demonstrate that if Ω is a sensible description of mosquito 611

demography, then the matrix inverse must exist – we construct a tracking matrix. Let 612

Ξ(t) denote a matrix that tracks cohorts of mosquitoes: 613

Ξ(t,M0) = e−Ωt · diag (M0) (37)

It describes the density of mosquitoes left from an initial cohort in each patch M0 that 614

is found in each location at each point in time. There is a duality between the 615
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equilibrium population density from Eq. 21 and time spent alive by a cohort, computed 616

by integrating Eq. 37 (i.e. orbits of the related equation dM/dt = −Ω ·M). Just as we 617

can compute g−1 =
∫∞

0
e−gtdt, we can compute: 618

M = Ω−1 · Λ =

∫ ∞
0

e−Ωtdt · Λ (38)

so that the steady state can be found by simply adding up the time spent alive in each 619

patch by a cohort emerging from every other patch. Under generalized static conditions 620

(i.e. σ > 0), Ω−1 can thus be interpreted as the average time spent alive in every patch 621

by cohorts of mosquitoes initially found in each patch. 622

Parasite Dispersal in Mosquitoes Using mosquito tracking matrices, we can also 623

track parasite dispersal in mosquitoes to derive a matrix that has the same 624

interpretation as the formula for vectorial capacity [57,58]. 625

To transmit, mosquitoes must blood feed on a human to become infected: the net 626

infection rate in each patch, per available human, is fqκM/W . After becoming infected, 627

a mosquito must survive while dispersing through the EIP (Υ = e−Ωτ ). After becoming 628

infectious, a mosquito must blood feed to transmit parasites, so we use the matrix 629

inverse Ω−1 which describes where the mosquitoes are for each infectious human blood 630

meal as long as they remain alive; after becoming infectious, the distribution of 631

infectious bites is given by fqΩ−1. We can describe parasite transmission by mosquitoes 632

by following the story of infection in mosquitoes: after emerging (diag(Λ)), a mosquito 633

must blood feed on a human to become infected (fqΩ−1/W ); then survive the EIP 634

(e−Ωτ ); and then blood feed to transmit (fqΩ−1). 635

In the Ross-Macdonald model, the formula for vectorial capacity can be derived from 636

the formula for the daily EIR as a limit [57]. In spatial models, a vectorial capacity 637

matrix can be derived as the limit of a tracking matrix describing the number of 638

infectious bites arising, per available person (i.e., the denominator is W ), per day at the 639

steady state (Supplement 4): 640

V = lim
κ→0

fqZ

W
= fqΩ−1 · e−Ωτ · diag

(
fqM

W

)
(39)

Elements in the matrix V are the expected number of infectious bites eventually arising 641

in every patch from all the mosquitoes in a single patch blood feeding on a single human 642

on a single day, computed as if each human were perfectly infectious. The derivation 643

assumes that no mosquitoes are already infected, and the assumption that humans are 644

perfectly infectious (κ = 1) is made so that the formula deals only with phenomena 645

related to mosquitoes. In models with multiple vector species, the notion of what it 646

means to be “perfectly infectious” is not as simple because of differences among vector 647

species in their capacity to be a host for the parasites, or vector competence 648

(Supplement 4). 649

Parasite Dispersal by Humans To quantify parasite dispersal by humans, we 650

compute the human transmitting capacity distribution (HTCD) matrix. We let human 651

transmitting capacity (HTC) describe the net number of perfectly infectious days for 652
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each stratum: since infectiousness varies over the time-course of infections, we sum 653

partially infectious days and interpret the HTC as an equivalent number of days spent 654

perfectly infectious [52]. For the population strata in this model, the HTC (D) is 655

defined by Eq. 31. Since transmission requires two bites, we use the TaR matrix to 656

determine both where a human becomes infected and where it infects a mosquito. Using 657

the transposed TaR matrix, we can describe where infectious days at risk are spent, 658

ΨT ·D. Parasite dispersion by mosquitoes for the sub-populations also accounts for 659

where a mosquito becomes infected, or bΨ. 660

The HTCD matrix uses the biting distribution matrix, β, to count from the 661

infectious bite and weight biting appropriately for subsequent blood feeding by all the 662

population strata. The HTCD, a p× p matrix (D), is: 663

D = diag (W ) · βT · diag (bDH) · β. (40)

We note that D in spatial models is analogous to bD in models with a single patch. 664

(The equivalency of D and bD is most apparent if no humans move, and if there is one 665

stratum per patch, and if all search weights are 1, in which case H = W and 666

β = diag(1/H).) Like bD, D describes days spent infectious by an individual human, 667

but in D, describes both where a human got infected and where the mosquitoes were 668

subsequently infected. 669

The definition of D as a time-dependent matrix is substantially more complicated if 670

local human mobility patterns change dynamically. 671

Parasite Dispersal through one Parasite Generation Parasite dispersal is 672

defined by the locations where infecting bites occurred, alternatively moving in infected 673

mosquitoes and humans. The equations for D and V describe the expected movement 674

for a parasite among patches in humans or mosquitoes, respectively, counting from bite 675

to bite. Notably, the formulas are defined for a parasite in either a mosquito or a 676

human. We can also define parasite dispersal through one parasite generation (i.e., from 677

human to human, or from mosquito to mosquito) but the formula depends on where we 678

start counting. If we started from all the mosquitoes blood feeding on a single human 679

(averaged appropriately) on a single day in every patch, then we would get a matrix 680

describing dispersal from every patch to every patch: 681

D · V. (41)

If we started counting from a typical human infected in a patch on a single day, we 682

would get a different dispersal matrix: 683

V · D. (42)

