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Abstract  

Objective: To explore the use of multivariable instrumental variables to resolve the “dammed if you 

do, dammed if you don’t” adjustment problem created for Mendelian randomisation (MR) analysis 

using the smoking or lung function related phenotypes in the UK Biobank (UKB).  

Result: “dammed if you do, dammed if you don’t” adjustment problems occur when both adjusting 

and not-adjusting for a variable will induce bias in an analysis. One instance of this occurs because 

the genotyping chip of UKB participants differed based on lung function/smoking status. In 

simulations, we show that multivariable instrumental variables analyses can attenuate potential 

collider bias introduced by adjusting for a proposed covariate, such as the UKB genotyping chip. We 

then explore the effect of adjusting for genotyping chip in a multivariable MR model exploring the 

effect of smoking on seven medical outcomes (lung cancer, emphysema, hypertension, stroke, heart 

diseases, depression, and disabilities). We additionally compare our results to a traditional univariate 

MR analysis using genome-wide analyses summary statistics which had and had not adjusted for 

genotyping chip. This analysis implies that the difference in genotyping chip has introduced only a 

small amount of bias.  
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Introduction 

Mendelian randomisation (MR) is an increasingly popular method for inferring the causal effect of 

modifiable exposures on epidemiological outcomes (1). In an MR study, genetic variants which 

robustly associated with the exposure of interest are used as instruments in an instrumental 

variables analysis.  

One of the most popular resources for conducting MR analyses is the UK Biobank (UKB) (2). The UKB 

is a large (approximately half a million participants) population cohort study of Britons. The UKB has 

been used in the MR literature to explore the causal effects of smoking-related phenotypes (3). 

However, the UKB genotyping was rolled out over several steps.  

Participants enrolled in the UK BiLEVE study were genotyped using different instruments 

(‘genotyping chip’) than other participants (4). Because UK BiLEVE was not randomly sampled, there 

is a worry that differences in genotyping between participants could cause (confounding) bias if the 

sampling probability is associated with risk factors for the outcome phenotype of interest. Because 

of this, there is general advice to adjust UKB GWASs by genotyping chip (5). However, the UK BiLEVE 

study selected participants who were in a tail or centre of the distribution for lung function and 

smoking. This poses a problem for genetic designs, like MR, in the UKB exploring smoking and lung 

function-related phenotypes. If genotyping chip is determined by UK BiLEVE enrolment, which is in 

turn determined by lung function and smoking status, then adjusting for genotyping chip could 

introduce collider bias.  

Situations where no adjustment will result in bias, but where the required covariate is a collider (see 

Figure 1) have been described as “dammed if you do, dammed if you don’t” adjustment problems in 

a recent review of types of covariate controls (6). This review concluded that there were no 

satisfaction methods for addressing this bias, and they suggested authors should implement 

sensitivity analyses when encountering this type of problem. Existing guidelines for conducting 

genetic analysis in the UKB had made similar suggestions of running analyses with and without 

adjustment for genotyping chip when a phenotype might relate to lung function or smoking (5).  

In this article, we propose a complementary sensitivity analysis to address this type of adjustment 

paradox, with specific emphasis on addressing bias due to UK BiLEVE in MR studies. Multivariable IV 

(MVIV) is an extension of traditional IV analysis to include more than one exposure (7). A traditional 

IV analysis, like MR, assumes that the instrument is robustly associated with the exposure, can affect 

the outcome only via the exposure, and that there is no ‘back door’ path from the instrument to the 

outcome. MVIV modifies these assumptions so that: 1) the instrument is robustly associated with 

the exposure(s) conditional on the other covariate(s), can affect the outcome only via one of the 

exposures, and that, conditional on all covariates, there is no ‘back door’ path from the instrument 

to the outcome. While the effect estimates of a standard IV analysis are the total effect of the 

exposure on the outcome, MVIV effect estimates should be interpreted as the direct effect of the 

exposure conditional on the covariates. Because of this, MR applications of MVIV have shown that it 

can be used to address bias, like collider bias (8), by ensuring that the effect estimate of interest is 

conditionally independent of a known biasing phenotype. Intuitively then, adding the genotyping 

chip as a second exposure to an MR model using chip adjusted genome-wide summary statistics 

should remove any collider bias introduced by adjusting for genotyping chip.  
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Main text 

Simulation  

Aims: We ran a simple simulation to provide a proof of concept that MVIV can be used to address 

“dammed if you do, dammed if you don’t” adjustment problems. We report our simulations using 

the ADEMP (aims, data-generating mechanisms, estimands, methods, and performance measures) 

approach (9). 