Importantly, these formulas follow the same process in the same order, and thus closely 684

resemble the reproductive numbers for malaria (described below), which measure 685

reproductive success for a single parasite. These formulas are two among many that 686

could be developed to count events through a parasite’s life-cycle starting at different 687

points. 688

Formulas that describe the parasite’s per-capita reproductive success, such as 689
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Eqs. 41-42, counting events arising from a single host. In some cases, we might wish to 690

count the total number of events arising from a patch. To measure the contribution of a 691

patch to overall transmission, we must have a measure of connectivity, or total parasite 692

flows. A tracking matrix describing all of the infections arising from each patch on a 693

day, is: 694

diag (W ) · D · V (43)

If we started counting infections occurring on humans in a patch, we would get an 695

alternative patch-based tracking matrix. The number of infections arising from a patch 696

is thus tracked by: 697

diag (W ) · V · D (44)

These measures emphasize the role of places with larger available populations. 698

The same sort of formulas can be devised to describe transmission from human 699

strata to human strata, but the resulting formulas are only spatial insofar as the human 700

strata are anchored to a residency. If we focused instead on parasite reproductive 701

success starting with an infection in humans, regardless of location, we would get 702

R = bβ · V · diag (W ) · βT · diag (DH) . (45)

or we could also count bulk transmission from humans as diag(H) · R. Notably, Eq. 45 703

is a stratum-based measure. To make it quasi-spatial, we would need to assign events to 704

patches by stratum residency using the membership mapping operator J · R · J T . 705

Distances Dispersed To get a measure of the distribution of distances travelled by 706

parasites, we match a measure of transmission intensity with the corresponding element 707

in a patch distance matrix describing the distance. We take the couplet (distance and 708

intensity) and sort by distance, then compute the cumulative distribution function 709

(CDF). From the CDF, we derive a probability mass function [39]. These dispersal 710

kernels provide a simple way of visualizing distances dispersed by mosquitoes, humans, 711

or parasites. 712

These formulas and algorithms draw attention to the differences in metrics 713

describing parasite transmission dynamics and dispersal. Because of spatial 714

heterogeneity in mosquito and human population densities, there are many sensible 715

formulas for counting dispersal, some of which correspond to describing rates, ratios, 716

proportions, and numbers. Careful thought should be given to choosing or developing a 717

metric that fits the analysis. 718

Reproductive Numbers 719

Reproductive numbers are a measure of the parasite’s average reproductive success. 720

When transmission is spatially heterogeneous, reproductive success will vary for 721

parasites, depending on where they are. As parasites spread over several generations, 722

the expected success of its progeny will change. To calculate threshold criteria for 723

persistence (in the absence of malaria importation), we want a reproductive number to 724

be a measure of average success taken over the whole system, but we want to use an 725

average that does not change across generations. Doing so requires that we compute the 726
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spectral average, which is computed as the dominant eigenvalue of the parasite’s next 727

generation matrix. 728

For many reasons, it is useful to formulate local reproductive numbers that describe 729

a parasite’s average reproductive success at a particular place and time – an arithmetic 730

average. These local reproductive numbers could ignore differences across generations, 731

so they would not serve as thresholds for parasite persistence. In this section, we define 732

local reproductive numbers at the steady state, but the formulas could also serve as 733

point estimates. 734

Reproductive numbers describe malaria transmission under a range of different 735

conditions that are relevant for understanding malaria transmission dynamics and 736

control or for national strategic planning. Baseline conditions are described by the basic 737

reproductive number, R0, which is defined for a population with no acquired immunity 738

and no malaria control. The adjusted reproductive number, RC , describes a family of 739

numbers defined for a population with no acquired immunity adjusted by malaria 740

control, at a fixed level of control denoted C. In other words, R0 is defined as a special 741

case of RC , but in the absence of control. The total effect size of malaria control on 742

transmission is R0/RC . Here, we also describe the endemic reproductive number, RE , 743

which describes potential transmission modified by immunity. The total effect size of 744

immunity on transmission is RC/RE . In computing RE , as with R0 and RC , we ignore 745

the fact that some hosts are already infected. In this way, RE is defined differently than 746

the effective reproductive number, denoted Re, which is lower than RE because it does 747

not count infections occurring in someone who is already infected. We note that, by 748

definition, at an endemic steady state Re = 1. By way of contrast, RE counts the 749

number of infections that would occur after one generation, which is useful for planning 750

because it helps to clarify how success in malaria control can be assisted by immunity 751

that will eventually wane. 752

Both R0 and RC are computed as if there were no acquired immunity. In this model, 753

the effects of acquired immunity on transmission are quantified through the stratified 754

values of b, r1, r2, c1 and c2. These parameters determine the HTC for all the strata (D, 755

see Eq. 31). If D were computed using values that have been tuned to a stratum with 756

some level of immunity, we would be computing RE . To compute RC , we would need to 757

replace D with values set to a non-immune baseline (i.e., D0), and then recompute the 758

next-generation matrix. Next generation matrices computed with values of D that 759

include the effects of acquired immunity are thus describing an endemic reproductive 760

number. Depending on how D is computed, and whether the bionomic parameters 761

incorporate effects of vector control, we may thus be computing R0, RC or RE . 762

Local Reproductive Numbers One way to define local reproductive numbers is to 763

modify Macdonald’s formula using the local values of parameters, as if there was no 764

movement of mosquitoes or humans. To write the formula using some models in this 765

framework, we may need to modify HTC (which is defined for the strata, of length n) to 766

take a patch average. To compute a patch average HTC, D̆ (a vector of length p), we 767

take the population weighted average, 768

D̆ =
ΨT · wfDH
ΨT · wfH

(46)
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We can then describe a local reproductive number, R̆C (or possibly R̆E , depending on 769

how the interpret parameters are defined in D): 770

R̆C =
Λ

W

f2q2

g2
e−gτ D̆ (47)

This local measure is similar to Macdonald’s formula [59]. While useful in some 771

contexts, the formula should be applied with caution. 772

An alternative way to compute local reproductive numbers uses V and D (perhaps 773

modified to remove the effects of immunity on transmission). Since the matrices count 774

infections arising from each patch, and we add all infections arising to the patch where 775

the bite originates. We let 1 be a row vector of ones of length p, and we can count 776

infections arising starting from all the humans infected in a patch on a single day: 777

R̂C = 1 · V · D (48)

that counts infections occurring on humans, or we can start from all the mosquitoes 778

blood feeding on humans on a single day, and: 779

R̃C = 1 · D · V (49)

that counts infected mosquitoes. These patch reproductive numbers could provide 780

valuable information about whether to target the mosquitoes or humans in some patch 781

for enhanced interventions. We could also consider the equivalent formulas for total 782

patch outputs: 783

WT · V · D or WT · D · V (50)

where WT is a row vector. Alternatively, we can also weigh transmission from strata 784

using Eq. 45: 785

1 · R (51)

or the equivalent scaled by stratum size: 786

HT · R, (52)

where HT is a row vector, which gives us valuable information about infections arising 787

from every stratum on every strata, a way of identifying the relative importance of 788

various population strata. 789

Next Generation Matrix In the Ross-Macdonald model, a parasite’s reproductive 790

success in the next generation is described by a single number. It is computed by 791

counting forward from the moment a mosquito or human becomes infectious. Since 792

parasites move in infected mosquitoes and humans, parasite reproductive success – 793

measured as the number of infections in the next generation – varies across generations 794

as the parasite distributions evolve across generations among strata and among patches. 795

The matrices V and D describe parasite transmission and dispersal in mosquitoes and 796

humans, respectively. While the product of these formulas does describe net 797

reproductive success, the computation of threshold conditions has been developed 798
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around the concept of a next generation matrix [60,61], which traces the same process 799

in the same sequence but that start counting at a different point in the parasite’s life 800

cycle (Fig. 7). A threshold condition is found by taking the spectral average of the next 801

generation matrix. 802

Fig 7. A Spatial Life-Cycle Model. A diagram that illustrates how the parameters
describing each stage in the parasite’s life-cycle translate into a parasite’s reproductive
success spatially, when mosquitoes and hosts move. The right half of the circle
represents mosquitoes and the left half humans. The flow of events is clockwise.
Mosquitoes must blood feed to become infected (fqM), and then survive and disperse
through the EIP (e−Ωτ ). infectious bites are distributed as long as a mosquito survives,
while it blood feeds and disperses (fqΩ−1). The bites are distributed among humans (β)
and some of them cause an infection (b). Parasites are transmitted for as long as
humans remain infectious, measured in terms of the human transmitting capacity (HTC,
or D days). Infectious humans are distributed wherever humans spend time at risk
(affecting β). These processes are summarized differently to model parasite dispersal
and parasite reproductive success. Dispersal counts from bite to bite using the VC
matrix (V) and the HTC matrix (D). Threshold computations count from when a host
becomes infectious to measure a parasite’s reproductive success in infectious mosquitoes
(RZ); in infectious humans (RX); from human to humans among strata after a human
becomes infectious (R); and from mosquito to mosquitoes (Z). R0 is the lead
eigenvalue of R or Z. Under endemic conditions, we can also consider how frequently
parasites are actually transmitted by including the probability a mosquito gets infected
κ, and the probability a mosquito is infectious, given by the sporozoite rate z.

In computing next generation matrices, we focus on transmission within a defined 803

spatial domain. For mathematical convenience here, we thus set υ = 1, though we could 804

easily develop matrices leaving υ undetermined to discount exported malaria cases. 805

We first compute offspring transmitted from a single infectious mosquito to humans 806

or from a single infectious human to mosquitoes, each of which defines a stage in the 807

parasite’s next-generation [60]. After a mosquito has become infectious, how many 808

humans (in each stratum) would it infect? In these models, the answer to that question 809

is n× p matrix, denoted RZ , describing transmission from an infectious mosquito in 810

each patch to humans in each strata: 811

RZ = bβ · fqΩ−1. (53)
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How many infectious mosquitoes would arise from each human infection? The answer is 812

a p× n matrix, denoted RX , describing transmission from a human in each stratum to 813

mosquitoes: 814

RX = e−Ωτ · fqM ·
(
βT · diag (DH)

)
. (54)

The next-generation matrix by type is: 815

G =

[
0 RZ
RX 0

]
(55)

To describe reproductive success in terms of the parasite biology, we count reproductive 816

success through one full parasite generation, either from humans back to humans, or 817

mosquitoes back to mosquitoes. For the parasites, reproductive success through one full 818

generation requires two events, one of each type, so we square the matrix given by 819

Eq. 55 to get a new matrix in block form: 820

G2 =

[
R 0

0 Z

]
. (56)

We thus get two diagonal block sub-matrices describing reproductive success in the 821

parasite’s next generation, denoted R and Z. Reproductive success from human 822

population strata back to human strata is described by an n× n matrix R = RZ ·RX : 823

R = bβ · V · diag (W ) · βT · diag (DH) . (57)

Reproductive success from mosquito through the population strata back to mosquitoes, 824

described patch-by-patch is described by the p× p matrix Z = RX ·RZ : 825

Z = e−Ωτ · diag

(
fqM

W

)
· D · fqΩ−1 (58)

We have also formulated the next-generation matrix for systems with multiple vector 826

species (Supplement 4). 827

The Spectral Average We can also compute RC as a spectral average through 828

simulation, which is one useful way of illustrating what a spectral average means. To do 829

so, we choose a vector describing the distribution of parasites in a founding generation, 830

X0 or Y0, and iterate parasite infections across i successive parasite generations: 831

Yi+1 = ZYi or Xi+1 = RXi. (59)

We define the vector:

Ei =
Xi+1

‖Xi‖
or Ei =

Yi+1

‖Yi‖
.

where ‖X‖ or ‖Y‖ is a scalar that denotes is magnitude. Over many generations, Ei 832

converges to the lead eigenvector, a scalar value also called the spectral average or RC : 833

RC = lim
i→∞

‖Ei‖ (60)
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and it is interpreted as the asymptotic average reproductive success expressed as a 834

number of infected hosts per host, per generation. Note that it is asymptotic only for 835

the linearized system defined by Eq. 55 or Eq. 56. 836

Quasi-Thresholds for Endemic Malaria Without malaria importation, RC > 1 is 837

a threshold criterion. Analysis of models without malaria importation have consistently 838

demonstrated that malaria is either absent or that there is a single globally, 839

asymptotically stable equilibrium. When there is imported malaria, there are three 840

sufficient criteria for some local parasite transmission to occur within the area: 841

1. max {δ} > 0 and RC > 0; 842

2. max {(1− υ)Xδ} > 0 and RC > 0; 843

3. RC > 1. 844

If condition 1 or condition 2 is satisfied, then malaria will be present in an area, and if 845

RC > 0 then there will be some local transmission. If RC > 1, malaria transmission 846

would be sustained in the absence of importation. We thus call RC > 1 a 847

quasi-threshold for endemic transmission to occur within the spatial domain: endemic 848

describes places where RC > 1, and pseudo-endemic places where 0 < RC < 1 with 849

significant levels of transmission. 850

Quantifying Transmission in a Place 851

The framework, models developed within it, and the associated spatial metrics were 852

designed to have the skill required to describe and quantify heterogeneous spatial 853

transmission dynamics of malaria in a specific place at a particular time. We have not 854

explicitly defined algorithms for the observational processes that would map model 855

states onto observable quantities, which would be required to extend this mathematical 856

modeling framework into a state space modeling framework to rigorously fit models to 857

data. Instead, we have focused on the mathematics of these processes: time spent by 858

humans; other blood hosts; daily mosquito rhythms; mosquito host preferences, time at 859

risk; and mosquito mobility. Similarly, the models for mosquito ecology and population 860

dynamics describe the mathematics of mosquito mobility, in terms of explicit 861

assumptions about the locations of aquatic habitats, heterogeneous distributions of 862

resources, and mosquito mobility patterns that emerge from a search for resources. By 863

quantifying spatial patterns in terms of the underlying processes – including malaria 864

importation, mosquito ecology and spatial population dynamics, parasite transmission 865

dynamics, human mobility, and malaria epidemiology – the equations point towards a 866

general inferential framework. 867

Models developed within this framework involve substantially more parameters than 868

the Ross-Macdonald model. This is an inevitable consequence of a decision to model 869

transmission at a particular place and time. If any local features are important for 870

transmission, then a larger set of quantities must be estimated to understand and 871

quantify those features. This gives rise to an important but difficult practical question: 872

What is the relationship between the amount of local intelligence and the specificity of 873
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the policy advice that can be offered? With minimal local information, it is possible to 874

offer generic policy advice, but it may not be necessary to know everything about a 875

place to tailor advice to context. With this framework, it is possible for models to 876

evolve as the amount information increases, and the models may be used to look ahead 877

to prioritize missing data: How can programs identify missing information that would 878

most rapidly improve the effectiveness of malaria control? These contextual factors and 879

the related questions are addressed below. 880

Malaria Landscapes While the Ross-Macdonald model describes parasite 881

transmission between abstractly defined mosquito and human populations, the 882

framework we have described was developed to understand and quantify malaria 883

importation and transmission among structured mosquito and human populations in a 884

well-defined geographical area. (Using a model dX/dt that describe the infection 885

dynamics of other pathogens and immunity in vertebrate host populations, and making 886

other appropriate choices, the framework could be used as a basis for modeling dengue, 887

West Nile virus, or other mosquito-borne pathogen transmission dynamics, as well.) 888

Since the models are developed to approximate malaria transmission in an actual place, 889

after defining an observational process, the model outputs would be verifiable 890

statements about real quantities over some specific period of time. 891

As a practical first step, model building starts by defining a set of structural 892

elements – patches, human population strata, and aquatic habits – that are appropriate 893

for the needs of a study (e.g. Fig 8 illustrates some options for simulating malaria on 894

Bioko Island, Equatorial Guinea). A geographical study area is usually defined by 895

projects, programs, or political boundaries. In planning interventions for a defined area, 896

an important concern is connectivity to surrounding areas. How much malaria is 897

imported by daily human movement or travel? Are the mosquito populations within the 898

area strongly connected to others nearby? 899

Using spatial metrics to identify differences in transmission patterns and the flow of 900

parasites across a landscape can help control programs prioritize drugs, outreach, and 901

medical attention to populations, and vector or larval control to places. Using our 902

differential equation framework to reconstruct the equilibrium analysis presented in [45], 903

we have generated spatial bulk transmission matrices (diag(H) · R) among areas for 904

Bioko Island, Equatorial Guinea. In Fig. 9 different patterns of pathogen transport are 905

readily apparent between persons who live in Malabo (left), the densely populated 906

capitol of the island and a sink for travellers, and Luba (right), a small settlement in the 907

Southern half of the island. The pattern of travel seen in Luba typifies most of the areas 908

outside of Malabo, where individuals most often travel to the capitol but not to the 909

other outlying settlements. These patterns affect transmission, where we see parasites 910

originating in Malabo tend to stay in the city. Parasites originating in Luba either tend 911

to stay highly local, or are transported to Malabo when those persons move. Because 912

malarial mosquitoes tend to fare less well in urban settings, these spatial metrics can 913

help understand how high prevalence can be sustained in otherwise unsuitable locations. 914