Data-generating mechanisms: We simulated a setting in which there is an exclusion restriction 

violation (i.e. where the instrument causes the outcome via a path not mediated by the exposure), 

but were adjusting for this violation would introduce M bias (Figure 2). More formally, we simulated 

100 single nucleotide polymorphisms (SNPs, which are common genetic variants) as independent 

and identically distributed binomial variables with the following parameters:  

SNP ~ B(2,N(0.5,0.1
2
)) 

We then simulated two confounders as independent and identically distributed normal variables 

with the following parameters:  

 C ~ N(0, 12) 

We then defined the exposure as  

E =  C1 + ∑ ���0.1, 0.05�
 � �����

�  + ε1 

where ε is an error term such that ε1 ~ N(0, 12). 

We defined the potential covariate for blocking the exclusion restriction violation as  

 P = C2 + ∑ ���0.1, 0.05�
  � ������

��  + ε2 

where ε2 ~ N(0, 12). 

Finally we defined the outcome as 

 Y = E + C1 + C2 + P + ε3 

where ε3 ~ N(0, 12). 

Estimands: The causal effect of the exposure on the outcome.  

Methods: We compare three methods for estimating the causal effect of the exposure on the 

outcome:  

1) We ran an inverse variance weighted (intercept free) regression of By ~ Bx + 0, where By 

is the SNP-outcome association and Bx is the SNP-exposure association, and where the Bx 

and By were estimated in linear models which additionally adjusted for P.  

2) An inverse-variance weighted (intercept free) regression of By ~ Bx + 0, where the Bx and 

By were not estimated in linear models which did not additionally adjust for P.  

3) An inverse-variance weighted (intercept free) regression of By ~ Bx + Bp + 0, where Bp is 

the SNP-covariate association, and where the Bx and By were estimated in linear models 

which additionally adjusted for P.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.25.22281084doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.25.22281084
http://creativecommons.org/licenses/by/4.0/


For readers less familiar with the MR literature, it is worth noting that the intercept-free weighted 

regression is equivalent to an inverse variance weighted meta-analysis of the IV Wald ratios for each 

SNP. In addition, (1) and (2) only used the first 50 simulated SNPs (i.e. those which associated with 

the exposure), while (3) used all 100 simulated SNPs (i.e. SNPs which associated with either 

exposure). By, Bx, and Bp were all estimated in non-overlapping samples of 250,000 participants.  

Performance measure: The mean bias in the causal effect of the exposure on the outcome over 1000 

iterations. 

Results of the simulation: The simulation found that both adjusting and not adjusting the linear 

model for the covariate resulted in bias (mean bias = -0.445 [MC SE = 0.002] and 0.972 [MC SE = 

0.001] for the adjusted and not adjusted analysis respectively). On the other hand, the MVIV model 

attenuated most of the bias (mean bias = -0.064 [MC SE = 0.002]).  

 

Applied example with the UKB genotyping chip 

We used a two-sample MR analysis of the effect of smoking on seven outcomes (lung cancer, 

emphysema, depression, hypertension, stroke, heart diseases, and diabetes) in the UKB as an 

applied example. The outcomes were chosen because there is existing literature implying a causal 

association between smoking and these outcomes (10–15). We ran three versions of this analysis: 1) 

using univariable MR to estimate the effect of smoking on the outcomes where the UKB smoking, 

lung cancer and emphysema GWASs had adjusted for genotyping chip, 2) using univariable MR to 

estimate the effect of smoking on the outcomes where the UKB smoking, lung cancer and 

emphysema GWASs had not adjusted for genotyping chip, and 3) using multivariable MR estimate 

the effect smoking on the outcomes adjusted for genotyping chip where the UKB smoking, lung 

cancer and emphysema GWASs had adjusted for genotyping chip.  

We used the Wootton et al UKB lifetime smoking GWAS as a source of SNP-exposure associations 

(3), which we by dividing the effect estimate and standard error by 0.6940093. To estimate 

genotype-chip association we ran a GWAS (adjusted for age, sex, and the first 10 principal 

components of ancestry) using BOLT-LMM in the MRC-IEU UKB GWAS pipeline. Full methods for 

both GWASs described elsewhere (3,16). In both the univariate and multivariate setting, we selected 

genome-wide significant SNPs associated with the exposure(s) of interest as genetic instruments, 

and then clumped this list using an r2 of 0.001 and kb of 10,000. We additionally implemented the 

FIQT WCC on the exposure GWASs to correct for any effect of Winner’s curse (17). 