An equally important question is about heterogeneity in mosquito population 915

densities within the area and heterogeneity in the risk of exposure, which should inform 916

the definition of patches and the choice of a patch size. Patches, in this model, are 917

defined around adult mosquito activities, and each “patch” has a geographical location. 918
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The patch is the spatial unit that defines the algorithms for time spent, blood feeding, 919

egg laying, adult mosquito survival and dispersal. The concept of a patch is flexible 920

enough to model blood feeding indoors and outdoors at the same geographical locations, 921

which may be useful to inform programmatic questions about the effectiveness of vector 922

control measures that target indoor biting (Fig. 10). Since the patch is the basis for 923

computing most aspects of blood feeding, the patches define the structure for human 924

time spent at risk, including (if required) quantifying time spent indoors vs. outdoors, 925

and mosquito movement rates from indoors to outdoors, from outdoors to indoors, or 926

from outdoors to other outdoor patches. 927

An important basic concern is the spatial granularity of the patches used for 928

simulation (see Fig. 8). Some questions remain unresolved about the appropriate spatial 929

scales and ways to define patches for describing and analyzing malaria transmission for 930

policy (e.g., to compute IRS coverage). One advantage of this framework is that it is 931

possible to build nested models with different spatial grains and compare them. Smaller 932

patches more accurately capture heterogeneity in a landscape while increasing the 933

number of parameters that need to be inferred during calibration to data.k 934

Aquatic habitats are located in patches, but the model was designed to assign 935

patches to habitats assuming the habitats had an actual location. Patches in this 936

framework need not have any human residents or any available hosts, so that mosquito 937

habitats in the uninhabited areas around human households are contributing to 938

transmission. Mosquito population dynamics are coupled through related equations 939

describing gravidity, egg laying and egg deposition. The framework thus does not 940

impose any constraints on either the method for constructing patches, or on the number 941

or arrangement of aquatic habitats within the spatial domain. Given the modular 942

nature of these models, the dynamics of immature mosquito populations in each aquatic 943

habitat depend only on its parameters and the egg deposition rates. The productivity of 944

any one aquatic habitat in an area is, however, coupled to other habitats through egg 945

laying by adult mosquitoes that could have emerged anywhere. 946

To improve the accuracy of models, human populations can be segmented into strata 947

to reduce heterogeneity in traits that affect malaria: the first segmentation is by 948

residency. In this framework, which is designed to quantify process affecting 949

transmission, heterogeneity in any trait affecting transmission is dealt with by 950

sub-dividing the population into homogeneous (or less heterogeneous) strata, such as by 951

age, travel habits or patterns, ITN usage, vaccination, care seeking, or any effects of 952

immunity affecting malaria epidemiology or transmission. 953

Notably, all this structural flexibility is achieved through membership matrices and 954

through the variables describing resource availability, which links search weights, 955

functional responses, and other functional forms to guarantee mathematical consistency 956

(e.g. avoiding problems when denominators are zero) despite structural changes. Suites 957

of models can be developed to address concerns about data gaps and uncertainty that 958

are appropriate for studies. Model complexity can be modified by changing dynamical 959

modules, by changing functional forms, by fixing or changing parameters, by splitting 960

and joining patches, by splitting or joining strata, or by adding and subtracting aquatic 961

habitats. With the ability to split and join patches or strata, any model can be mapped 962

onto simpler, nested models in a series of simple join operations until it is collapsed onto 963

a single-patch, single-stratum Ross-Macdonald model. This is functionally what is 964
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meant by scalable complexity. 965

It is thus as easy to modify and evaluate the effects of model structure (e.g. the 966

number of strata) as it is to vary parameters, to facilitate developing suites of models, 967

including models with nested patches or nested strata, to explore tradeoffs in building 968

and calibrating models at various levels of detail. 969

Mosquito Blood Feeding and Ecology Three constant parameters describing 970

mosquito behavior are a standard part of the Ross-Macdonald model [56,57]: the daily 971

death rate of mosquitoes (g), the overall daily blood feeding rate (f), and the human 972

blood feeding fraction (q). Incorporating the possibility of dynamical feedback between 973

the future emergence of adults and current population size means we have added the 974

population egg-laying rate (Γ). Adding spatial complexity to the model means the daily 975

emigration rate (σ), mosquito dispersal (K), distribution of habitats (N ) and the 976

distribution of eggs among patches (U) are additional parameters which define how 977

populations may interact in space. While our analysis has focused on steady states, the 978

models were formulated with parameters that can vary over time in response to 979

changing availability of resources [33–36]. 980

In this framework, the values of all these parameters are computed with functional 981

responses based on resource availability, mosquito biology and innate preferences that 982

constrain the parameters within sensible ranges. This formulation emphasizes how 983

baseline mosquito bionomics for different species could respond to available resources 984

and how those responses would be modified by control. In particular, the same human 985

behaviors can give rise to very different blood feeding patterns for different vector 986

species, depending on the daily rhythms, host preferences, and aquatic ecology of 987

different vector species (Supplement 4). We thus have a basis for understanding 988

mosquito behaviors and ecology as a baseline that may have been modified by vector 989

control or weather. 990

Blood feeding in this model thus makes an important distinction between 991

anthropophily, or innate mosquito preferences for hosts of different types, and 992

anthropophagy, summarized by the human blood feeding rate (fq). Models can also 993

consider a difference between the time of day when mosquitoes are actively searching for 994

blood (ξ) and the blood feeding rates by time of day (f), which vary with host 995

availability. Innate, species-specific host preferences are embodied in functional forms 996

and parameters, while the rates describing what has happened also depend on context. 997