We used the Elsworth’s UKB GWASs in the MRC-IEU OpenGWAS platform as a source of SNP-

emphysema and -hypertension associations (18); as well as Nikpay et al’s GWAS of CAD, Malik et al’s 

GWAS of stroke, Wang et al’s GWAS of lung cancer, Howard et al’s GWAS of depression and the 

FinnGen round 5 GWAS of disabilities (19–23). Details on genotyping, quality control, and 

phenotyping can be found in the original publications and on the UKB website 

(https://biobank.ndph.ox.ac.uk/ukb/search.cgi). All outcome GWASs were on the odds ratio scale. 

We harmonised the exposure and outcome samples, and removed palindromic SNPs whose effect 

allele could not be inferred using based on minor allele frequency. We used four MR estimators: 

IVW, weighted mode, weighted median, and MR Egger. We additionally estimated the heterogeneity 

in the MR Wald ratios using the Cochrane Q statistic as a control for exclusion restriction violations. 

The univariate MR analysis was implemented using the TwoSampleMR R package (24,25). 

Multivariable MR analyse additionally used the MVMR, MendelianRandomsiaiton, and MVMRMode 

R packages (26–28). 
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Table 1 presents the results of this analysis. These broadly show highly consistent findings across the 

three methods, with most of the changes in estimates smaller than the standard error of each point 

estimate. Overall, this would therefore broadly imply that there is minimal collider or confounding 

bias introduced by adjusting or not adjusting for genotyping chip.   

 

Limitations 

Here we have shown that MVIV can, in theory, be used to attenuate bias when “dammed if you do, 

dammed if you don’t” adjustment problems occur in an IV analysis. We then apply this to the UKB 

and show that, despite differences in genotyping depending on lung function and smoking status of 

participants, the UK BiLEVE study appears to have introduced only a small amount of bias into our 

estimates of the causal effect of smoking on lung cancer.  

There are three complications to the application of our findings to address differences in genotyping 

chip in the UKB, which we believe mean that our proposal should be used to supplement, rather 

than replace the existing guidance of performing both a chip-adjusted, and no-chip-adjusted, 

analysis as a sensitivity analysis. Firstly, MVIV has additional parameters than univariable IV analyses, 

and will therefore be even less precise. Secondly, the collinearity of exposures (such as smoking and 

genotype chip) can also introduce conditionally weak instruments into analyses which would have 

strong instruments in a university setting. Although not an issue in our applied analysis, this could 

become a major issue in analysis using weaker instruments, such as parental smoking status. Hence, 

authors should come to a judgment about which method will have a lower mean squared error and 

then use the alternatives as sensitivity analyses. Thirdly, because enrolment into the UK BiLEVE 

study was determined by smoking and lung function, it could be argued that it is, in effect, a proxy of 

these variables. If this is the case, then adjusting for genotyping chip in a model would potentially do 

something equivalent to adjusting for a mediator in a traditional regression analysis, and therefore 

introduce bias.  This underpins the importance of not using the MVIV analysis to replace the existing 

guidelines.  

A final, but related, limitation when applying our proposal to other settings is that there has to be a 

way to validity instrument the proposed covariate. Since there are many settings, especially when 

using summary data IV analysis like two-sample MR, when study-specific variables, such as UKB 

genotyping hip, this may be more common than the authors would hope.  
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Figure 1: An example “dammed if you do, dammed if you don’t” adjustment problem. Adjusting for 

M will result in collider bias, but not adjusting for M will introduce confounding.  

 

 

Figure 2: Directed Acyclic Graph of data generative model used in simulation. Here, G1 is the genetic 

liability to the exposure, and G2 the genetic liability to the potential covariate. C is the potential 

covariate, and U1 and U2 are confounders. X and Y are the exposure and outcome respectively. M is 

additionally pleotropic and a collider.  
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Phenotype Analysis IVW MR Egger Weighted Median Weighted Mode 

Number 

of SNPs 

F statistic: 

phenotype 

(chip) 

Cochrane 

Q  

Diabetes 

UVMR, no chip adjustment 0.314 (0.150 to 0.477) -0.086 (-0.761 to 0.590) 0.258 (0.041 to 0.474) 0.231 (-0.217 to 0.680) 124 41.917 0.000 

UVMR, chip adjustment 0.240 (0.061 to 0.418) -0.018 (-0.784 to 0.748) 0.242 (0.019 to 0.465) 0.203 (-0.232 to 0.638) 118 42.139 0.000 

MVMR, chip adjustment 0.302 (0.121 to 0.483) -0.076 (-0.596 to 0.443) 0.259 (0.026 to 0.493) 0.311 (0.135 to 0.471) 215 