Similarly, mosquito population dynamics are an emergent feature of a resource 998

landscape. Since searching for resources is also associated with resource availability, 999

adult mosquitoes will tend to aggregate in patches that have habitats and other 1000

required resources. In these models, egg-deposition rates in habitats by volant adult 1001

populations are spatially heterogeneous and only partially determined by the emergence 1002

rates of adults from a single habitat. The concept of a carrying capacity is, perhaps, not 1003

as useful as the concept of habitat productivity and the functional forms that determine 1004

how the number of adults emerging is related to the number of eggs laid [31]. A 1005

habitat’s carrying capacity only makes sense in the abstract – if adult mosquitoes 1006

emerging from a single habitat only laid eggs in that natal habitat. In this framework, 1007

the aquatic population dynamic module determines how adult mosquito emergence 1008

rates respond to egg laying by the adult population. 1009
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The parameters describing these processes are both habitat-specific and 1010

time-dependent: density-independent mortality, density-dependent mortality, the 1011

response to crowding, maturation rates, and search weights could vary for every habitat. 1012

A habitat can thus disappear seasonally (which occurs when wν = 0), or weather could 1013

affect immature mosquito maturation and mortality rates. If a study called for 1014

modeling resource-based competition or stage-structured mosquito populations, the 1015

equations describing aquatic populations (dL/dt) can be modified as needed (Fig 1). 1016

The framework thus facilitates the construction of realistic models of mosquito ecology, 1017

insofar as it is justified by data available and the needs of a study. 1018

Local Exposure, Human Biting Rates and Mixing In defining the algorithms 1019

for blood feeding, we also developed a new model for the human biting rate (HBR) and 1020

by extension, the entomological inoculation rate (EIR), two basic metrics used to 1021

measure malaria transmission entomologically. 1022

The model emphasizes that for any population stratum, the risk of exposure to 1023

biting mosquitoes is distributed spatially. In these models, this is determined by a biting 1024

distribution matrix (β). A similar matrix has appeared in other models for the spatial 1025

dynamics of mosquito-borne diseases for which human mobility is based on a concept of 1026

”visitation” or time spent – classified as Lagrangian movement [7, 8, 10,12–15,17,18, 45]. 1027

Here, β is based on a concept of availability, the weighted, ambient population at risk. 1028

Availability is computed from observable quantities, and it is computed dynamically for 1029

arbitrarily defined human strata and changing availability (the denominator). The 1030

formulas guarantee consistency in blood feeding: the number of human blood meals 1031

taken by mosquitoes is equal to the number of blood meals received by the humans. 1032

In the new model, the HBR is defined as β · fqM and the EIR is β · fqZ, so that the 1033

number of bites received by each stratum depends on how they spend their time at risk. 1034

In studies that have reported a value for the HBR or EIR, the quantity reported is 1035

based on catch counts by a person or device in a place. In this model, the quantity that 1036

is closest to the quantities being estimated is pHBR or pEIR, the number human blood 1037

meals, or infectious human blood meals in a patch, per available person, per day 1038

(fqM/W or fqZ/W ). A person who is in a patch at a particular time of day would 1039

experience the local biting rates at that time scaled by a search weight (fqMξ(t)ωf/W 1040

or fqZξ(t)ωf/W ). The quantity being estimated by human landing catches is a 1041

measure of the intensity of exposure in a place. 1042

Since other hosts are also available, the number of mosquitoes caught also depends 1043

on the biases of the trapping method. In this model, each method for trapping 1044

mosquitoes can be thought of as having its own “availability,” and it is competing for 1045

the attention of mosquitoes. Each method for catching mosquitoes is biased in some 1046

unknown way. We thus suggest that field methods designed to estimate the EIR are 1047

best interpreted as a location-specific measure of risk in a place, and that 1048

epidemiologically relevant measures of risk must acknowledge exposure occurring for a 1049

period of time, including all the places where a person spends time. The pEIR, weighted 1050

by total availability, is a good approximation of the EIR only if a person spends most of 1051

their time at risk in that place. The formulas presented here are useful to quantify how 1052

local measures of mosquito blood feeding in a place could differ from what the humans 1053

living in that place would experience. What is the difference between risk for a human 1054
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who moves around compared to their counterfactual self who never leaves home? 1055

The Spatial Scales of Transmission Important considerations for planning, 1056

monitoring, and evaluating malaria control are the spatial scales that characterize 1057

transmission, as defined by parasite dispersal in mosquitoes or humans. We have 1058

defined parasite dispersal rigorously in terms of the locations where blood meals 1059

occurred that transmitted parasites in dispersal chains. While these definitions are 1060

compelling, the distribution of distances separating every pair of infectious bites in a 1061

chain of malaria infections can only be approximated using other data. In practice, the 1062

framework we have described makes a distinction between local transmission and 1063

imported or exported malaria. The framework makes the most sense mathematically if 1064

most transmission is local, but the framework also defines quantities for malaria 1065

importation and exportation, making it possible to study connectivity using a frame 1066

that shifts among spatial domains and across spatial scales. 1067

After drawing a bounding box to define a spatial domain and a set of patches, we 1068

classify any pair of bites in a transmission chain where at least one occurred in the 1069

patch: either both bites occurred somewhere in the spatial domain, called local 1070

transmission; or the first bite occurred outside the spatial domain, called imported 1071

malaria; or the second bite occurred outside the spatial domain, called exported malaria. 1072

These measures of imported and exported malaria thus provide a basis for 1073

understanding and quantifying dispersal within and among defined geographical areas. 1074

These models weigh the consequences of imported malaria, but as a practical matter, 1075

the importance of exported malaria is difficult to quantify because the expected number 1076

of subsequent bites depends on conditions somewhere else. Importantly, the fraction 1077

that stays local may differ depending on whether the parasite is moving in a mosquito 1078

or a human. Similar definitions and arguments would apply to transmission through a 1079

parasite, a full parasite generation encompassing three bites and two jumps. The 1080

metrics we have developed describe transmission within a defined geographical domain, 1081

but if there is a need, the models can be reformulated for a larger spatial domain. 1082

The models and metrics provide a way of characterizing the spatial scales of 1083

transmission by computing the cumulative fraction of all transmission occurring within 1084

a circle of a given radius. Sensible points on that curve can be compared by patch: 1085

What distances contain 80%, 90%, 95%, or 98% of all transmission? These estimates 1086

are, out of necessity, based on estimated quantities – models of mosquito mobility, 1087

human mobility, and modeled mosquito population density – about which there is 1088

substantial uncertainty. 1089

Despite the overall uncertainty, these spatial scales are constrained by limits on time 1090

and travel. Some quantities are known from census data (e.g. population distributions). 1091

Most mosquito dispersal distances are short. Mosquitoes can move large distances, but 1092

most stay within 1 km of a natal habitat [62]. For humans, the fraction of time spent 1093

declines sharply with distance away from home. A large fraction of time is spent at 1094

home, especially at night, and a larger fraction of the time is spent within roughly 10 1095

km of home. The fraction of time spent drops off sharply with log10 distance. The 1096

spatial scales also depend on transmission intensity. In places with highly heterogeneous 1097

transmission, places with the highest transmission intensity, will have the greater the 1098

fraction of transmission that occurs at short distances. 1099
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Mosquitoes, Travel, and Transmission Highly spatially resolved data describing 1100

the EIR is rarely available. It is often cheaper, albeit less accurate, to use cross-sectional 1101

blood survey data describing malaria prevalence (i.e. the parasite rate, PR) to estimate 1102

local transmission. Spatial models and spatial metrics described herein provide some 1103

guidelines about how patterns in the PR can be used to identify areas with the most 1104

mosquitoes, particularly given the enormous heterogeneity in human population density. 1105

It is commonly assumed that local clustering of cases implies that there is local 1106

transmission. For models developed in this framework, the vectorial capacity matrix 1107

(Eq. 39) describes parasite dispersion by mosquitoes, and evidence suggests that the 1108

spatial scales describing parasite dispersal by mosquitoes could vary by context [62]. 1109

Importantly, imported malaria can confound the relationship between local 1110

transmission by mosquitoes and prevalence. Travel habits and other traits describing 1111

humans often cluster spatially, partly because human neighborhoods are organized by 1112

socio-economic status. Spatial clustering of cases could arise if travel habits and thus 1113

malaria importation rates are spatially clustered, giving the appearance of local 1114

transmission. 1115

Measuring Reproductive Success The most complete measure of transmission in 1116

an area is a reproductive number – the number of malaria cases arising from each 1117

malaria case after one complete parasite generation. We have defined reproductive 1118

matrices in several ways as matrices describing reproductive success among patches 1119

within a spatial domain, which can be used to define local reproductive numbers as 1120

cases arising from a patch. These reproductive matrices form a basis for investigating 1121

the appropriate spatial scales to measure and model transmission, for estimating 1122

contamination in randomized control trials, and for understanding the spatial effect 1123

sizes of control. These can put other data into a context that is relevant for 1124

transmission. For example, mosquito counts data and measures of malaria can vary over 1125

very short distances [28, 62]. The functional relevance of local heterogeneity in mosquito 1126

catch counts or in malaria prevalence can be critically examined by examining a matrix 1127

that integrates the effects of parasite movement in both mosquitoes and humans. After 1128

fully considering the uncertainty, it may be possible to determine the relevant spatial 1129

scales of transmission and thus the relevant spatial units for estimating reproductive 1130

numbers for malaria dynamics and control. 1131

Discussion 1132

The simplicity of the Ross-Macdonald model can be contrasted with Hackett’s 1133

description of the elaborate and context-dependent nature of malaria that he observed 1134

in the field [27]: 1135

. . .malaria is so moulded and altered by local conditions that it becomes a 1136

thousand different diseases and epidemiological puzzles. Like chess, it is 1137

played with a few pieces, but is capable of an infinite variety of situations. 1138

The Ross-Macdonald model clearly identified enough chess pieces to develop basic 1139

concepts and theory to describe and measure malaria transmission [1], such as vectorial 1140
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capacity, the basic reproductive numbers, daily human biting rates, sporozoite rates, 1141

entomological inoculation rates, and malaria parasite rates (i.e. prevalence). These 1142

basic metrics have formed the basis for quantitative studies of malaria transmission, but 1143

they ignored heterogeneity and complexity. In particular, the metrics and associated 1144

concepts describing parasite dispersal in infected mosquitoes and humans were missing. 1145

Parasite dispersal is defined by the locations where infecting bites occurred in chains 1146

of transmission, tracing dispersal events backwards through alternating jumps in 1147

moving, infected humans and mosquitoes. It is practically impossible to study 1148

transmission directly, but this framework has established a quantitative basis for 1149

studying transmission through a set of constructs describing closely related processes 1150

that can be observed. We have established a basis for describing dispersal rigorously, 1151

and for analyzing dispersal and simulating transmission. The metrics and concepts we 1152

have proposed here are designed to quantify transmission (and uncertainty about 1153

transmission) through the study of patterns and the processes that generated them. 1154