351.575 

(193.090) 0.000 

Lung cancer 

UVMR, no chip adjustment 1.454 (1.121 to 1.788) 3.336 (1.997 to 4.675) 1.084 (0.703 to 1.466) 0.968 (-0.011 to 1.948) 122 42.166 0.000 

UVMR, chip adjustment 1.463 (1.098 to 1.827) 3.041 (1.483 to 4.600) 1.016 (0.619 to 1.413) 0.767 (-0.359 to 1.892) 116 42.431 0.000 

MVMR, chip adjustment 1.352 (1.006 to 1.699) 1.930 (0.868 to 2.993) 0.994 (0.557 to 1.431) 1.236 (0.808 to 1.571) 178 

413.201 

(163.361) 0.000 

Chronic 

bronchitis/ 

emphysema 

Univariable, no chip 

adjustment 0.229 (0.194 to 0.264) 0.339 (0.212 to 0.466) 0.210 (0.161 to 0.258) 0.189 (0.055 to 0.322) 132 42.370 0.003 

Univariable, chip 

adjustment 0.247 (0.206 to 0.288) 0.426 (0.256 to 0.597) 0.242 (0.190 to 0.294) 0.262 (0.109 to 0.415) 117 42.280 0.001 

MVMR, chip adjustment 0.237 (0.190 to 0.285) 0.346 (0.204 to 0.488) 0.220 (0.157 to 0.284) 0.299 (0.230 to 0.369) 120 

377.066 

(54.873) 0.004 

Depression 

UVMR, no chip adjustment 0.485 (0.379 to 0.5910 -0.009 (-0.404 to 0.385) 0.394 (0.289 to 0.500) 0.282 (-0.001 to 0.565) 121 42.196 0.000 

UVMR, chip adjustment 0.473 (0.353 to 0.594) 0.159 (-0.338 to 0.656) 0.469 (0.358 to 0.581) 0.459 (0.163 to 0.755) 116 41.872 0.000 

MVMR, chip adjustment 0.558 (0.454 to 0.662) 0.293 (0.012 to 0.575) 0.534 (0.411 to 0.658) 0.389 (0.282 to 0.563) 201 

367.184 

(177.232) 0.000 

Heart 

disease 

UVMR, no chip adjustment 0.449 (0.295 to 0.603) -0.088 (-0.717 to 0.541) 0.423 (0.219 to 0.627) 0.155 (-0.426 to 0.735) 125 41.890 0.000 

UVMR, chip adjustment 0.453 (0.288 to 0.617) -0.371 (-1.061 to 0.320) 0.522 (0.313 to 0.731) 0.617 (-0.021 to 1.254) 119 42.191 0.000 

MVMR, chip adjustment 0.423 (0.248 to 0.598) -0.295 (-0.820 to 0.229) 0.445 (0.209 to 0.682) 0.490 (0.332 to 0.652) 201 

373.412 

(183.898) 0.000 

High blood 

pressure 

UVMR, no chip adjustment 0.319 (0.187 to 0.451) -0.050 (-0.552 to 0.453) 0.202 (0.078 to 0.325) 0.214 (-0.011 to 0.439) 124 41.997 0.000 

UVMR, chip adjustment 0.264 (0.132 to 0.396) -0.056 (-0.587 to 0.474) 0.234 (0.121 to 0.347) 0.274 (0.044 to 0.505) 120 42.139 0.000 

MVMR, chip adjustment 0.309 (0.195 to 0.423) 0.001 (-0.304 to 0.305) 0.291 (0.170 to 0.412) 0.347 (0.244 to 0.450) 216 

349.781 

(192.446) 0.000 

Stroke 

UVMR, no chip adjustment 0.307 (0.193 to 0.421) -0.053 (-0.515 to 0.408) 0.270 (0.106 to 0.434) 0.233 (-0.096 to 0.561) 123 41.956 0.230 

UVMR, chip adjustment 0.243 (0.127 to 0.360) -0.119 (-0.623 to 0.385) 0.207 (0.032 to 0.381) 0.153 (-0.261 to 0.568) 118 42.227 0.347 
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MVMR, chip adjustment 0.265 (0.128 to 0.402) -0.035 (-0.462 to 0.393) 0.276 (0.071 to 0.480) 0.244 (0.096 to 0.393) 180 

416.145 

(169.530) 0.061 

Table 1: Results of applied example. UVMR = univariable Mendelian randomisation, MVMR = multivariable Mendelian randomisation. 
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