The metrics provide a rigorous way of quantifying parasite dispersal and spatial 1155

transmission intensity. 1156

In developing models of a specific place for monitoring and evaluating malaria, it is 1157

important to understand where and when transmission occurs as well as the local 1158

contextual factors that shape transmission. In the Ross-Macdonald model, the basic 1159

notions of reproductive success, transmission, and community effect sizes of control were 1160

based on the abstract notion of a population, but it was never clear how to define a 1161

population for purposes of quantifying malaria transmission dynamics: “What, if 1162

anything, is a malaria population?” Focal transmission has been described [63], but 1163

without a quantitative basis for quantifying malaria spatial heterogeneity and spatial 1164

dynamics, there was no basis for a nuanced quantitative discussion about “What, if 1165

anything, is a focus?” Without defining explicit boundary conditions, it was easy to 1166

ignore malaria importation: “What fraction of malaria in a defined area was 1167

attributable to local transmission?” Without modeling structured populations, it was 1168

impossible to understand how differences in human behaviors would affect 1169

transmission [64]. Who is responsible for most local transmission or malaria 1170

importation? In malaria control, these discussions have focused on the issue of 1171

stratification, but it remains unclear whether those strata should define sub-populations, 1172

spatial areas, or both. Without a framework for understanding malaria transmission 1173

spatially in heterogeneous populations, it was difficult to develop a consistent 1174

methodology for quantifying transmission in a specific place and time. 1175

We have synthesized a set of old, new, and revised models to fully develop concepts, 1176

constrain parameters, and update basic concepts and metrics in a spatial context. New 1177

algorithms have filled a need to connect model parameters with data and remove bias 1178

while guaranteeing mathematical consistency. The new framework and spatial metrics 1179

make model complexity scalable, and it provides a way to study the role of context in 1180

mosquito ecology and malaria transmission. How and why do bionomic parameters vary 1181

over space and time? What spatial scales characterize mosquito populations? What are 1182

the appropriate spatial scales to measure transmission and intervention coverage as a 1183

spatial average? What are some appropriate methods for dealing with population 1184

heterogeneity, including heterogeneity arising from differences in behavior, exposure, or 1185

immunity? 1186
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The framework emphasizes the way we organize our knowledge about malaria into 1187

bins of expertise. Given the complexity of the problem, this means modellers can build 1188

models that adapt over time as more information about transmission in a place 1189

accumulated. The first models can focus on components whose dynamics are better 1190

known, and use simpler, pragmatic approaches to parts of the model whose mechanistic 1191

foundations are more uncertain. Our framework can make building ensembles of 1192

plausible models to cover this uncertainty easier. Model building and model comparison 1193

makes it possible to weigh the importance of various factors in context. In asking where 1194

transmission is occurring, we are concerned about mosquito populations, human 1195

behaviors, and human blood feeding. In asking who is responsible for malaria, we are 1196

not just concerned about differences in infectiousness, but also populations who import 1197

malaria, and strata who play an out-sized role in moving malaria around an area. These 1198

are the basic quantities that play a role in spatial targeting and in tailoring 1199

interventions to context. 1200

Conclusion 1201

The goal of this study was to develop and present framework that could support model 1202

building for planning, monitoring and evaluating malaria control programs. Suites of 1203

models developed in this framework can be used to synthesize data, to quantify the 1204

major factors affecting transmission in a particular place, to identify critical data gaps 1205

and prioritize new data collection, to propagate uncertainty through analyses, and to 1206

support policy. We plan to use the framework to synthesize evidence and to give robust 1207

policy advice about malaria control on Bioko Island, and elsewhere, iteratively as part 1208

of adaptive malaria control. The spatial metrics and concepts describe an important 1209

dimension of malaria transmission that can help tailor interventions and spatially target 1210

interventions. In future studies, we plan to address concerns about the temporal 1211

dimensions of transmission, including threshold conditions, forcing by weather, and the 1212

spatial dimensions of malaria control. In adaptive management, the goal is to support 1213

monitoring and evaluation by developing rigorous methods that quantify malaria 1214

transmission as a changing baseline (e.g., forced by weather) that has been modified by 1215

control. In other settings, the framework can be used to enhance the design of 1216

randomized control trials or to help programs implement and interpret ad hoc 1217

experiments to fill local knowledge gaps. Simulation-based analytics in this framework 1218

can be updated using evidence collected by malaria programs to update models and 1219

analysis and revise policy recommendations, to target and tailor interventions, and to 1220

use evidence to adapt to changing local conditions. 1221
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Bioko Island: Sectors, Areas, Regions

W. Malabo

Malabo

E. Malabo

East 
CoastWest

Coast

Luba

Riaba

South

Fig 8. An important practical concern is spatial granularity of patches for
simulation-based studies. For Bioko Island, Equatorial Guinea, for example, we could
define patches at several scales: the whole island; or approximately 240 occupied areas
(1km × 1km, the squares); approximately 4, 400 occupied 100m × 100m sectors (points);
or 8 distinct regions (the colors of the squares); or clusters of contiguous sectors (the
colors of the points); or approximately 70,000 individual households. An important
concern is that the weight of evidence – the number of observations per patch – declines
sharply as granularity of the simulations increases. This framework makes it possible to
define a set of nested (or partially nested) studies that modify the number and size of
patches, which requires modifying the human and mosquito mobility sub-models, but
that holds other aspects of the model constant.
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Fig 9. (Left): bulk transmission metric describing transmission from the most densely
populated area in Malabo, the capitol city, seen as the bright cell in the Northern tip of
the island, to all other populated areas. (Right): bulk transmission from the most
highly populated area in the south of the island (Luba), seen as the bright cell in the
small harbor on the Western coast of the island.

Fig 10. Structural Elements of the framework are flexible to facilitate building
models that are appropriate for various settings. These diagrams illustrate two
examples. left) A forest malaria model with seven patches (including 3 villages and 2
campsites), 6 population strata, and 5 aquatic habitats. The village residents are
stratified into loggers and other residents. Loggers from different villages spend time at
home or in campsites, which have no permanent residents. Aquatic habitats (the
moons) can be in villages, in campsites, or in patches near villages. Some villages (e.g.
village 3), could lack mosquitoes but still have populations at risk. Right) It is also
possible to model indoor and outdoor blood feeding with indoor and outdoor patches
that share the same place. In these models, movement indoors vs. outdoors in the same
place is modeled differently from movement among outdoor patches.
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